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Abstract. Consider a minimal and free topological dynamical system (X,Zd). It is shown

that zero mean dimension of (X,Zd) is characterized by Z-absorption of the crossed product

C*-algebra A = C(X) ⋊ Zd, where Z is the Jiang-Su algebra. In fact, among other conditions,

the following are shown to be equivalent:

(1) (X,Zd) has the small boundary property.

(2) A ∼= A⊗Z.

(3) A has uniform property Γ.

(4) l∞(A)/J2,ω,T(A) has real rank zero.

The same statement also holds for unital simple AH algebras with diagonal maps.
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1. Introduction

This is a continuation of our study [10] of the relation between the small boundary property

of dynamical systems and the Z-absorption of C*-algebras.

The Jiang-Su algebra Z is an infinite-dimensional unital simple separable amenable C*-algebra

which has the same value of the Elliott invariant as C. A C*-algebra A is said to be Z-absorbing

if A ∼= A⊗Z, and the class of Z-absorbing C*-algebras (which includes Z itself) is considered to

be well behaved. In fact, the class of Z-absorbing unital simple separable amenable C*-algebras
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which satisfy the Universal Coefficient Theorem of KK-theory (possibly redundant) is classified

by the conventional Elliott invariant (see [12], [13], [8], [5], [4], [33], [2]).

On the other hand, the small boundary property of a topological dynamical system was intro-

duced in [23] as a dynamical system analogue of the usual definition of zero-dimensional space.

It is closely related to the mean (topological) dimension, which was introduced by Gromov ([14]),

and then was developed and studied systematically by Lindenstrauss and Weiss ([23]), as a nu-

merical invariant which measures the complexity of a dynamical system in terms of the dimension

growth with respect to partial orbits. The small boundary property always implies the zero mean

dimension ([23]), and the converse holds for Zd-actions with the marker property ([22], [16]).

It was shown in [9] that the small boundary property of (X,Z) implies the Z-absorption of the

crossed product C*-algebra C(X)⋊Z. In this paper, we shall show that the converse also holds.

Thus, these two regularity properties, one for C*-algebras and one for topological dynamical

systems, are actually equivalent:

Theorem A. Let (X,Zd) be a free and minimal topological dynamical system, and let A =

C(X)⋊ Zd. Then

A ∼= A⊗Z ⇐⇒ mdim(X,Zd) = 0.

To prove this theorem, we shall introduce a new property of a C*-algebra, Property (S) (Def-

inition 6.1), which states that every self-adjoint element can be approximated by self-adjoint

elements with a neighbourhood of 0 uniformly small under all tracial spectral measures. This

may perhaps be regarded as an analogue for C*-algebras of the small boundary property. All

Z-absorbing C*-algebras have Property (S), and more generally, all C*-algebras with uniform

property Γ have Property (S).

It turns out that Property (S) of the C*-algebra A implies the (SBP) of (X,Zd). In conjunction

with other known results, this implies that Z-absorption of A is characterized by the following

list of equivalent properties:

Theorem B (Theorem 8.4). Let (X,Zd) be a free and minimal dynamical system, and consider

the crossed product C*-algebra A = C(X)⋊Zd. Let D = C(X) ⊆ A be the canonical commutative

subalgebra. Then the following conditions are equivalent:

(1) A has Property (S).

(2) (D,T(A)) has the (SBP).

(3) A ∼= A⊗Z.
(4) The strict order on Cu(A) is determined by traces.

(5) qRR(l∞(A)/J2,ω,T(A)) = 0 (Definition 6.2).

(6) RR(l∞(A)/J2,ω,T(A)) = 0.

(7) RR(l∞(D)/J2,ω,T(A)) = 0.

(8) A has uniform property Γ (Definition 2.5).

(9) (D,A) has strong uniform property Γ (Definition 2.15).

(10) (D,T(A)) is approximately divisible (Definition 2.15).

(11) mdim(X,Zd) = 0.
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This theorem also holds for an arbitrary free and minimal action of an amenable group with

the (URP) and (COS) (Definition 2.12), and holds for a simple unital AH algebra with diagonal

maps.

The main step is (1) ⇒ (2). To prove this implication, we shall introduce the following two

properties:

Definition (Definitions 4.1 and 5.1). Let A be a unital C*-algebra and let D be a unital com-

mutative subalgebra.

The pair (D,A) is said to have Property (C) if for any positive contractions f, g, h ∈ D

satisfying f, g ∈ hDh, and

dτ (f) < dτ (g), τ ∈ T(A),

and for any ε > 0, there is a contraction u ∈ hAh+ C1A such that

ufu∗ ∈∥·∥2
ε gAg,

dist2,T(A)(udu
∗, (D)1) < ε, dist2,T(A)(u

∗du, (D)1) < ε, d ∈ (D)1,

and

∥uu∗ − 1∥2,T(A), ∥u∗u− 1∥2,T(A) < ε.

The pair (D,A) is said to have Property (E) if for any positive contraction a ∈ A, any finite

subset F ⊆ C([0, 1]), and any ε > 0, there is a positive contraction b ∈ D such that

|τ(f(a))− τ(f(b))| < ε, f ∈ F , τ ∈ T(A).

Property (C) can be regarded as a relative comparison property for D inside A, with respect to

the uniform trace norm, but requires the comparison being implemented by almost normalizers.

While property (E) is an existence property for affine functions of the trace simplex.

Properties (C) and (E) hold for the pair (C(X),C(X)⋊ Γ), where (X,Γ) is free and minimal

with the (URP), and hold for the pair (D,A), where A is an AH algebra with diagonal maps

and D is the standard diagonal subalgebra (Theorem 4.6 and Theorem 5.3).

For the implication (1) ⇒ (2) of Theorem B, in order to show the (SBP) for the pair (D,T(A)),

by [10], it is enough to show that every self-adjoint element of D can be approximated by self-

adjoint elements of D with a neighbourhood of 0 uniformly small under all tracial spectral

measures (see Theorem 2.9). By Property (S), such approximating elements exist, but only in

the ambient C*-algebra A. However, this can be fixed by using Properties (C) and (E): Upon

using Property (E), one obtains a self-adjoint element in the subalgebra D which almost has the

same trace spectral measure distributions as the self-adjoint element in A provided by Property

(S), and then upon using Property (C), this element can be twisted inside D to approximate the

given self-adjoint element and still have a neighbourhood of 0 uniformly small under all tracial

spectral measures. This shows the (SBP) for (D,T(A)).

Theorem B also has the following two immediate corollaries:

Corollary C (Corollary 8.7). Let (X,Zd) be a free and minimal dynamical system. If the crossed

product C*-algebra A = C(X)⋊ Zd has real rank zero, then mdim(X,Zd) = 0 and A ∼= A⊗Z.
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Corollary D (Corollary 8.9). Villadsen algebras of the first type ([38]) do not have uniform

property Γ.
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2. Preliminaries and notation

In this section, let us collect some notation and definitions concerning C*-algebras and dy-

namical systems.

2.1. Comparison of positive elements and Z-absorbing C*-algebras. Let A be a C*-

algebra, and let a, b ∈ A be positive elements. One says that a is Cuntz subequivalent to b,

denoted by a ≾ b, if there is a sequence (xn) in A such that

lim
n→∞

x∗nbxn = a.

The following lemma will be frequently used.

Lemma 2.1 ([29]). If a, b ∈ A are positive elements such that ∥a − b∥ < ε, then (a − ε)+ ≾ b,

where (a− ε)+ = f(a) with f(t) = max{t− ε, 0}, t ∈ R.

Let τ ∈ T(A). For each positive element a ∈ A, define

dτ (a) = lim
n→∞

τ(a
1
n ).

Then, if a ≾ b, one has

dτ (a) ≤ dτ (b), τ ∈ T(A).

The converse in general does not hold.

Definition 2.2 ([17]). The Jiang-Su algebra Z is the (unique) simple unital inductive limit of

dimension drop C*-algebras such that

(K0(Z),K+
0 (Z), [1Z ]0) ∼= (Z,Z+, 1), K1(Z) = {0}, and T(Z) = {pt}.

A C*-algebra A is said to be Z-absorbing if A ∼= A⊗Z.

If A is simple and Z-absorbing, then the strict order induced by the Cuntz subequivalence

relation is determined by the rank functions; that is, for any positive elements a, b ∈ A,

dτ (a) < dτ (b), τ ∈ T(A) =⇒ a ≾ b.

The Toms-Winter conjecture asserts that strict comparison implies Z-absorption for simple sep-

arable amenable C*-algebras (this was verified for C*-algebras with finitely many extreme traces

in [24], and then it was generalized to C*-algebras with extreme traces being compact and finite

dimensional; see [30], [19], [37]).
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The class of simple separable amenable Z-absorbing C*-algebras which satisfy the Universal

Coefficient Theorem can be classified by the conventional Elliott Invariant, which in the unital

case consists of the K-groups and the pairing with the trace simplex (the order on the K-group,

not redundant in more general cases, is determined by the pairing) (see [12], [13], [8], [5], [4],

[33], [2]):

Theorem 2.3. Let A,B be unital simple separable amenable Z-absorbing C*-algebras which

satisfy the UCT. Then

A ∼= B ⇐⇒ Ell(A) ∼= Ell(B),

where Ell(·) denotes the Elliott invariant. Moreover, any isomorphism between the Elliott invari-

ant can be lifted to an isomorphism between the C*-algebras.

2.2. Uniform trace norm.

Definition 2.4. Let A be a unital C*-algebra, and let τ ∈ T(A). Define

∥a∥2,τ = (τ(a∗a))
1
2 , a ∈ A.

For any set ∆ ⊆ T(A), define the uniform trace norm

∥a∥2,∆ = sup{∥a∥2,τ : τ ∈ ∆}, a ∈ A.

The uniform trace norm satisfies

∥ab∥2,∆ ≤ min{∥a∥∥b∥2,∆, ∥a∥2,∆∥b∥} and |τ(a)| ≤ ∥a∥2,∆, a, b ∈ A, τ ∈ ∆.

We shall use l∞(A) to denote the C*-algebra of bounded sequences of A, i.e.,

l∞(A) = {(an) : an ∈ A, sup{∥an∥ : n = 1, 2, ...} < +∞}.

Let ω be a free ultrafilter; then the trace-kernel is the ideal

J2,ω,T(A) := {(an) ∈ l∞(A) : lim
n→ω

∥an∥2,T(A) = 0}.

Definition 2.5 (Definition 2.1 of [1]). A C*-algebra A is said to have uniform property Γ if for

each n ∈ N, there is a partition of unity

p1, p2, ..., pn ∈ (l∞(A)/J2,ω,∆) ∩ A′

such that

τ(piapi) =
1

n
τ(a), a ∈ A, τ ∈ T(A)ω,

where T(A)ω denotes the set of limit traces of l∞(A), i.e., the traces of the form

τ((ai)) = lim
i→ω

τi(ai), τi ∈ T(A),

and a is regarded as the constant sequence (a) ∈ l∞(A).

All Z-absorbing C*-algebras have uniform property Γ (see Theorem 5.6 of [1]). (Indeed,

all unital simple amenable C*-algebras with unique trace have (uniform) property Γ, and if a

C*-algebra U has uniform property Γ, then the tensor product C*-algebra A ⊗ U has uniform

property Γ (an extreme trace on a tensor product is a product trace).)
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2.3. AH algebras with diagonal maps.

Definition 2.6. An AH algebra with diagonal maps is the limit of an inductive sequence

A1
// A2

// · · · // A = lim−→An,

where Ai =
⊕

j Mni,j
(C(Xi,j)), and each connecting map preserves the diagonal subalgebras, i.e.,

it has the form

f 7→ diag{f ◦ λ1, ..., f ◦ λm},
where the λs are continuous maps between the Xs.

All simple unital AH algebras with diagonal maps have stable rank one ([6]), but not all AH

algebras with diagonal maps are Z-absorbing. In the pioneering work [38], Villadsen constructed

simple AH algebras with diagonal maps which have perforation in the ordered K0-group. The

construction was then used in [34] to obtain a simple AH algebra with diagonal maps which has

the same value of the conventional Elliott invariant as an AI algebra, but is not isomorphic to

this AI algebra. Although Villadsen algebras are not Z-absorbing, a preliminary classification is

obtained in [7].

2.4. The small boundary property and the mean dimension.

Definition 2.7. A topological dynamical system (X,Γ) is free if xγ = x implies γ = e where

x ∈ X and γ ∈ Γ. It is said to be minimal if the only closed invariant subspaces of X are Ø and

X.

A topological dynamical system induces an action of Γ on C(X) by

γ(f)(x) = f(xγ), x ∈ X.

We shall assume Γ is discrete. The (universal) crossed product C*-algebra C(X) ⋊ Γ is the

universal C*-algebra generated by C(X) and unitaries uγ, γ ∈ Γ, with respect to the relations

u∗γfuγ = γ(f) and uγ1u
∗
γ2

= uγ1γ−1
2
, f ∈ C(X), γ, γ1, γ2 ∈ Γ.

If Γ is amenable and the dynamical system (X,Γ) is free and minimal, the C*-algebra C(X)⋊Γ

is simple, unital, amenable, stably finite, and satisfies the UCT. However, the C*-algebra C(X)⋊
Γ may fail to be Z-absorbing, even for Γ = Z ([11]).

Let us consider the following property of dynamical systems.

Definition 2.8. A topological dynamical system (X,Γ) is said to have the small boundary

property (SBP) if for any x ∈ X and any open neighbourhood U of x, there is a neighbourhood

V of x such that V ⊆ U and µ(∂V ) = 0 for all invariant measures µ. ([23])

More generally, consider a metrizable compact space X and a collection ∆ of Borel probability

measures on X. The pair (X,∆) is said to have the (SBP) if for any x ∈ X and any open

neighbourhood U of x, there is a neighbourhood V of x such that V ⊆ U and µ(∂V ) = 0 for all

µ ∈ ∆. ([10])

We have the following criterion for the (SBP):
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Theorem 2.9 (Theorem 2.9 of [10]). Let X be a metrizable compact space, and let ∆ be a

compact set of Borel probability measures on X. Then the pair (X,∆) has the (SBP) if, and

only if, for any continuous real-valued function f : X → R and any ε > 0, there is a continuous

real-valued function g : X → R such that

(1) ∥f − g∥2,∆ < ε, and

(2) there is δ > 0 such that τµ(χδ(g)) < ε, µ ∈ ∆, where τµ is the tracial state of C(X)

induced by µ, and

χδ(t) =


1, |t| < δ,

2− |t|/δ, |t| < 2δ,

0, otherwise.

Mean topological dimension was introduced by Gromov ([14]), and then was developed and

studied systematically by Lindenstrauss and Weiss ([23]):

Definition 2.10. Consider a topological dynamical system (X,Γ), where Γ is discrete and

amenable. Its mean dimension is defined as

mdim(X,Γ) := sup
U

lim
n→∞

1

|Γn|
D(

∧
γ∈Γn

Uγ−1),

where Γ1,Γ2, ... is a Følner sequence of Γ, the supremum is taken over all finite open covers U of

X, and D(U) = min{ord(V) : V ≺ U} (ord is the maximal number of the mutually overlapping

sets minus 1).

By [23], the small boundary property of (X,Γ) implies zero mean dimension. The converse

was shown in [15] and [16] for Γ = Zd, and in [28] for actions with the (URP).

Zero mean dimension (or small boundary property) implies the Z-absorption of the C*-algebra:

Theorem 2.11 ([9]). Let (X,Z) be a free and minimal dynamical system. If mdim(X,Z) = 0,

then the C*-algebra C(X)⋊ Z is Z-absorbing.

The main motivation of this work is the converse of this theorem.

2.5. Uniform Rokhlin property and Cuntz comparison of open sets. The following two

properties were introduced in [27].

Definition 2.12 (Definition 3.1 and Definition 4.1 of [27]). A topological dynamical system

(X,Γ), where Γ is a discrete amenable group, is said to have the uniform Rokhlin property

(URP) if for any ε > 0 and any finite set K ⊆ Γ, there exist closed sets B1, B2, ..., BS ⊆ X and

(K, ε)-invariant sets Γ1,Γ2, ...,ΓS ⊆ Γ such that the transformed sets

Bsγ, γ ∈ Γs, s = 1, ..., S,

are mutually disjoint and

ocap(X \
S⊔

s=1

⊔
γ∈Γs

Bsγ) < ε,

where the abbreviation ocap stands for orbit capacity (see, for instance, Definition 5.1 of [23]).
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The dynamical system (X,Γ) is said to have (λ,m)-Cuntz-comparison of open sets, where

λ ∈ (0, 1] and m ∈ N, if for any open sets E,F ⊆ X with

µ(E) < λµ(F ), µ ∈ M1(X,Γ),

where M1(X,Γ) is the simplex of all invariant probability measures on X, it follows that

φE ≾ φF ⊕ · · · ⊕ φF︸ ︷︷ ︸
m

in C(X)⋊ Γ,

where φE and φF are continuous functions with open supports E and F respectively.

The dynamical system (X,Γ) is said to have Cuntz comparison of open sets (COS) if it has

(λ,m)-Cuntz-comparison on open sets for some λ and m.

Theorem 2.13 ([27] and [28]). Let (X,Γ) be a minimal and free dynamical system.

• If Γ = Zd, then (X,Γ) has the (URP) and (COS).

• If Γ is finitely generated and has sub-exponential growth, and if (X,Γ) has a Cantor

factor, then (X,Γ) has the (URP) and (COS).

The (UPR) implies that the C*-algebra C(X) ⋊ Γ can be weakly tracially approximated by

the homogeneous C*-algebras generated by the Rokhlin towers. Together with the (COS), it has

the following implications for the C*-algebra C(X)⋊ Γ:

Theorem 2.14 ([27], [26], [20]). Let (X,Γ) be a minimal and free dynamical system with the

(URP) and (COS), and let A = C(X)⋊ Γ. Then:

• rc(A) ≤ 1
2
mdim(X,Γ), where rc(A) is the radius of comparison of A;

• A has stable rank one, i.e., invertible elements are dense;

• A ∼= A⊗Z if, and only if, A has strict comparison for positive elements; in particular,

• if (X,Γ) has the (SBP), then A ∼= A⊗Z.

2.6. Strong uniform property Γ and approximate divisibility. In contrast to uniform

property Γ, strong uniform property Γ and approximate divisibility were introduced in [10]:

Definition 2.15. Let A be a C*-algebra and let D ⊆ A be a sub-C*-algebra. The pair (D,A)

is said to have strong uniform property Γ if for each n ∈ N, there is a partition of unity

p1, p2, ..., pn ∈ (l∞(D)/J2,ω,∆) ∩ A′

such that

τ(piapi) =
1

n
τ(a), a ∈ A, τ ∈ T(A)ω,

where T(A)ω denotes the set of limit traces of l∞(A), i.e., the traces of the form

τ((ai)) = lim
i→ω

τi(ai), τi ∈ T(A),

and a is regarded as the constant sequence (a) ∈ l∞(A).
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Consider a commutative C*-algebra D ∼= C(X), and consider a collection ∆ of Borel proba-

bility measures on X. The pair (X,∆) is said to be (tracially) approximately divisible if there

is K > 0 such that for each n ∈ N, there is a partition of unity

p1, p2, ..., pn ∈ l∞(D)/J2,ω,∆

such that

τ(piapi) ≤
1

n
Kτ(a), a ∈ D+, τ ∈ ∆ω, i = 1, ..., n.

It is clear that strong uniform property Γ for (D,A) implies approximate divisibility of

(D,T(A)|A).

Theorem 2.16 ([10]). If (D,∆) is approximately divisible, then (D,∆) has the (SBP).

3. Comparison in Mn(C(X)) using almost normalizers

Consider the homogeneous C*-algebra A = Mn(C(X)) and its diagonal subalgebra D, where

X is a metrizable compact space. It is known that D always has relative comparison properties

in A, regardless of the dimension of X (see, for instance, [27]). In this section, let us establish

the technically important fact that the matrices implementing the (relative) comparison can

be chosen to be close (with respect to the uniform trace norm) to permutation unitaries, so

implemented by almost normalizers (Theorem 3.14).

3.1. Well-supported elements. Well-supported functions were introduced in [35] to study

comparison of positive elements of Mn(C(X)) by means of their rank functions. We will also use

the property of well-supportedness to study the comparison of diagonal elements of Mn(C(X)),

but without conditions on the dimension of X (as in [35]).

Definition 3.1 (cf. [35]). Let

f = diag{f1, f2, ..., fn} ∈ D ⊆ Mn(C(X))

be a positive element. Assume rank(f) has values n1, ..., nL. and set

Ei = {x ∈ X : rank(f(x)) = ni}, i = 1, ..., L.

The matrix-valued continuous function f is said to be well supported if

(1) for each i = 0, 1, ..., n, the range projection of f |Ei
extends to a projection pi over Ei, and

(2) if x ∈ Ei ∩ Ej where i < j, then pi(x) ≤ pj(x).

Note that, since f is diagonal, its range projection is the rank ni projection

pi = diag{1(0,∞)(f1), ...,1(0,∞)(fn)}

over Ei.

Lemma 3.2 (cf. Theorem 3.9 of [35]). Let A = Mn(C(X)), where X is a finite simplicial complex,

and let D be the diagonal subalgebra. Let f ∈ D be a positive element. Then, for any ε > 0,

there is a well-supported positive element f̃ ∈ D such that

(1) f̃ ≤ f ,
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(2) ∥f − f̃∥ < ε, and

(3) upon a refinement, the sets Ei of f̃ (of Definition 3.1) are finite subcomplexes of X.

Proof. The lemma follows from the proof of Theorem 3.9 of [35]. □

3.2. Decomposition of X with respect to well-supported functions. Consider well-supported

positive diagonal matrix-valued functions

f = diag{f1, ..., fn} and g = diag{g1, ..., gn},

and assume both of them satisfy Condition (3) of Lemma 3.2.

Write

Fi = {x ∈ X : rank(f(x)) = mi} and Gj = {x ∈ X : rank(g(x)) = nj},

where m1 ≤ · · · ≤ mM and n1 ≤ · · · ≤ nN . Assume that Fi and Gj are finite subcomplexes of

X, upon a refinement.

Note that the sets

(3.1) F1 ⊔ · · · ⊔ Fi and G1 ⊔ · · · ⊔Gj, i = 1, ...,M, j = 1, ..., N,

are closed in X.

For each p = 1, ..., n, denote the open supports of fp and gp respectively by

(3.2) Ofp = {x ∈ X : fp(x) > 0} and Ogp = {x ∈ X : gp(x) > 0}.

Since f is well supported, the range projection of f |Ei
extends to a projection pi over Ei, and

therefore each set Fi, i = 1, ...,M , has a (disjoint) decomposition

(3.3) Fi = Fi,1 ⊔ · · · ⊔ Fi,li

such that the restriction of (the extension of) the range projection pi to each Fi,s, s = 1, ..., li, is

constant (diagonal), and the restrictions of pi to different Ei,s have different values.

Write the induced decomposition of Fi as

Fi = Fi,1 ⊔ · · · ⊔ Fi,li ,

and denote the shape of f on Fi,s by Fi,s, i.e.,

Fi,s := {p = 1, ..., n : fp(x) > 0, x ∈ Fi,s}.

Note that, with the notation above, one has

Fi,s = {x ∈ X : fp(x) > 0, fq(x) = 0, p ∈ Fi,s, q /∈ Fi,s}.

So, Fi,s = Fi,s′ if, and only if, Fi,s = Fi,s′ . In other words, the sets Fi,s are determined by their

shapes.

Also note that, for any i ≤ i′,

(3.4) Fi,s ∩ Fi′,s′ = Fi,s ∩ (
⋂

p∈Fi′,s′\Fi,s

Ofp).
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List the sets Fi,s, s = 1, ..., li, i = 1, ...,M , as

F1,1, ..., F1,l1 , F2,1, ..., F2,l2 , ..., FM,1, ..., FM,lM ,

and re-index them as F1, ..., FM ′ (with an abuse of notation). By Condition (2) of Definition 3.1,

(3.3), and (3.1), this list of sets has the following properties:

(1) Each F1 ∪ · · · ∪ Fi, i = 1, ...,M ′, is closed, and

(2) If Fi ∩ Fj ̸= Ø and i ≤ j, then Fi ⊆ Fj.

Similarly, for each Gj, j = 1, ..., N , there are decompositions

Gj = Gj,1 ⊔ · · · ⊔Gj,rj

and

Gj = Gj,1 ⊔ · · · ⊔Gj,rj

such that the restriction of the range projection qj to each Gj,t, t = 1, ..., rj, is constant; denote

the shape of the function f on Gj,t by

Gj,t := {p = 1, ..., n : gp(x) > 0, x ∈ Gj,t}.

List the sets Gj,t, t = 1, ..., sj, j = 1, ..., N , as

G1,1, ..., G1,s1 , G2,1, ..., G2,l2 , ..., GM,1, ..., GM,lM ,

and re-index them as G1, ..., GN ′ (with an abuse of notation). This list of sets has the following

properties:

(1) Each G1 ∪ · · · ∪Gi, i = 1, ...,M ′, is closed, and

(2) If Gi ∩Gj ̸= Ø and i ≤ j, then Fi ⊆ Fj.

Let us set

Zi,j = Fi ∩Gj,

(where Fi and Gj are the sets in the re-indexed sequence) so that we have the following decom-

position of X:

(3.5) X =
⊔
i,j

Zi,j.

For each Zi,j, define

dom(Zi,j) = Fi and codom(Zi,j) = Gj,

and the shape of Zi,j as

(Fi,Gj).

Note that, by the construction, each set Zi,j is determined by its shape.

Then list the sets Zi,j, i = 1, ...,M ′, j = 1, ..., N ′, as

Z1,1, ..., Z1,N ′︸ ︷︷ ︸
F1

, Z2,1, ..., Z2,N ′︸ ︷︷ ︸
F2

, ..., ZM ′,1, ..., ZM ′,N ′︸ ︷︷ ︸
FM′

.

Definition 3.3 (Notation). Re-index this list of the sets {Zi,j} as Z1, Z2, ..., ZL, and also re-index

the shape of Zi as (Fi,Gi). Then this list has the following properties:

(1) Each Z1 ⊔ · · · ⊔ Zk is closed in X.
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(2) If Zi ∩ Zj ̸= Ø and i ≤ j, then (Fi,Gi) ⊆ (Fj,Gj) (where (Fi,Gi) ⊆ (Fj,Gj) denotes

Fi ⊆ Fj and Gi ⊆ Gj).

(3) For each k = 1, ..., n − 1, the closed set (Z1 ∪ · · · ∪ Zk) ∩ Zk+1 has a neighbourhood

retraction in Zk+1. (This follows from Condition (3) of Lemma 3.2.)

Note that

Zi ∩ Zj = Zi ∩ (
⋂

p∈Fj\Fi

⋂
q∈Gj\Gi

Ofp ∩Ogq), if (Fi,Gi) ⊆ (Fj,Gj).

This implies that if

(Fi,Gi) ⊆ (Fk,Gk) ⊆ (Fj,Gj)

for some k, then

Zi ∩ Zj(3.6)

= Zi ∩ (
⋂

p∈Fj\Fi

⋂
q∈Gj\Gi

Ofp ∩Ogq)

⊆ Zi ∩ (
⋂

p∈Fk\Fi

⋂
q∈Gk\Gi

Ofp ∩Ogq)

= Zi ∩ Zk.

3.3. Almost normalizers and comparison.

Definition 3.4. Let δ > 0 and n ∈ N. Consider a matrix algebra A = Mn(C) and its diagonal

subalgebra D. Then a unitary u ∈ A is said to be a δ-normalizer if there is a unitary v ∈ A such

that

(1) vDv∗ = D, and

(2) ∥u− v∥2,T(A) < δ.

Denote by Pn(δ) the set of n× n unitaries which are also δ-normalizers.

Remark 3.5. If u is a δ-normalizer, then, for any contraction d ∈ D, one has

dist2(udu
∗, D) ≤ dist2(udu

∗, vdv∗) < 2δ.

Remark 3.6. Let σ be a permutation of {1, 2, ..., n}. Then the permutation unitary uσ is a

δ-normalizer for all δ > 0.

Lemma 3.7. Let σ1, σ2 be two permutations of {1, 2, ..., n} and let F1, F2, G ⊆ {1, 2, ..., n} be

such that

F1 ⊆ F2,

σi(F1) ⊆ G and σi|{1,...,n}\(F2∪G) = id, i = 1, 2.

Then there is a continuous path

(3.7) ut ∈ Pn(2/n), t ∈ [0, 1],

such that

u0 = uσ1 , u1 = uσ2 ,
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and

(3.8) ut(ei) ⊆ span{ej : j ∈ G}, i ∈ F1, t ∈ [0, 1],

and

ut(ei) = ei, i ∈ {1, ..., n} \ (F2 ∪ G), t ∈ [0, 1].

Proof. Write

σ1 = τ1 · · · τkσ2,
where τi, i = 1, ..., k, are transpositions of the elements of G (in particular, they are the identity

on {1, ..., n} \ (F2 ∪ G)). Then, for each each τi, 1 ≤ i ≤ k, write τi = (i1i2), and for t ∈ [0, 1],

define the unitary matrix v
(i)
t by

v
(i)
t (ei) = ei, i ̸= i1, i2,

v
(i)
t (ei1) =

1

2
((1 + eπ

√
−1(1−t))ei1 + (1− eπ

√
−1(1−t))ei2)

and

v
(i)
t (ei2) =

1

2
((1− eπ

√
−1(1−t))ei1 + (1 + eπ

√
−1(1−t))ei2).

Note that

v
(i)
0 = uτi , v

(i)
1 = In, and ∥v(i)t − In∥2,tr ≤ 2/n, t ∈ [0, 1].

Hence, defining

u
(i)
t = v

(i)
t uτi+1

· · ·uτkuσ2 ,

one has

u
(i)
0 = uτi · · ·uτkuσ2 , u

(i)
1 = uτi+1

· · ·uτkuσ2 , and ∥u(i)t − uτi+1
· · ·uτkuσ2∥2 < 2/n, t ∈ [0, 1].

In particular,

u
(i)
t ∈ Pn(2/n), t ∈ [0, 1].

Then, connecting the paths

u
(1)
t , u

(2)
t , ..., u

(k)
t ,

and renormalizing the parameter, one has the desired homotopy. □

Remark 3.8. It follows from (3.8) that

utfu
∗
t ⊆ Her(G), f ∈ Her(F1),

where, for any set F ⊆ {1, ..., n}, Her(F) denotes the hereditary subalgebra of Mn(C) generated
by {ep : p ∈ F}.

Lemma 3.9. Let A = Mn(C(X)), where X is a simplicial complex, and let D ⊆ A be the diagonal

subalgebra. Let f, g, h ∈ D be positive elements such that f, g are well supported, f, g ∈ hDh and

the sets Fi of f and Gj of g are subcomplexes of X (upon a refinement). If

(3.9) rank(f(x)) ≤ rank(g(x)), x ∈ X,

then, for any ε > 0, there is a unitary u ∈ hAh+ C1 such that

u(x) ∈ Pn(2/n) and (ufu∗)(x) ∈ε (gAg)(x), x ∈ X.
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Proof. In the setting above, by (3.9), one has

|Fi| ≤ |Gi|, i = 1, 2, ..., L.

Then, for each Zi, i = 1, ..., L, pick a permutation σi of {1, 2, ..., n} such that

σi(Fi) ⊆ Gi and σi(p) = p, p ∈ {1, 2, ..., n} \ (Fi ∪ Gi).

Also note that, since f, g ∈ hDh, one has

Fi, Gi ⊆ {p = 1, ..., n : hp(x) ̸= 0}, x ∈ Zi, i = 1, ..., n.

Therefore,

(3.10) σi(p) = p, if hp(x) = 0 and x ∈ Zi.

Starting with Z1, define the unitary u on Z1 to be

u(x) = uσ1 , x ∈ Z1.

It follows from (3.10) that

u(x) ∈ (hAh)(x) + C1, x ∈ Z1,

and

(ufu∗)(x) ∈ (gAg)(x), x ∈ Z1.

Moreover, for each j ≥ 2 such that Z1 ∩ Zj ̸= Ø, one has (F1,G1) ⊆ (Fj,Gj). By Lemma 3.7

(with σ1, σj, F1, Fj, and Gj in place of σ1, σ2, F1, F2, and G, respectively), there is a continuous

path

wt ∈ Pn(2/n), t ∈ [0, 1],

such that

w0 = σ1, w1 = σj,

(wtfw
∗
t )(x) ∈ Her(Gj), x ∈ Z1 ∩ Zj,

and

wt(ep) = ep, p ∈ {1, ..., n} \ (Fj ∪ Gj).

Now, assume inductively that we have constructed a unitary u ∈ hAh + C1 defined on Z1 ∪
· · · ∪ Zk which satisfies

(A) (ufu∗)(x) ∈(k−1)ε/L (gAg)(x), x ∈ Z1 ∪ · · · ∪ Zk,

(H) for each Zj, j ≥ k + 1, the restriction of u to (Z1 ∪ · · · ∪ Zk) ∩ Zj is homotopic to uσj

through a path

wt : (Z1 ∪ · · · ∪ Zk) ∩ Zj → Pn(2/n), t ∈ [0, 1],

such that

(wtfw
∗
t )(x) ∈(k−1)ε/L Her(Gj), x ∈ (Z1 ∪ · · · ∪ Zk) ∩ Zj, t ∈ [0, 1],

and

wt(x)(ep) = ep, p ∈ {1, 2, ..., n} \ (Fj ∪ Gj).
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Let us extend u to (Z1 ∪ · · · ∪ Zk) ∪ Zk+1 so as still to have the properties (A) and (H) above

(for k + 1). Consider (Z1 ∪ · · · ∪ Zk) ∩ Zk+1. By the property (H) (for k), there is a path

wt : (Z1 ∪ · · · ∪ Zk) ∩ Zj → Pn(2/n), t ∈ [0, 1],

such that

w0 = u|(Z1∪···∪Zk)∩Zj
, w1 = uσk+1

,

(3.11) (wtfw
∗
t )(x) ∈(k−1)ε Her(Gk+1), x ∈ (Z1 ∪ · · · ∪ Zk) ∩ Zk+1, t ∈ [0, 1],

and

(3.12) wt(x)(ep) = ep, p ∈ {1, 2, ..., n} \ (Fk+1 ∪ Gk+1).

Inside Zk+1, pick a neighbourhood U ⊇ (Z1 ∪ · · · ∪ Zk) ∩ Zk+1 and a retraction

r : U → (Z1 ∪ · · · ∪ Zk) ∩ Zk+1.

Without loss of generality, one may assume that U is sufficiently small that

(3.13) ∥f(r(x))− f(x)∥ < ε/L, x ∈ U.

Choose a continuous function s : Zk+1 → [0, 1] such that

s|(Z1∪···∪Zk)∩Zk+1
= 0 and s|Zk+1\U = 1.

Then extend u to (Z1 ∪ · · · ∪ Zk) ∪ Zk+1 by

u(x) =

{
ws(x)(r(x)), x ∈ U,

uσk+1
, x ∈ Zk+1 \ U.

Note that, by (3.12), one has u ∈ hAh+ C1.
Let us first verify that

(3.14) (ufu∗)(x) ∈kε/L (gAg)(x), x ∈ (Z1 ∪ · · · ∪ Zk) ∪ Zk+1.

One only needs to verify it over Zk+1. If x ∈ Zk+1 \ U , then

(ufu∗)(x) = uσk+1
f(x)u∗σk+1

∈ (gAg)(x);

if x ∈ U , then, by (3.13) and (3.11),

(ufu∗)(x) = ws(x)(r(x))f(x)w
∗
s(x)(r(x))

≈ε/L ws(x)(r(x))f(r(x))w
∗
s(x)(r(x))

∈(k−1)ε/L Her(Gk+1)

= (gAg)(x).

This verifies (3.14). Thus u satisfies the inductive assumption (A) for k + 1.

Let us now show that the unitary u also satisfies the inductive assumption (H) (for k + 1).

Consider the restriction of u to Zk+1, and note that the two-variable function

Ht(x) =

{
w(1−t)s(x)+t(r(x)), x ∈ U,

uσk+1
, x /∈ U,

t ∈ [0, 1],
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defines a homotopy between u|Zk+1
and uσk+1

.

Then, for each t ∈ [0, 1], if x ∈ Zk+1 \ U , then

(HtfH
∗
t )(x) = uσk+1

f(x)u∗σk+1
∈ (gAg)(x),

and if x ∈ U , then, by (3.13) and (3.11),

(HtfH
∗
t )(x) = w(1−t)s(x)+t(r(x))f(x)w

∗
(1−t)s(x)+t(r(x))(3.15)

≈ε/L w(1−t)s(x)+t(r(x))f(r(x))w
∗
(1−t)s(x)+t(r(x))

∈(k−1)ε/L Her(Gk+1).

Also note that

Ht(x)(ep) = ep, p ∈ {1, ..., n} \ (Fk+1 ∪ Gk+1), x ∈ Zk+1.

For each Zj, j ≥ k + 2, consider the set

(Z1 ∪ · · · ∪ Zk+1) ∩ Zj.

If Zk+1 ∩ Zj = Ø, then u has the homotopy property (H) by the inductive assumption. Thus,

one may assume that

Zk+1 ∩ Zj ̸= Ø,

and hence that

(Fk+1,Gk+1) ⊆ (Fj,Gj).

List the special indices

{i1, ..., is} = {i = 1, ..., k : (Fi,Gi) ⊆ (Fk+1,Gk+1)}.

By (3.6),

Zi1 ∩ Zj ⊆ Zi1 ∩ Zk+1, ..., Zis ∩ Zj ⊆ Zis ∩ Zk+1,

and therefore

(Zi1 ∪ · · · ∪ Zis) ∩ Zj ⊆ (Zi1 ∪ · · · ∪ Zis) ∩ Zk+1 ⊆ Zk+1.

Note that, for any i = 1, ..., k but i /∈ {i1, i2, ..., is}, one has

Zi ∩ Zk+1 = Ø.

Indeed, if Zi ∩ Zk+1 ̸= Ø, this would imply either (Fi,Gi) ⊆ (Fk+1,Gk+1) or (Fk+1,Gk+1) ⊆
(Fi,Gi). Since i /∈ {i1, i2, ..., is}, one must have (Fk+1,Gk+1) ⊆ (Fi,Gi), which contradicts Zk+1

being a peak of Z1, ..., Zk (see (2) of Definition 3.3).

Then

(Z1 ∪ · · · ∪ Zk+1) ∩ Zj ⊆ Zk+1 ⊔ (
⋃

i=1,...,k
i/∈{i1,...,is}

Zi).

That is, there is a decomposition

(3.16) (Z1 ∪ · · · ∪ Zk+1) ∩ Zj = W1 ⊔W2,
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where

W1 ⊆ Zk+1 and W2 ⊆
⋃

i=1,...,k
i/∈{i1,...,is}

Zi.

Note that ⋃
i=1,...,k

i/∈{i1,...,is}

Zi ⊆ Z1 ∪ · · · ∪ Zk.

By the inductive assumption, the restriction of u to (Z1 ∪ · · · ∪ Zk) ∩ Zj is homotopic to uσj

through a path

wt : (Z1 ∪ · · · ∪ Zk) ∩ Zj → Pn(2/n), t ∈ [0, 1],

such that

(wtfw
∗
t )(x) ∈(k−1)ε/L Her(Gj), x ∈ (Z1 ∪ · · · ∪ Zk) ∩ Zj, t ∈ [0, 1],

and

wt(x)(ep) = ep, p ∈ {1, ..., n} \ (Fj ∪ Gj), x ∈ (Z1 ∪ · · · ∪ Zk) ∩ Zj, t ∈ [0, 1].

Then the restriction of wt to the closed subset W2 provides a path, still denoted by wt,

wt : W2 → Pn(2/n), t ∈ [0, 1],

such that

(wtfw
∗
t )(x) ∈(k−1)ε/L Her(Gj), x ∈W2, t ∈ [0, 1],

and

wt(x)(ep) = ep, p ∈ {1, ..., n} \ (Fj ∪ Gj), x ∈ W2, t ∈ [0, 1].

Let us now work on the closed set W1, and it is enough to work on Zk+1. By (3.15), the

restriction of u to Zk+1 is homotopic to uσk+1
through a path (Ht), now denoted by wt,

wt : Zk+1 → Pn(2/n), t ∈ [0, 1],

such that

(wtfw
∗
t )(x) ∈kε/L Her(Gk+1), x ∈ Zk+1, t ∈ [0, 1],

and

wt(x)(ep) = ep, p ∈ {1, ..., n} \ (Fk+1 ∪ Gk+1), x ∈ Zk+1.

Since Gk+1 ⊆ Gj, by Lemma 3.7 (with σk+1, σj, Fk+1, Fj, and Gj in place of σ1, σ2, F1, F2,

and G respectively), the unitary uσk+1
can be connected further to uσj

, and this then provides

the desired homotopy of u|Zk+1
. Thus, the unitary u constructed on Z1 ∪ · · · ∪ Zk+1 satisfies the

inductive condition (H).

By induction, there is a unitary u ∈ hAh+ C1, defined on X, such that

u(x) ∈ Pn(2/n) and (ufu∗)(x) ∈ε (gAg)(x), x ∈ X,

as desired. □

The following lemma asserts that if an element is pointwisely close to a hereditary subalgebra,

then it is close to the hereditary subalgebra.



ON THE SMALL BOUNDARY PROPERTY AND Z-ABSORPTION, II 18

Lemma 3.10. Let A = Mn(C(X)), where X is a metrizable compact space, and let D be the

diagonal subalgebra. Let f ∈ A and h ∈ D be positive elements. If

f(x) ∈ε (hAh)(x), x ∈ X,

for some ε > 0, then

f ∈ε hAh.

Proof. For each x ∈ X, by the assumption, there is an n× n matrix gx ∈ (hAh)(x) such that

∥f(x)− gx∥ < ε.

By the continuity of f and h, there is an open set U ∋ x such that

∥f(y)− gx∥ < ε and gx ∈ (hAh)(y), y ∈ U.

Since X is compact, there are a finite open cover U1, U2, ..., Un, points x1 ∈ U1, ..., xn ∈ Un,

and n× n matrices gx1 , ..., gxn such that

∥f(y)− gxi
∥ < ε and gxi

∈ (hAh)(y), y ∈ Ui, i = 1, ..., n.

Choose a partition of unity {ϕ1, ..., ϕn : X → [0, 1]} subordinate to U1, ..., Un, and define

g = ϕ1gx1 + · · ·+ ϕngxn ∈ A.

Since gxi
∈ (hAh)(y), y ∈ Ui, i = 1, ..., n, one has g ∈ hAh. Moreover, a straightforward

calculation shows that

∥f(x)− g(x)∥ < ε, x ∈ X,

which implies that ∥f − g∥ < ε, and hence f ∈ε hAh, as desired. □

Proposition 3.11. Let A = Mn(C(X)), where X is a finite simplicial complex, and let D be the

diagonal subalgebra. Let f, g, h ∈ D be positive elements such that f, g ∈ hDh and

rank(f(x)) ≤ rank(g(x)), x ∈ X.

Then, for any ε > 0, there is a unitary u ∈ hAh+ C1 such that

u(x) ∈ Pn(2/n), x ∈ X,

and

ufu∗ ∈ε gAg.

Proof. With the given f, g and ε, by Lemma 2.8 of [36], there is δ > 0 such that

rank((f − ε/2)+(x)) ≤ rank((g − δ)+(x)), x ∈ X.

By Lemma 3.2, there are well-supported elements f̃ , g̃ ∈ D such that

f̃ ≤ (f − ε/2)+ and g̃ ≤ (g − δ/2)+,

and

∥f̃ − (f − ε/2)+∥ < ε/4 and ∥g̃ − (g − δ/2)+∥ < δ/4.

Applying Lemma 5.1 of [25], one has

(g − δ)+ ≾ (g̃ − δ/4)+.
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Then, for each x ∈ X,

rank(f̃(x)) ≤ rank((f − ε/2)+(x)) ≤ rank((g − δ)+(x)) ≤ rank((g̃ − δ/4)(x)) ≤ rank(g̃(x)).

Since f̃ and g̃ are well supported, by Lemma 3.9, there is a unitary u ∈ hAh+ C1 such that

u(x) ∈ Pn(2/n) and (uf̃u∗)(x) ∈ε/4 (g̃Ag̃)(x), x ∈ X.

By Lemma 3.10, the second equation implies that

uf̃u∗ ∈ε/4 g̃Ag̃ ⊆ gAg.

Since

∥f̃ − f∥ < ε/4 + ε/2 = 3ε/4,

one has

ufu∗ ∈ε gAg,

as desired. □

The following lemma asserts that if an element is pointwisely close to the diagonal subalgebra,

then it is close to the diagonal subalgebra.

Lemma 3.12. Let A = Mn(C(X)), where X is a metrizable compact space, and let D be the

diagonal subalgebra. Let f ∈ A be such that

dist2,trn(f(x), D(x)) < δ, x ∈ X,

for some δ > 0. Then there is g ∈ D such that

∥f(x)− g(x)∥2,trn < 2δ, x ∈ X.

In other words,

dist2,T(A)(f,D) < 2δ.

Proof. Choose an open cover U1, U2, ..., Un of X such that

∥f(x)− f(y)∥ < δ, x, y ∈ Ui, 1 ≤ i ≤ n.

Pick xi ∈ Ui, 1 ≤ i ≤ n, and choose a partition of unity {ϕi, 1 ≤ i ≤ n}, subordinate to

U1, ..., Un. For each xi, 1 ≤ i ≤ n, choose a diagonal matrix gxi
such that

∥f(xi)− gxi
∥2,trn < δ, 1 ≤ i ≤ n,

and therefore

∥f(x)− gxi
∥2,trn < 2δ, x ∈ Ui, 1 ≤ i ≤ n.

Define

g(x) = ϕ1(x)gx1 + · · ·+ ϕn(x)gxn , x ∈ X.

Then, for each x ∈ X, one has

∥f(x)− g(x)∥2,trn = ∥(ϕ1(x)f(x) + · · ·+ ϕn(x)f(x))− (ϕ1(x)g1 + · · ·+ ϕn(x)gn)∥2,trn
= ∥ϕ1(x)(f(x)− g1) + · · ·+ ϕn(x)(f(x)− gn)∥2,trn
< 2δ,
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as desired. □

The following lemma will be used in the proofs of Theorem 3.14 and Proposition 4.3.

Lemma 3.13. Let X be a metrizable compact space, and let Ci, i = 1, 2, ..., be a family of unital

subalgebras of C := C(X) with dense union. Let f, g, h ∈ C be positive elements with norm 1

such that

fh = f and gh = h.

Then, for any ε > 0, there are positive elements f̃ , g̃, h̃ ∈ Ci, where i is sufficiently large, such

that

∥f − f̃∥ < ε, ∥g − g̃∥ < ε,

g̃ ∈ gCg, h̃ ∈ hCh,

and

f̃ , g̃ ∈ h̃Cih̃.

Proof. Set ε′ = ε/5. With sufficiently large i, pick f ′, g′, h′ ∈ Di such that

∥f − f ′∥ < ε′, ∥g − g′∥ < ε′, and ∥h− h′∥ < ε′.

Then, noting that C is commutative, one has

(3.17) (g′ − ε′)+ ∈ gCg and (h′ − ε′)+ ∈ hCh.

Consider

f̃ := (h′ − ε′)+f
′, g̃ = (h′ − ε′)+(g

′ − ε′)+, and h̃ = (h′ − ε′)+.

Since Ci and C are commutative, by (3.17), one has

(h′ − ε′)+f
′, (h′ − ε′)+(g

′ − ε′)+ ∈ (h′ − ε′)+Ci(h′ − ε′)+,

(h′ − ε′)+(g
′ − ε′)+ ∈ gCg,

and

∥h̃− h∥ < 2ε′,

∥f̃ − f∥ = ∥(h′ − ε′)+f
′ − f∥ ≈3ε′ ∥hf − f∥ = 0,

∥g̃ − g∥ = ∥(h′ − ε′)+(g
′ − ε′)+ − g∥ ≈5ε′ ∥hg − g∥ = 0,

as desired. □

We are now ready to prove the main theorem of this section.

Theorem 3.14. Let A = Mn(C(X)), where X is a metrizable compact space, and let D be the

diagonal subalgebra. Let f, g, h ∈ D be positive elements such that f, g ∈ hDh and

rank(f(x)) ≤ rank(g(x)), x ∈ X.

Then, for any ε > 0, there is a unitary u ∈ hAh+ C1 such that

ufu∗ ∈ε gAg,

and

u(x) ∈ Pn(2/n), x ∈ X.
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In particular,

dist2,T(A)(udu
∗, (D)1) < 4/n, d ∈ (D)1.

Proof. Let f, g, h ∈ D and ε be given. By Lemma 2.8 of [36], there is δ > 0 such that

rank((f − ε/2)+(x)) ≤ rank((g − δ)+(x)), x ∈ X.

Without loss of generality, one may assume that

h(f − ε/2)+ = (f − ε/2)+ and h(g − δ/2)+ = (g − δ/2)+.

By Lemma 3.13 (applying to (f − ε/2)+, (g− δ/2)+, and h), with a sufficiently fine simplicial

complex approximation of X, there is a unital homomorphism ϕ : Mn(C(W )) → Mn(C(X)),

where W is a simplicial complex, such that there are functions

f ′, g′, h′ ∈ ϕ(Mn(C(W )))

with the properties

(3.18) ∥f ′ − (f − ε/2)+∥ < ε/4 and ∥g′ − (g − δ/2)+∥ < δ/4,

(3.19) g′ ∈ (g − δ/2)+D(g − δ/2)+, h′ ∈ hDh,

and

(3.20) f ′, g′ ∈ h′ϕ(Mn(C(W )))h′.

By Lemma 5.1 of [25] and (3.18),

(f − ε)+ ≾ (f ′ − ε/4)+ ≾ (f − ε/2)+

and

(g − δ)+ ≾ (g′ − δ/4)+ ≾ g.

Therefore,

rank((f ′− ε/4)+(x)) ≤ rank((f − ε/2)+(x)) ≤ rank((g− δ)+(x)) ≤ rank((g′− δ/4)(x)), x ∈ X,

and hence

rank((f ′ − ε/4)+(x)) ≤ rank(g′(x)), x ∈ X.

Lift f ′, g′, h′ to positive contractions f̃ , g̃, h̃ of Mn(C(W )), respectively, such that f̃ , g̃ ∈
h̃Mn(C(X))h̃. Then

rank((f̃ − ε/4)+(x)) ≤ rank(g̃(x)), x ∈ W0,

where W0 ⊆ W is the closed set which induces the homomorphism ϕ. Pick a continuous function

θ : W → [0, 1] such that θ(x) ̸= 0, x ∈ W \W0, and θ|W = 0, and consider the function θh̃. Then

rank((f̃ − ε/4)+) ≤ rank((g̃ + θh̃)(x)), x ∈ W.

By Proposition 3.11, there is a unitary u ∈ h̃Mn(C(W ))h̃+ C1 such that

u(x) ∈ Pn(2/n), x ∈W,

and

u((f̃ − ε/4)+)u
∗ ∈ε (g̃ + θh̃)A(g̃ + θh̃).
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On passing to the image of ϕ, by (3.20) and (3.19), we obtain a unitary, still denoted by u,

u ∈ h′Mn(C(W ))h′ + C1 ⊆ hAh+ C1

such that

u(x) ∈ Pn(2/n), x ∈W0,

and

u(f ′ − ε/4)+u
∗ ∈ε g′Ag′ ⊆ gAg,

which implies

ufu∗ ∈2ε gAg.

Regarding u as a function on X, one has

u(x) ∈ Pn(2/n), x ∈ X,

and hence

(udu∗)(x) ∈∥·∥2
4/n (D(x))1, x ∈ X, d ∈ (D)1.

By Lemma 3.12, it follows that

udu∗ ∈∥·∥2
4/n (D)1,

as desired. □

4. Property (C)

Let us introduce the following relative comparison property of a commutative C*-algebra inside

an ambient C*-algebra:

Definition 4.1. Let A be a unital C*-algebra and let D be a unital commutative subalgebra.

Then the pair (D,A) is said to have Property (C) if for any positive contractions f, g, h ∈ D

satisfying f, g ∈ hDh, and

dτ (f) < dτ (g), τ ∈ T(A),

and for any ε > 0, there is a contraction u ∈ hAh+ C1A such that

ufu∗ ∈∥·∥2
ε gAg,

dist2,T(A)(udu
∗, (D)1) < ε, dist2,T(A)(u

∗du, (D)1) < ε, d ∈ (D)1,

and

∥uu∗ − 1∥2,T(A), ∥u∗u− 1∥2,T(A) < ε.

Remark 4.2. Comparing to Property (COS), the approximations in Property (C) are with respect

to the uniform trace norm, but on the other hand, the comparison in Property (C) is implemented

by an almost unitary which is also an almost normalizer (with respect to the uniform trace norm).

Using Theorem 3.14, let us show that AH algebras with diagonal maps and the C*-algebras

C(X)⋊ Γ for which (X,Γ) has the (URP) have Property (C). (Theorem 4.6.)

Let us first work on the AH algebras. They actually have the following property which is

slightly stronger than Property (C):
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Proposition 4.3. Let A be a simple AH algebra with diagonal maps, and let D be the canonical

diagonal subalgebra of A. Then, for any positive contractions f, g, h ∈ D satisfying f, g ∈ hDh,

and

dτ (f) < dτ (g), τ ∈ T(A),

and for any ε > 0, there is a unitary u ∈ hAh+ C1A such that

ufu∗ ∈ε gAg

and

dist2,T(A)(udu
∗, (D)1) < ε, dist2,T(A)(u

∗du, (D)1) < ε, d ∈ (D)1.

Proof. WriteA = lim−→Ai and the induced decompositionD = lim−→Di, whereAi =
⊕

j Mni,j
(C(Xi,j)).

For the given ε, by the compactness of T(A), there is δ > 0 such that

dτ ((f − ε)+) < dτ ((g − δ)+), τ ∈ T(A).

Without loss of generality, one may assume that

h · (f − ε)+ = (f − ε)+ and h · (g − δ/2)+ = (g − δ/2)+.

Applying Lemma 3.13 to (f−ε)+, (g−δ)+, h, we obtain f̃ , g̃, and h̃ ∈ Di0 where i0 is sufficiently

large that

∥(f − ε)+ − f̃∥ < ε/2, ∥(g − δ/2)+ − g̃∥ < δ/4,

g̃ ∈ gDg, h̃ ∈ hDh,

and

f̃ , g̃ ∈ h̃Di0h̃.

Then

(f̃ − ε) ≾ (f − ε)+ and (g − δ)+ ≾ (g̃ − δ/2)+,

and hence

dτ ((f̃ − ε)) ≤ dτ ((f − ε)+) < dτ ((g − δ)+) ≤ dτ ((g̃ − δ/2)+), τ ∈ T(A).

Since A is simple, by (the proof of) Proposition 3.2 of [29], there is m ∈ N such that⊕
m+1

(f̃ − ε)+ ≾
⊕
m

(g̃ − δ/2)+

in A. Therefore, with i1 > i0 sufficiently large, there are (xi,j) ∈ M∞(Ai1) such that 2/ni1 < ε/2

and

∥
⊕
m+1

(f̃ − ε)+ − (xi,j)(
⊕
m

(g̃ − δ/2)+)(xi,j)
∗∥ < ε

in Ai1 . This implies ⊕
m+1

(f̃ − ε− ε)+ ≾
⊕
m

(g̃ − δ)+

in Ai1 , and hence

rank(f̃ − 2ε)+(x) < rank(g̃ − δ/2)+(x), x ∈
⊔
j

Xi1,j.
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Note that

(f̃ − 2ε)+, (g̃ − δ/2)+ ∈ h̃Ai1h̃.

Then, by Theorem 3.14, there is a unitary u ∈ h̃Ai1h̃+ C1 ⊆ hAh+ C1 such that

u(f̃ − 2ε)+u
∗ ∈ε (g̃ − δ/2)+Ai1(g̃ − δ/2)+

and

u(x) ∈ Pni1
(2/ni1), x ∈ Xni1

.

Then

u ∈ h̃Ai1h̃+ C1 ⊆ hAh+ C1
and

ufu∗ ≈3ε u(f̃ − 2ε)+u
∗ ∈ε (g̃ − δ/2)+Ai1(g̃ − δ/2)+ ⊆ gAg.

Note that, since all connecting maps of lim−→Ai are diagonal maps, inside each Ai, i > i1, the

image of u, regarded as a function on Xi, takes values in Pni
(ε′), where ε′ ≤ 2/ni1 < ε/2, and

therefore

(udu∗)(x) ∈∥·∥2
2ε′ (Dx)1, d ∈ (Dx)1, x ∈ Xi, i > i1.

By Lemma 3.12,

udu∗ ∈2ε′ (D)1, d ∈ (D)1,

as desired. □

Let us now consider the crossed product C*-algebras A = C(X)⋊Γ. We first need the following

lemma, which states that A can be weakly tracially approximated by homogeneous C*-algebras

induced by Rokhlin towers:

Lemma 4.4 (c.f. Theorem 3.9 of [27]). Let (X,Γ) be a free and minimal dynamical system with

the (URP). Then, for any finite set F ⊆ C(X) and any ε > 0, there exist a positive element

p ∈ C(X) with ∥p∥ = 1 and a sub-C*-algebra C ⊆ C(X)⋊ Γ such that

(1) ∥[p, f ]∥ < ε, f ∈ F ,

(2) pfp ∈ε C, f ∈ F ,

(3) pdp ∈ C, d ∈ C(X),

(4) C ∼=
⊕S

i=1Mni
(C0(Zi)), where Zi ⊆ X, i = 1, ..., S, are mutually disjoint, and under this

isomorphism, the elements pdp are diagonal elements of C for all d ∈ C(X),

(5) under the isomorphism above, all diagonal elements of
⊕S

i=1Mni
(C0(Zi)) are in C∩C(X),

(6) dτ (1− p) < ε, τ ∈ T(A),

(7) there is a closed subset [Zi] ⊆ Zi for each i = 1, ..., S such that if a ∈ C, ∥a∥ ≤ 1, and a

is supported in
⊔S

i=1(Zi \ [Zi]) under the isomorphism C ∼=
⊕S

i=1Mni
(C0(Zi)), then

τ(a) < ε, τ ∈ T(A),

(8) for any d ∈ C(X), there are d1, d2 ∈ C(X) such that

d = d1 + d2, ∥d1∥2,T(A) < ε, d2 ∈ C ∩ C(X),

and the support of d2 is inside
⊔S

i=1[Zi] under the isomorphism C ∼=
⊕S

i=1 Mni
(C0(Zi)).
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Proof. This follows from the same (actually a simpler) argument as Theorem 3.9 of [27]. □

Proposition 4.5. Let (X,Γ) be a free and minimal dynamical system with the (URP). Then the

pair (C(X),C(X)⋊ Γ) has Property (C).

Proof. Let f, g, h ∈ C(X) be such that f, g ∈ hDh, and

dτ (f) < dτ (g), τ ∈ T(A),

and let ε > 0 be arbitrary.

For the given ε, by the compactness of T(A), there is δ > 0 such that

dτ ((f − ε)+) < dτ ((g − δ)+), τ ∈ T(A).

Since A is simple, by (the proof of) Proposition 3.2 of [29], there is m ∈ N such that⊕
m+1

(f − ε)+ ≾
⊕
m

(g − δ)+

in A. Since (X,Γ) has the (URP), by Lemma 4.4(3)(1)(2), there are p ∈ C(X) and C ⊆ A with

C ∼=
⊕S

i=1 Mni
(C0(Zi)) such that

p(f − ε)+p, p(g − δ)+p, php ∈ C,

and ⊕
m+1

(p(f − ε)+p− ε)+ ≾
⊕
m

p(g − δ)+p

in C. Thus

(4.1) rank((p(f − ε)+p− ε)+(z)) < rank((p(g − δ)+p)(z)), z ∈
S⊔

i=1

Zi.

Note that

(4.2) ((p(f − ε)+p)− ε)+, p(g − δ)+p ∈ (php)A(php).

On passing to the restriction to [Zi], i = 1, ..., S, by (4.1), (4.2), and Theorem 3.14, we obtain

a unitary

u ∈ (php)|[Z](
S⊕

i=1

Mni
(C([Zi])))(php)|[Z] + C1

such that

(4.3) uπ[Z]((p(f − ε)+p− ε)+)u
∗ ∈ε π[Z]((p(g − δ)+p)C(p(g − δ)+p)),

and

(4.4) udu∗, u∗du ∈∥·∥2
ε (D([Z]))1, d ∈ (D([Z]))1,

where [Z] =
⊔S

i=1[Zi], and D([Z]) is the diagonal subalgebra of π[Z](C) ∼=
⊕S

i=1 Mni
(C([Zi])).

Extend u to a contraction in (php)(
⊕S

i=1Mni
(C0(Zi)))(php) + C1, and still denote it by u.

Then uu∗ and u∗u, as functions on Z, are 1ni
on [Zi], and hence

∥uu∗ − 1∥2,T(A), ∥u∗u− 1∥2,T(A) < ε.



ON THE SMALL BOUNDARY PROPERTY AND Z-ABSORPTION, II 26

Moreover, for any d ∈ (D)1, where D = C(X), by Lemma 4.4(8), it can be written as

d = d1 + d2,

where d1, d2 ∈ D, ∥d1∥2,T(A) < ε, and the support of d2 is inside [Z]. In particular, by (4.4),

ud2u
∗ ∈∥·∥2

ε (D)1,

and hence,

udu∗ = ud1u
∗ + ud2u

∗ ≈∥·∥2
ε ud2u

∗ ∈∥·∥2
ε (D1).

This shows

dist2,T(A)(udu
∗, (D)1) < 2ε.

The same argument shows

dist2,T(A)(u
∗du, (D)1) < 2ε.

By (4.3), there is a contraction c ∈ πZ0((p(g − δ)+p)C(p(g − δ)+p)) such that

∥uπZ0((p(f − ε)+p− ε)+)u
∗ − c∥ < ε.

Extend c to a contraction of (p(g − δ)+p)C(p(g − δ)+p), and still denote it by c. Then, the

element c−u(p(f − ε)+− ε)+u
∗, regarded as a (matrix-valued) function on Z, has norm at most

on ε on Z0. Therefore,

∥c− u(p(f − ε)+ − ε)+u
∗∥2,T(A) < 2ε

and

u(f − ε)+u
∗ = up(f − ε)+u

∗ + u(1− p)(f − ε)+u
∗

≈ε u(p(f − ε)+ − ε)+u
∗ + u(1− p)(f − ε)+u

∗

≈∥·∥2
2ε c+ u(1− p)(f − ε)+u

∗

≈∥·∥2
ε c.

That is,

ufu∗ ∈∥·∥2
4ε (p(g − δ)+p)C(p(g − δ)+p) ⊆ gAg.

Since ε is arbitrary, this shows that (D,A) has Property (C). □

Combining Proposition 4.3 and Proposition 4.5, one has the following theorem:

Theorem 4.6. Let A be a simple AH algebra with diagonal maps, or let A = C(X)⋊ Γ, where

(X,Γ) is free and minimal with the (URP). Let D be the canonical Cartan subalgebra of A. Then

the pair (D,A) has Property (C).
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5. Property (E)

Definition 5.1. Let A be a unital C*-algebra and let D be a unital commutative subalgebra.

The pair (D,A) is said to have Property (E) if for any positive contraction a ∈ A, any finite

subset F ⊆ C([0, 1]), and any ε > 0, there is a positive contraction b ∈ D such that

|τ(f(a))− τ(f(b))| < ε, f ∈ F , τ ∈ T(A).

Recall the following theorem which is due to Thomsen and Li ([32] and [21]).

Theorem 5.2. Suppose that X is a path connected metrizable compact space. For any finite

subset F ⊆ AffT(C(X)) and ε > 0, there is N > 0 with the following property:

For any unital positive linear map ξ : AffT(C(X)) → AffT(C(Y )), where Y is an arbitrary

metrizable compact space, and any n ≥ N , there are homomorphisms

ϕ1, ..., ϕn : C(X) → C(Y )

such that

|ξ(f)(τ)− 1

n

n∑
i=1

τ(ϕi(f))| < ε, f ∈ F , τ ∈ T(C(Y )).

Theorem 5.3. Let A be a simple AH algebra with diagonal maps, or let A = C(X)⋊ Γ, where

(X,Γ) is a free and minimal dynamical system with the (URP). Then the pair (D,A) has Property

(E).

Proof. Let (F , ε) be given. Without loss of generality, one may assume that each element of F
has norm 1 and is real valued, so F can be regarded as a subset of Aff(T(C([0, 1]))). Applying

the Thomsen-Li Theorem above to (F , ε) (where X = [0, 1]), one obtains N .

Let us first consider the case of AH algebras. Let a ∈ A be a positive element with norm 1;

to prove the theorem, without loss of generality, one may assume that a ∈ Mn(C(X)) ⊆ A for

some n ≥ N . Consider the homomorphism ϕ : C[0, 1] → Mn(C(X)) induced by a, and consider

the induced unital positive linear map ϕ∗ : Aff(T(C[0, 1])) → Aff(T(C(X))). By Thomsen-Li

Theorem, there are continuous maps λ1, ..., λn : X → [0, 1] such that

|ϕ∗(f)(τ)− 1

n
(τ(f ◦ λ1) + · · ·+ τ(f ◦ λn))| < ε, f ∈ F , τ ∈ T(C(X)).

Then, with

b = diag{(λ1)∗(id), ..., (λn)∗(id)} ∈ Dn,

(and since ϕ(f) = f(a),) one has that

|τ(f(a))− τ(f(b))| < ε, f ∈ F , τ ∈ T(Mn(C(X))).

Let us now consider the case that A = C(X) ⋊ Γ, where (X,Γ) is free and minimal, and has

the (URP).

Let a ∈ A be a positive element with norm 1. Choose δ > 0 such that if ∥x − y∥2,T(A) < δ,

where x, y are positive contractions, then ∥f(x)− f(y)∥2,T(A) < ε for all f ∈ F .

By Lemma 4.4, there exist a sub-C*-algebra C ⊆ A and a positive contraction p ∈ C such

that
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(1) C ∼=
⊕S

i=1Mni
(C0(Zi)), where ni > N , i = 1, ..., S,

(2) pap ∈δ/2 C,

(3) dτ (1− p) < δ/2, τ ∈ T(A),

(4) there is a closed subset [Zi] ⊆ Zi for each i = 1, ..., S such that if a ∈ C, ∥a∥ ≤ 1, and a

is supported in
⊔S

i=1(Zi \ [Zi]) under the isomorphism C ∼=
⊕S

i=1 Mni
(C0(Zi)), then

τ(a) < ε, τ ∈ T(A),

Choose ã ∈ C such that ∥ã− pap∥ < δ/2; hence

∥a− ã∥2,T(A) < δ.

and so, by the choice of δ,

(5.1) ∥f(a)− f(ã)∥2,T(A) < ε, f ∈ F .

Consider the homomorphism

ϕ : C([0, 1]) ∋ f 7→ π[Z](f(ã)) ∈ π[Z](C) ∼=
S⊕

i=1

Mni
(C([Zi])),

where [Z] =
⊔S

i=1[Zi], and consider the unital positive linear map ϕ∗ : Aff(T(C[0, 1])) →
Aff(T(C([Z]))). Then, by Theorem 5.2, there are continuous maps λi,1, ..., λi,ni

: [Zi] → [0, 1],

i = 1, ..., S, such that

|ϕ∗(f)(τ)− 1

ni

(τ(f ◦ λi,1) + · · ·+ τ(f ◦ λi,ni
))| < ε, f ∈ F , τ ∈ T(C([Zi])).

Define

bi = diag{id ◦ λi,1, ..., id ◦ λi,n} ∈ Mni
(C([Zi])),

where id is the identity function on [0, 1], and define

b = b1 ⊕ · · · ⊕ bnS
.

Then

(5.2) |τ(πZ0(f(ã)))− τ(f(b))| < ε, f ∈ F , τ ∈ T(
S⊕

i=1

Mni
(C([Zi]))).

Note that b is a diagonal element. Extend b to a positive diagonal contraction b̂ ∈ C. Note that,

by Lemma 4.4(5), the element b̂ is also in D. By (4), a calculation shows

(5.3) |τ(f(b̂))− τ |[Z](f(b))| < 4ε, f ∈ F , τ ∈ T(A),

where τ |[Z] is the tracial state of
⊕S

i=1 Mni
(C([Zi])) induced by τ |C :

τ |[Z](x) = lim
n→∞

1

τ(e2n)
τ(enx̃en),
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where x ∈
⊕S

i=1 Mni
(C([Zi])), x̃ ∈ C ∼=

⊕S
i=1 Mni

(C0(Zi)) is an extension of x, and (en) is a

decreasing sequence of positive contractions of C which converges (pointwisely) to 1Z . Also note

that, by (4),

(5.4) |τ(f(ã))− τ |[Z](π[Z](f(ã)))| < 2ε, f ∈ F , τ ∈ T(A).

Then, for all f ∈ F and τ ∈ T(A), by (5.1), (5.4), (5.2), and (5.3),

τ(f(a)) ≈ε τ(f(ã)) ≈2ε τ |[Z](πZ0(f(ã))) ≈ε τ |[Z](f(b)) ≈4ε τ(f(b̂)),

as desired. □

6. Property (S)

Definition 6.1. Let A be a unital C*-algebra, and let ∆ ⊆ T(A) be a closed set of tracial states.

The pair (A,∆) will be said to have Property (S) if for any self-adjoint element f and any ε > 0,

there is a self-adjoint g ∈ A such that

(1) ∥f − g∥2,∆ < ε, and

(2) there is δ > 0 such that τ(χδ(g)) < ε, τ ∈ ∆, where

(6.1) χδ(t) =


1, |t| < δ,

2− |t|/δ, |t| < 2δ,

0, otherwise.

In the case that ∆ = T(A), we shall just say that A has Property (S) if (A,T(A)) has Property

(S).

Compared to Theorem 2.9, Property (S) can be regarded as a weaker version of the small

boundary property, without referring to a commutative subalgebra D. Eventually, it will be

shown (Proposition 8.3) that Property (S) for A implies the small boundary property of the pair

(D,A), provided that (D,A) has Properties (C) and (E).

Definition 6.2. Let A be a C*-algebra, and let ∆ ⊆ T(A). Let us say that qRR(l∞(A)/J2,ω,∆) =

0 if the class of the constant sequence of any self-adjoint element of A can be approximated by

invertible self-adjoint elements of l∞(A)/J2,ω,∆ with respect to the uniform limit trace norm

∥ · ∥2,ω,∆. It is clear that if RR(A) = 0 or if RR(l∞(A)/J2,ω,∆) = 0, then qRR(l∞(A)/J2,ω,∆) = 0.

Property (S) can be characterized in terms of the real rank of the sequence algebra:

Proposition 6.3. Let A be a unital C*-algebra, and let ∆ ⊆ T(A) be closed. The following

conditions are equivalent:

(1) qRR(l∞(A)/J2,ω,∆) = 0;

(2) (A,∆) has Property (S);

(3) RR(l∞(A)/J2,ω,∆) = 0.

Proof. (1) ⇒ (2): Assume qRR(l∞(A)/J2,ω,∆) = 0. Let (f, ε) be given, where f ∈ A is a self-

adjoint contraction and ε > 0. Consider the constant sequence (f), and then there is a sequence

(gk) ∈ l∞(A) such that

∥(f − gk)∥2,ω,∆ = lim
k→ω

∥f − gk∥2,∆ < ε
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and (gk) is invertible in l∞(A)/J2,ω,∆. Then there is δ > 0 such that

(χδ(gk)) = χδ((gk)) = 0.

In other words,

(χδ(gk)) ∈ J2,ω,∆.

Then, with some sufficiently large k, one has

• ∥f − gk∥2,∆ < ε, and

• τ(χδ(gk)) < ε, τ ∈ ∆,

as desired.

(2) ⇒ (3): Assume that (A,∆) has Property (S), and let us show that l∞(A)/J2,ω,∆ has real

rank zero. Let (a1, a2, ...) ∈ l∞(A)/J2,ω,∆ be a self-adjoint element, and let ε > 0 be arbitrary.

By Property (S), for each n = 1, 2, ..., there is a self-adjoint element bn such that

• τ((an − bn)
2) < 1/n for all τ ∈ ∆, and

• there is δn > 0 such that τ(χδn(bn)) < 1/n for all τ ∈ ∆.

Without loss of generality, one may assume that δn < ε. Note that

(a1, a2, ...) = (b1, b2, ...).

Consider b′n = gn(bn) and cn = hn(bn), where

gn(t) =

{
εt/δn, |t| < δn,

t+ sign(t)(ε− δn), otherwise

and

hn(t) =

{
t/εδn, |t| < δn,

1/(t+ sign(t)(ε− δn)), otherwise.

Then

∥b′n − bn∥ < ε, ∥cn∥ < 1/ε, and τ((b′ncn − 1)2) < τ(χδn(bn)) < 1/n, τ ∈ ∆.

In particular, the element (b′1, b
′
2, ...) is invertible in l

∞(A)/Jω,∆ with the inverse (c1, c2, ...). More-

over,

∥(a1, a2, ...)− (b′1, b
′
2, ...)∥ = ∥(b1, b2, ...)− (b′1, b

′
2, ...)∥ < ε.

This shows that l∞(A)/J2,ω,∆ has real rank zero.

(3) ⇒ (1): Trivial. □

Uniform property Γ implies Property (S):

Proposition 6.4. If a unital C*-algebra A has uniform property Γ, then A has Property (S).

Proof. The proof is similar to the proof of Theorem 3.5 of [10]:

Let (f, ε) be given, where f ∈ A is a self-adjoint contraction and ε > 0. By Corollary 3.9 of

[10], for the given ε, there exist n ∈ N and self-adjoint elements

f1, f2, ..., fn ∈ A
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such that

(6.2) ∥f − fi∥ < ε, i = 1, 2, ..., n,

and there is δ > 0 such that

1

n
(τ((f1)δ) + · · ·+ τ((fn)δ)) < ε, τ ∈ T(A),

where (f)δ = χδ(f) (see (6.1)). In particular, regarding (f1)δ, ..., (fn)δ as constant sequences in

A, we have

(6.3)
1

n
(τ((f1)δ) + · · ·+ τ((fn)δ)) < ε, τ ∈ T(A)ω.

Since A has uniform property Γ, there is a partition of unity

p1, p2, ..., pn ∈ (l∞(A)/J2,ω,∆) ∩ A′

such that

(6.4) τ(piapi) =
1

n
τ(a), a ∈ A, τ ∈ T(A)ω.

Consider the element

g := p1(f1)p1 + · · ·+ pn(fn)pn ∈ l∞(A)/J2,ω,∆.

By (6.2),

(6.5) ∥f − g∥2,ω,T(A) = ∥p1(f − f1)p1 + · · ·+ pn(f − fn)pn∥2,ω,T(A) < ε.

Note that, for each τ ∈ T(A)ω, by (6.4),

τ(pi((fi)δ)pi) =
1

n
τ((fi)δ), i = 1, ..., n, τ ∈ T(A)ω,

and hence, together with (6.3),

τ((g)δ) = τ(p1((f1)δ)p1) + · · ·+ τ(pn((fn)δ)pn)(6.6)

=
1

n
(τ((f1)δ) + · · ·+ τ((fn)δ))

< ε.

Pick a representative sequence g = (gk) with gk, k = 1, 2, ..., self-adjoint elements of A. By (6.5)

and (6.6), with some sufficiently large k, the function gk satisfies

(1) ∥f − gk∥2,T(A) < ε, and

(2) τ((gk)δ) < ε, τ ∈ T(A),

as desired. □
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7. Some approximation lemmas

In the section, let us prepare some approximation lemmas for the next section.

Lemma 7.1. Let X be a metrizable compact space, and let ∆ be a compact set of probability

Borel measures of X. Then, for any ε ∈ (0, 1), there is δ > 0 such that if a0, a1, d : X → [0, 1]

are continuous functions satisfying

(1) a0a1 = a1,

(2) ∥a0d− d∥2,∆ < δ, and

(3) ∥da1 − a1∥2,∆ < δ,

then there is a continuous function d̃ : X → [0, 1] such that

(1) ∥d− d̃∥2,∆ < ε,

(2) ∥a0d̃− d̃∥ < ε, and

(3) ∥d̃a1 − a1∥ < ε.

Proof. With the given ε, choose ε′ ∈ (0, 1) such that ε′ < ε and 2
√
ε′ < ε. Then

δ = ε′/
√
2/(ε′)3

has the property of the lemma.

Indeed, let a0, a1, d satisfy the conditions of the statement. Define sets

A0,≤1−ε′ = a−1
0 ([0, 1− ε′]) and A1,≥ε′ = a−1

1 ([ε′, 1]).

Note that A0,≤1−ε′ ∩ A1,≥ε′ = Ø.

On A0,≤1−ε′ , consider the set

W0 = {x ∈ A0,≤1−ε′ : |d(x)|2 ≥ ε′}.

Then, for any µ ∈ ∆,

(ε′)2εµ(W0) ≤ (ε′)2
∫
A0,≤1−ε′

d2(x)dµ(x) ≤
∫
A0,≤1−ε′

(a0(x)− 1)2d2(x)dµ(x) < δ2,

and hence

µ(W0) < δ2/(ε′)3.

On A1,≥ε′ , consider the set

W1 = {x ∈ A1,≥ε′ : |d(x)− 1|2 ≥ ε′}.

Then, for any µ ∈ ∆,

(ε′)2(ε′µ(W1)) ≤ (ε′)2
∫
A1,≥ε′

|d(x)− 1|2dµ(x) ≤
∫
A1,≥ε′

|d(x)− 1|2a21(x)dµ(x) < δ2,

and hence

µ(W1) < δ2/(ε′)3.

Choose disjoint open sets U0 ⊇ W0 and U1 ⊇. Since ∆ is compact, U0 and U1 can be chosen

such that

µ(U0) < δ2/(ε′)3 and µ(U1) < δ2/(ε′)3, µ ∈ ∆.



ON THE SMALL BOUNDARY PROPERTY AND Z-ABSORPTION, II 33

Choose continuous functions r0, r1 : X → [0, 1] such that

ri|Wi
= 1 and ri|X\Ui

= 0, i = 0, 1.

Define

d̃(x) =


0, x ∈ W0,

(1− r0(x))d(x), x ∈ U0,

d(x), x ∈ X \ (U0 ∪ U1),

(1− r1(x))d(x) + r1(x), x ∈ U1,

1, x ∈ W1.

Then ∫
X

(d(x)− d̃(x))2dµ(x) ≤ µ(U0) + µ(U1) < 2δ2/(ε′)3, µ ∈ ∆.

That is,

∥d− d̃∥2,∆ < δ
√

2/(ε′)3 = ε′ < ε.

Note that

d̃(x) <
√
ε′, x ∈ A0,≤1−ε′ .

So

∥a0d̃− d̃∥ < max{ε′, 2
√
ε′} < 2

√
ε′ < ε.

Also note that

1− d̃(x) <
√
ε′, x ∈ A1,≥ε′ .

So

∥d̃a1 − a1∥ < max{
√
ε′, 2ε′} < 2

√
ε′ < ε,

as desired. □

The following lemma certainly is well known:

Lemma 7.2. Let A be a C*-algebra. Let N ∈ N and ε > 0. Then there is δ > 0 such that if

c1, ..., cN are self-adjoint contractions such that

∥cicj∥ < δ, i, j = 1, ..., N, i ̸= j,

then

∥c1 + · · ·+ cN∥ < max{∥ci∥ : i = 1, ..., N}+ ε.

Proof. For the given (N, ε), there is δ > 0 such that if c1, ..., cN are self-adjoint contractions such

that

∥cicj∥ < δ, i, j = 1, ..., N, i ̸= j,

then there are self-adjoint elements c̃1, ..., c̃N ∈ A such that

∥c̃i − ci∥ < ε/2N, and c̃i ⊥ c̃j, i, j = 1, ..., N, i ̸= j.

Then, this δ has the property of the lemma, as

∥c1 + · · ·+ cN∥ ≈ε/2 ∥c̃1 + · · ·+ c̃N∥
= max{∥c̃i∥ : i = 1, ..., N}

≈ε/2 max{∥ci∥ : i = 1, ..., N},
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as desired. □

Lemma 7.3 (cf. [3]). Let A be a C*-algebra. For any ε > 0, there are N ∈ N and δ > 0 with

the following property:

Let a ∈ A be a positive element with norm at most 1. Define

ai = χi(a), i = 1, ..., N,

where

χi(t) =


0, t ≤ i−1

N
,

linear, t ∈ [ i−1
N
, i
N
],

1, t ≥ i
N
.

Assume there are positive elements d1, ..., dN ∈ A with norm at most 1 such that

(1) [a, di] = 0, i = 1, ..., N ,

(2) ∥aidi+1 − di+1∥ < δ, i = 1, ..., N − 1,

(3) ∥diai+1 − ai+1∥ < δ, i = 1, ..., N − 1.

Then

∥a− 1

N
(d1 + · · ·+ dN)∥ < ε.

Proof. Choose N > 32/ε. Applying Lemma 7.2 to N and ε/16, one obtains δ1. Choose δ > 0

such that

16δ < δ1 and
ε

8
+ δ + 4((4δ +

ε

8
) +

ε

16
) < ε.

Then the pair (N, δ) has the property of the lemma.

Since aiaj = aj, i < j, by (2),

aidj ≈δ aiaj−1dj = aj−1dj ≈δ dj, i < j.

Hence, together with (2),

(7.1) ∥aidj − dj∥ < 2δ, i < j.

A similar argument applied to (3) shows

(7.2) ∥diaj − aj∥ < 2δ, i < j.

Also note that, if i < j − 1, then

didj ≈δ diaj−1dj ≈2δ aj−1dj ≈δ dj,

and therefore, a straightforward calculation shows that

(7.3) ∥(di − di+1)(dj − dj+1)∥ < 16δ < δ1, i < j − 2.

Note that

a ≈ 2
N
aa2,

and then, together with (3), one has

(7.4) a ≈ 2
N
aa2 ≈δ aa2d1 ≈ 2

N
ad1.
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Noting that

a =
1

N
(a1 + · · ·+ aN),

together with (7.1) and (7.2), one also has that, for i = 1, ..., N − 1,

a(di − di+1)

=
1

N
(a1 + · · ·+ aN)(di − di+1)

=
1

N
((a1di + · · ·+ aNdi)− (a1di+1 + · · ·+ aNdi+1))

≈4δ
1

N
((di + · · ·+ di︸ ︷︷ ︸

i−1

+aidi + ai+1 + · · ·+ aN)

−(di+1 + · · ·+ di+1︸ ︷︷ ︸
i

+ai+1di+1 + ai+2 + · · ·+ aN))

=
i

N
(di − di+1) +

1

N
(ai+1 − di + aidi − ai+1di+1)

≈ 4
N

i

N
(di − di+1).

That is,

(7.5) ∥a(di − di+1)−
i

N
(di − di+1)∥ < 4δ +

4

N
< 4δ +

ε

8
, i = 1, 2, ..., N − 1.

A similar argument also shows

(7.6) ∥adN − dN∥ < 2δ +
2

N
< 4δ +

ε

8
.

Then, on applying (7.4), (7.5), (7.6), (7.3), and Lemma 7.2 (note that a, d1, ..., dN commute),

a ≈ 4
N
+δ ad1

= a(d1 − d2 + d2 − d3 + · · ·+ dN−1 − dN + dN)

= a(d1 − d2) + a(d2 − d3) + · · ·+ a(dN−1 − dN) + adN

≈4((4δ+ ε
8
)+ ε

16
)

1

N
(d1 − d2) +

2

N
(d2 − d3) + · · ·+ N − 1

N
(dN−1 − dN) + dN

=
1

N
(d1 + d2 + · · ·+ dN),

as desired. □

Lemma 7.4. Let (D,A) be a pair of unital C*-algebras, where D is commutative. For any ε > 0,

there are δ > 0 and N ∈ N with the following property:

Let a ∈ D ⊆ A be a positive element with norm at most 1, and set

ai = χi(a), i = 1, ..., N,
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where

χi(t) =


0, t ≤ i−1

N
,

linear, t ∈ [ i−1
N
, i
N
],

1, t ≥ i
N
.

Let d1, ..., dN ∈ A be positive elements with norm at most 1 such that

(1) dist2,T(A)(di, (D)+1 ) < δ, i = 1, 2, ..., N ,

(2) ∥aidi+1 − di+1∥2,T(A) < δ, i = 1, ..., N − 1, and

(3) ∥diai+1 − ai+1∥2,T(A) < δ, i = 1, ..., N − 1.

Then

∥a− 1

N
(d1 + · · ·+ dN)∥2,T(A) < ε.

Proof. Applying Lemma 7.3 to ε/2, one obtains, say, the pair (N, δ2). Applying Lemma 7.1

to min{δ2, ε/4}, one obtains δ1. Set δ = min{δ1/4, ε/4}. Then (N, δ) has the property of the

lemma.

Indeed, let d1, ..., dN be given. Since dist2,T(A)(di, (D)+1 ) < δ, i = 1, 2, ..., N , there are positive

contractions d̃1, ...d̃N ∈ D such that

(7.7) ∥di − d̃i∥2,T(A) < min{δ1/4, ε/4}, i = 1, ..., N.

Then, it follows from (2) and (3) that

∥aid̃i+1 − d̃i+1∥2,T(A) < δ1 and ∥d̃iai+1 − ai+1∥2,T(A) < δ1, i = 1, 2, ..., N − 1.

Applying Lemma 7.1 to each element d̃i, i = 1, ..., N , one obtains a positive contraction ˜̃di ∈ D

such that

(7.8) ∥d̃i − ˜̃di∥2,T(A) < ε/4, i = 1, ..., N

and

∥ai ˜̃di+1 − ˜̃di+1∥ < δ2 and ∥ ˜̃diai+1 − ai+1∥ < δ2, i = 1, 2, ..., N − 1.

Then, by Lemma 7.3, one has

∥a− 1

N
( ˜̃d1 + · · ·+ ˜̃dN)∥ <

ε

2
,

and hence, together with (7.7) and (7.8), one has

∥a− 1

N
(d1 + · · ·+ dN)∥2,T(A) <

ε

2
+
ε

2
= ε,

as desired. □

Lemma 7.5. Let A be a unital C*-algebra. For any ε > 0, any N ∈ N, and any χ ∈ C([0, 1])+,

there are δ > 0 and M ∈ N such that if b1, b2, ..., bN ∈ A and d1, d2, ..., dN ∈ A are positive

elements with norm at most 1 such that

(1) ∥didi+1 − di+1∥2,T(A) < δ, i = 1, ..., N − 1,

(2) bibi+1 = bi+1, i = 1, 2, ..., N , and

(3) |τ(bji )− τ(dji )| < δ, i = 1, 2, ..., N , j = 1, ...,M , τ ∈ T(A),
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then

|τ(χ( 1
N
(b1 + · · ·+ bN)))− τ(χ(

1

N
(d1 + · · ·+ dN)))| < ε, τ ∈ T(A).

Proof. It is enough to prove the statement for χ a monomial, i.e., χ(t) = tn. Note that there are

positive numbers αi,j, i = 1, ..., N , j = 1, ..., n, such that

bn = (
1

N
(b1 + · · ·+ bN))

n

=
1

Nn

∑
i1+···+iN=n

bi11 · · · biNN

=
N∑
i=1

n∑
j=1

αi,jb
j
i .

Hence,

τ(bn) =
N∑
i=1

n∑
j=1

αi,jτ(b
j
i ).

Then there is δ > 0 such that if

∥didi+1 − di+1∥2,T(A) < δ, i = 1, ..., N − 1,

then

∥( 1
N
(d1 + · · ·+ dN))

n −
N∑
i=1

n∑
j=1

αi,jd
j
i∥2,T(A) < ε/2.

In particular,

τ((
1

N
(d1 + · · ·+ dN))

n) ≈ε/2 τ(
N∑
i=1

n∑
j=1

αi,jd
j
i ) =

N∑
i=1

n∑
j=1

αi,jτ(d
j
i ).

Moreover, one may assume that δ > 0 is sufficiently small such that if

|τ(bji )− τ(dji )| < δ, i = 1, 2, ..., N, j = 1, ..., n,

then

|
N∑
i=1

n∑
j=1

αi,jτ(b
j
i )−

N∑
i=1

n∑
j=1

αi,jτ(d
j
i )| < ε/2.

Then this δ and M := n have the desired property. □

8. The small boundary property

In this section, let us show that Property (S) for the ambient C*-algebra A indeed implies the

(SBP) for the subalgebra D when Properties (C) and (E) are present (Theorem 8.3).

For each ε > 0, define

(8.1) ηε(t) =


0, t ≤ 1− ε,

linear, t ∈ [1− ε, 1− ε/2],

1, t ≥ 1− ε/2.
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In the proof of the following lemma, we use O(ε) to denote a quantity which converges to 0

when ε approaches 0.

Lemma 8.1. Let A be a unital C*-algebra, and let D ⊆ A be a unital commutative subalgebra

such that the pair (D,A) has Property (C). Let ϕ1, ϕ2, ϕ3, ψ1, ψ2 ∈ (D)+1 and ε0 > 0 have the

following properties:

(1) ϕ2, ϕ3 ∈ ϕ1Dϕ1,

(2) ψ1ψ2 = ψ2, ϕ2ϕ3 = ϕ3,

(3) dτ (ψ1) < dτ (ϕ1) for all τ ∈ T(A),

(4) inf{τ(ψ2)− dτ (ϕ3) : τ ∈ T(A)} > 0, and

(5) inf{dτ (ϕ2)− τ(ηε0(ψ1)) : τ ∈ T(A)} > 0.

Then, for any ε > 0, there is a contraction u ∈ A such that

u∗ψ1u ∈∥·∥2
ε ϕ1Aϕ1, u∗ηε0/2(ψ1)u ∈∥·∥2

ε ϕ2Aϕ2, ηε(u
∗ψ1u)ϕ3 ≈∥·∥2

ε ϕ3,

and

dist2,T(A)(udu
∗, (D)1) < ε, dist2,T(A)(u

∗du, (D)1) < ε, d ∈ (D)1,

and

∥uu∗ − 1∥2,T(A), ∥u∗u− 1∥2,T(A) < ε.

Proof. Let ε > 0 be given. Choose δ ∈ (0,min{ε0, ε}/4) such that if x, y are positive contractions

of a unital C*-algebra A such that ∥x− y∥2,T(A) < δ, then

(8.2) ∥ηε(x)− ηε(y)∥2,T(A) < ε/2.

Define

δ1 := inf{τ(ψ2)− dτ (ϕ3) : τ ∈ T(A)} > 0

and

δ2 := inf{dτ (ϕ2)− τ(ηε0(ψ1)) : τ ∈ T(A)} > 0.

By Property (C) and Assumption (3), for any ε′ > 0 (to be determined later), there is a

contraction u1 ∈ A such that

(8.3) u∗1ψ1u1 ∈∥·∥2
ε′ ϕ1Aϕ1,

(8.4) dist2,T(A)(u1du
∗
1, (D)1) < ε′, dist2,T(A)(u

∗
1du1, (D)1) < ε′, d ∈ (D)1,

and

(8.5) ∥u1u∗1 − 1∥2,T(A), ∥u∗1u1 − 1∥2,T(A) < ε′.

By (8.3), there is n large enough that

∥(ϕ
1
n
1 )(u

∗
1ψ1u1)− u∗1ψ1u1∥2,T(A) < ε′.

By (8.4), there is a positive contraction d1 ∈ D such that

∥d1 − u∗1ψ1u1∥2,T(A) < ε′,
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and then

∥ϕ
1
n
1 d1 − u∗1ψ1u1∥2,T(A) < 2ε′.

Consider ϕ
1
n
1 d1, and still denote this element by d1. One has

d1 ∈ ϕ1Dϕ1

and

(8.6) ∥d1 − u∗1ψ1u1∥2,T(A) < 2ε′.

Consider the contraction

ηε0(u
∗
1ψ1u1),

and note that (by (8.6), (8.5) and Condition (5))

dτ (ηε0/2(d1)) ≤ τ(ηε0(d1)) ≈
∥·∥2
O(ε′) τ(ηε0(u

∗
1ψ1u1)) ≈∥·∥2

O(ε′) τ(ηε0(ψ1)) < dτ (ϕ2)− δ2/2, τ ∈ T(A).

With ε′ sufficiently small, one has

dτ (ηε0/2(d1)) < dτ (ϕ2), τ ∈ T(A).

By Property (C), for any ε′′ > 0 (to be determined later), there is u2 ∈ ϕ1Aϕ1 + C1 such that

(8.7) u∗2ηε0/2(d1)u2 ∈
∥·∥2
ε′′ ϕ2Aϕ2,

(8.8) dist2,T(A)(u2du
∗
2, D1) < ε′′, dist2,T(A)(u

∗
2du2, D1) < ε′′, d ∈ D1,

and

(8.9) ∥u2u∗2 − 1∥2,T(A), ∥u∗2u2 − 1∥2,T(A) < ε′′.

Since (as δ < ε0/4)

ηε0/2(d1)ηδ(d1) = ηδ(d1),

it follows from (8.7) that

(8.10) u∗2ηδ(d1)u2 ∈
∥·∥2
2ε′′ ϕ2Aϕ2.

By (8.8), there are positive contractions

d1,1, d1,δ ∈ D

such that

(8.11) ∥d1,1 − u∗2d1u2∥2,T(A) < ε′′, ∥d1,δ − u∗2ηδ(d1)u2∥2,T(A) < ε′′.

By (8.10),

d1,δ ∈∥·∥2
3ε′′ ∈ ϕ2Aϕ2.

With the same argument as above for d1, there is a positive contraction, still denoted by d1,δ,

such that

(8.12) d1,δ ∈ ϕ2Dϕ2 and ∥d1,δ − u∗2ηδ(d1)u2∥2,T(A) < 5ε′′.

Also note that, by (8.9),

∥ηδ(d1,1)− d1,δ∥2,T(A) = O(ε′′).
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Define

d̃1,1 = fδ(d1,1) and d̃1,δ = ηδ(d1,1),

where

fδ(t) =


0, t ≤ 0,

linear, t ∈ [0, 1− δ],

1, t ≥ 1− δ.

Then

(8.13) d̃1,1d̃1,δ = d̃1,δ and ∥d̃1,1 − d1,1∥ < δ,

and by (8.11),

∥d̃1,δ − d1,δ∥2,T(A) ≈O(ε′′) ∥ηδ(u∗2d1u2)− u∗2ηδ(d1)u2∥ = O(ε′′).

Then, with ε′′ sufficiently small, there is n ∈ N such that

∥(d̃1,δ)
1
nd1,δ − d1,δ∥2,T(A) < δ1/4,

and hence, for all τ ∈ T(A),

dτ ((d̃1,δ)
1
nd1,δ) + δ1/4 ≥ τ((d̃1,δ)

1
nd1,δ) + δ1/4

> τ(d1,δ) ≈5ε′′ τ(u
∗
2ηδ(d1)u2) ((8.12))

≈O(ε′) τ(u∗2ηδ(u
∗
1ψ1u1)u2) ((8.6))

≈O(ε′+ε′′) τ(ηδ(ψ1)) > τ(ψ2)

> dτ (ϕ3) + δ1/2.

With ε′ and ε′′ sufficiently small, one has

dτ ((d̃1,δ)
1
nd1,δ) > dτ (ϕ3), τ ∈ T(A).

Note that (d̃1,δ)
1
nd1,δ ∈ ϕ2Dϕ2 (both (d̃1,δ)

1
n and d1,δ belong to D, so they commute). By

Property (C), for any ε′′′ > 0 (to be determined later), there is u3 ∈ ϕ2Aϕ2 + C1 such that

(8.14) u3ϕ3u
∗
3 ∈

∥·∥2
ε′′′ (d̃1,δ)

1
nd1,δA(d̃1,δ)

1
nd1,δ,

dist2,T(A)(u3du
∗
3, D1) < ε′′′, dist2,T(A)(u

∗
3du3, D1) < ε′′′, d ∈ D1,

and

(8.15) ∥u3u∗3 − 1∥2,T(A), ∥u∗3u3 − 1∥2,T(A) < ε′′′.

Note that, by (8.13),

d̃1,1c = c, c ∈ (d̃1,δ)
1
nd1,δA(d̃1,δ)

1
nd1,δ.

By (8.14), there is c ∈ (d̃1,δ)
1
nd1,δD(d̃1,δ)

1
nd1,δ such that ∥c∥ ≤ 1 and

∥c− u3ϕ3u
∗
3∥2,T(A) < ε′′′.
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Then

(u∗2ηε(u
∗
1ψ1u1)u2)(u3ϕ3u

∗
3) ≈∥·∥2

O(ε′) (u∗2ηε(d1)u2)(u3ϕ3u
∗
3) ((8.6))(8.16)

≈∥·∥2
O(ε′′) ηε(u

∗
2d1u2)(u3ϕ3u

∗
3) ((8.9))

≈∥·∥2
O(ε′′) ηε(d1,1)(u3ϕ3u

∗
3) ((8.11))

≈∥·∥2
ε/2+O(ε′′) ηε(d̃1,1)(u3ϕ3u

∗
3) ((8.13)(8.2))

≈∥·∥2
ε′′′ ηε(d̃1,1)c

= c ≈∥·∥2
ε′′′ u3ϕ3u

∗
3.

Then, consider the contraction

u = u1u2u3.

Since

u2 ∈ ϕ1Aϕ1 + C1 and u3 ∈ ϕ2Aϕ2 + C1,

one has

(u1u2u3)
∗ψ1(u1u2u3) ∈ ϕ1Aϕ1.

Moreover,

(u1u2u3)
∗ηε0/2(ψ1)(u1u2u3) ≈∥·∥2

O(ε′) u∗3u
∗
2ηε0/2(u

∗
1ψ1u1)u2u3 ((8.5))

≈∥·∥2
O(ε′) u∗3(u

∗
2ηε0/2(d1)u2)u3 ((8.6))

∈∥·∥2
ε′′ ϕ2Aϕ2, ((8.7))

and

ηε((u1u2u3)
∗ψ1(u1u2u3))ϕ3 ≈∥·∥2

O(ε′+ε′′) u∗3u
∗
2ηε(u

∗
1ψ1u1)u2u3ϕ3 ((8.5), (8.9))

≈∥·∥2
ε′′′ u∗3(u

∗
2ηε(u

∗
1ψ1u1)u2)(u3ϕ3u

∗
3)u3 ((8.15))

≈ε+O(ε′+ε′′+ε′′′) u∗3(u3ϕ3u
∗
3)u3 = ϕ3. ((8.16))

With ε′, ε′′, ε′′′ sufficiently small, the contraction u has the desired property. □

For technical reasons, we also need the following lemma which, very roughly, asserts that, after

a perturbation with respect to the uniform trace norm, the spectrum of a positive element of the

subalgebra D is, in a strong sense, dense.

Lemma 8.2. Let A be a unital C*-algebra and let D = C(X) ⊆ A be a unital commutative

sub-C*-algebra. Assume A is simple, X has no isolated points, and the pair (D,A) has Property

(E). Then, for any positive contraction g ⊆ D, any finite set {x1, ..., xn} ⊆ (0, 1], and any ε > 0,

there is a positive contraction g̃ ∈ D such that

(1) ∥g̃ − g∥2,T(A) < ε, and

(2) each point xi, i = 1, ..., n, is in sp(g̃), and is not isolated from the left inside sp(g̃) (i.e.,

(s, xi) ∩ sp(g̃) ̸= Ø for all s < xi).
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Proof. Since A is simple (and non-elementary), there are mutually orthogonal positive elements

a1, ..., an ∈ A such that

∥ai∥ = 1 and dτ (ai) < ε/n2, i = 1, ..., n, τ ∈ T(A).

(See, for instance, Lemma 4.7 of [27].)

Consider the contraction

a =
1

n
a1 + · · ·+ n

n
an,

and note that it has the property

0 < τ(hi(a)) < ε/n, i = 1, ..., n, τ ∈ T(A),

where hi : [0, 1] → [0, 1] is the continuous function taking value 1 at [(4i− 1)/4n, (4i+ 1)/4n], 0

on [0, (2i− 1)/2n] and [(2i+ 1)/2n, 1], and linear between. By Property (E), there is a positive

contraction d ∈ D such that

0 < τ(hi(d)) < ε/n, i = 1, ..., n, τ ∈ T(A),

and there are mutually orthogonal positive elements b1, ..., bn ∈ D such that

∥bi∥ = 1 and dτ (bi) < ε/n, i = 1, ..., n, τ ∈ T(A).

Consider the sets

Ui = b−1
i ((0, 1]) and Vi = b−1

i ((1/2, 1]), i = 1, ..., n.

Then

Vi ⊆ Ui and µτ (Ui) < ε/n, i = 1, ..., n, τ ∈ T(A).

For each Vi, i = 1, ..., n, since X has no isolated points, there is a continuous function gi : X →
[0, 1] such that gi|V c

i
= 0 and 1 is not isolated from the left in gi(X) (i.e., (s, 1) ∩ gi(X) ̸= Ø for

all s < 1). Also pick a continuous function r : X → [0, 1] such that

r|X\(
⋃n

i=1 Ui) = 1 and r|⋃n
i=1 Vi

= 0.

Then the function

g̃ := gr + (x1g1 + x2g2 + · · ·+ xngn)

has the desired property. □

We are now ready to prove the main theorem of the paper, which states that Property (S) of

A implies the (SBP) of (D,T(A)) if Properties (C) and (E) are present.

Theorem 8.3. Let A be a unital simple C*-algebra, and let D = C(X) ⊆ A be a unital com-

mutative sub-C*-algebra such that X has no isolated points. Assume that the pair (D,A) has

Properties (C) and (E). Then, if the C*-algebra A has Property (S), the pair (D,T(A)) has the

(SBP).

Proof. By Theorem 2.9, it is enough to show that for any self-adjoint contraction f ∈ D and any

ε > 0, there is a self-adjoint element g ∈ D such that

(1) ∥f − g∥2,T(A) < ε, and

(2) there is δ > 0 such that τ(χδ(g)) < ε, τ ∈ T(A).
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To show this statement, it is enough to prove it for f such that sp(f) = [−1, 1]. Indeed, set

t− = sup{t < 0 : t /∈ sp(h)} and t+ = inf{t > 0 : t /∈ sp(h)}.

If t− = 0 or t+ = 0, then it is straightforward to perturb f to produce g (with χδ(g) = 0).

Assume neither of t− and t+ is zero. Choose s−, s+ /∈ sp(f) such that

0 ≤ t− − s− < min{ε,−t−} and 0 ≤ s+ − t+ < min{ε, t+}

and consider the self-adjoint element h(f) where

h =


0, t < t−,

t− − s−, t ∈ [t−, s−],

t, t ∈ [t−, t+−],

s+ − s−, t ∈ [t+, s+],

0 t > s+.

Then sp(h(f)) = [t−, t+], and

∥f − (f−
s− + h(f) + f+

s+
)∥ < ε,

where f−
s−(t) = t if t < s− and f−

s−(t) = 0 otherwise, and f+
s+

is defined similarly. Then, applying

the statement to the self-adjoint element h(f), one obtains the desired approximation g.

Now, let us assume that sp(f) = [−1, 1]. Identifying [−1, 1] with [0, 1], let us show the following

(equivalent) statement:

Let f ∈ D be a positive contraction with sp(f) = [0, 1], and let ε > 0. Then there is a positive

contraction g ∈ D such that

(8.17) ∥f − g∥2,T(A) < ε,

and there is δ > 0 such that

(8.18) τ(χ 1
2
,δ(g)) < ε, τ ∈ T(A),

where

χ 1
2
,δ(t) =


0, t < 1

2
− δ,

linear, t ∈ [1
2
− δ, 1

2
− δ

2
],

1, t ∈ [1
2
− δ

2
, 1
2
+ δ

2
],

linear, t ∈ [1
2
+ δ

2
, 1
2
+ δ],

0, t > 1
2
+ δ.

Let (f, ε) be given. Applying Lemma 7.4 to ε/2 (in place of ε), we obtain N and ε0 (in place

of δ). Choose ε1 > 0 such that

3ε1 < 1/N, 8Nε1 < ε0 and ε1 < ε/4.

For each i = 1, 2, ..., N, consider the following functions

χi(t) =


0, t ≤ i−1

N
,

linear, t ∈ [ i−1
N
, i
N
],

1, t ≥ i
N
,

χi,ε1(t) =


0, t ≤ i−1

N
+ ε1,

linear, t ∈ [ i−1
N

+ ε1,
i
N
+ ε1],

1, t ≥ i
N
+ ε1,
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κi,ε1(t) =


0, t ≤ i−1

N
+ ε1

2
,

linear, t ∈ [ i−1
N

+ ε1
2
, i−1

N
+ ε1],

1, t ≥ i−1
N

+ ε1,

θi,ε1 =


0, t ≤ i

N
+ ε1,

linear, t ∈ [ i
N
+ ε1,

i
N
+ 2ε1],

1, t ≥ i
N
+ 2ε1,

ξ+i,ε1 =


0, t ≤ i

N
,

linear, t ∈ [ i
N
, i
N
+ ε1

2
],

1, t ≥ i
N
+ ε1

2
,

and ξ−i,ε1 =


0, t ≤ i

N
+ 2ε1,

linear, t ∈ [ i
N
+ 2ε1,

i
N
+ 3ε1],

1, t ≥ i
N
+ 3ε1.

Consider the finite set of functions

(8.19) H = {χi, χi,ε1 , κi,ε1 , θi,ε1 , ηε1/2 ◦ χi,ε1 : i = 1, 2, ..., N}.

Note that

ηε1/2(χi,ε1(t)) = 0, t ≤ i/N + ε1/2, i = 1, ..., N,

where, recall ((8.1)),

ηε(t) =


0, t ≤ 1− ε,

linear, t ∈ [1− ε, 1− ε/2],

1, t ≥ 1− ε/2.

Since A is simple and sp(f) = [0, 1], there is γ > 0 such that

γ <
1

4
min{dτ (χi(f))− τ(κi,ε1(f)), τ(θi,ε1(f))− dτ (ξ

−
i,ε1

(f)),(8.20)

τ(ξ+i,ε1(f))− τ(ηε1/2(χi,ε1(f))) : i = 1, ..., N, τ ∈ T(A)}.

Without loss of generality, one may assume that γ < ε/4.

Since A has Property (S), there is a positive contraction g̃ ∈ A such that ∥f − g̃∥2,T(A) is

sufficiently small that

(8.21) |τ(χ(f)− τ(χ(g̃))| < γ, χ ∈ H ⊆ C([0, 1]), τ ∈ T(A),

and there is δ > 0 such that

(8.22) τ(χ 1
2
,δ(g̃)) < ε/4, τ ∈ T(A).

(Note that the choice of δ depends on g̃.)

Applying Lemma 7.5 to ε/4, N , and χ 1
2
+ε1,δ

(in place of ε, N , and χ, respectively), one obtains

δ0 (in place of δ) and M which have the property specified in Lemma 7.5 with respect to ε/2,

N , and χ 1
2
+ε1,δ

. Choose δ1 > 0 such that

4δ1 < ε0, 6δ1 < δ0, and 3Nδ1 < min{ε1, γ/2}.

Also choose δ2 > 0 such that if a, b are positive contractions of a C*-algebra A, then

(8.23) ∥a− b∥2,T(A) < δ2 =⇒ ∥χ 1
2
+ε1,δ

(a))− χ 1
2
+ε1,δ

(b)∥2,T(A) < ε/4.

Since (D,A) has Property (E), there is a positive contraction ˜̃g ∈ D such that

(8.24) |τ(χ(g̃))− τ(χ(˜̃g))| < γ, χ ∈ H ∪ {χ 1
2
,δ}, τ ∈ T(A).
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In particular, together with (8.21) and (8.22), one has

(8.25) |τ(χ(f))− τ(χ(˜̃g))| < 2γ, χ ∈ H, τ ∈ T(A),

and

(8.26) τ(χ 1
2
,δ(˜̃g)) < ε/4 + γ < ε/2.

So

(8.27) τ(χ 1
2
+ε1,δ

((˜̃g − ε1)+)) < ε/2.

By Lemma 8.2, after a small perturbation (with respect to ∥·∥2,T(A)), without loss of generality,

one may assume that the numbers

i/N + ε1, i = 1, 2, ..., N − 1,

are in sp(˜̃g), and are not isolated from the left.

Now, let us consider the elements

χ1(f), χ2(f), ..., χN ∈ D

and

χ1,ε1(˜̃g), χ1,ε1(˜̃g), ..., χ1,ε1(˜̃g) ∈ D.

By (8.24), one has

(8.28) dτ (χ1,ε1(˜̃g)) < τ(κ1,ε1(˜̃g)) ≈2γ τ(κ1,ε1(f)) < dτ (χ1(f)), τ ∈ T(A).

By the choice of γ ((8.20)), one has

(8.29) dτ (χ1,ε1(˜̃g)) < dτ (χ1(f)), τ ∈ T(A).

Note that, by the construction of ξ+1,ε1 , ξ
−
1,ε1

, and θ1,ε1 , we have

ξ+1,ε1(f), ξ
−
1,ε1

(f) ∈ χ1(f)Dχ1(f),

χ1,ε1(˜̃g)θ1,ε1(˜̃g) = θ1,ε1(˜̃g), ξ+1,ε1(f)ξ
−
1,ε1

(f) = ξ−1,ε1(f),

τ(θ1,ε1(˜̃g)) ≈2γ τ(θ1,ε1(f)) > dτ (ξ
−
1,ε1

(f)), τ ∈ T(A),

and

τ(ηε1/2(χ1,ε1(˜̃g))) ≈2γ τ(ηε1/2(χ1,ε1(f))) < τ(ξ+1,ε1(f)) < dτ (ξ
+
1,ε1

(f)), τ ∈ T(A).

By Lemma 8.1, for any δ′′ > 0 (to be fixed later), there is a contraction u1 ∈ A such that

(8.30) u∗1χ1,ε1(˜̃g)u1 ∈
∥·∥2
δ′′ χ1(f)Aχ1(f),

(8.31) ηε1/4(u
∗
1χ1,ε1(˜̃g)u1) ∈

∥·∥2
δ′′ ξ+1,ε1(f)Aξ

+
1,ε1

(f),

(8.32) ηδ′′(u
∗
1χ1,ε1(˜̃g)u1)ξ

−
1,ε1

(f) ≈∥·∥2
δ′′ ξ−1,ε1(f),

(8.33) dist2,T(A)(u1du
∗
1, (D)1) < δ′′, dist2,T(A)(u

∗
1du1, (D)1) < δ′′, d ∈ (D)1,
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and

(8.34) ∥u1u∗1 − 1∥2,T(A), ∥u∗1u1 − 1∥2,T(A) < δ′′.

With δ′′ sufficiently small, one has

(8.35) |τ((u∗1xu1)j)− τ(xj)| < δ1, j = 1, ...,M, x ∈ (A)1, τ ∈ T(A),

and (by (8.33) and (8.34))

(8.36) dist2,T(A)(u
∗
1χ1,ε1(˜̃g)u1, (D)+1 ) < 3δ′′ < min{ε0, δ2, ε/4}.

Set

ρ1 := min{τ(ρ1,δ1(˜̃g)) : τ ∈ T(A)},
where

ρ1,δ1 =


0, t ≤ 1

N
+ ε1 − δ1,

linear, 1
N
+ ε1 − δ1 ≤ t ≤ 1

N
+ ε1 − δ1/2,

1, t = 1
N
+ ε1 − δ1/2,

linear, 1
N
+ ε1 − δ1/2 ≤ t ≤ 1

N
+ ε1,

0, t ≥ 1
N
+ ε1.

Since 1/N + ε1 is not isolated from the left in sp(˜̃g) and A is simple, we have that ρ1 > 0.

By (8.36), there is a positive contraction

[u∗1χ1,ε1(˜̃g)u1] ∈ D

such that

(8.37) ∥[u∗1χ1,ε1(˜̃g)u1]− u∗1χ1,ε1(˜̃g)u1∥2,T(A) < 3δ′′ < δ1.

With δ′′ sufficiently small, one has

∥ηδ1([u∗1χ1,ε1(˜̃g)u1])− u∗1ηδ1(χ1,ε1(˜̃g))u1∥2,T(A) < min{ρ1/8, δ1}.

Define

(8.38) [u∗1ηδ1(χ1,ε1(˜̃g))u1] := ηδ1([u
∗
1χ1,ε1(˜̃g)u1]) ∈ D.

Then

(8.39) ∥[u∗1ηδ1(χ1,ε1(˜̃g))u1]− u∗1ηδ1(χ1,ε1(˜̃g))u1∥2,T(A) < min{ρ1/8, δ1}.

Moreover (by (8.38)),

(8.40) η2δ1([u
∗
1χ1,ε1(˜̃g)u1])[u

∗
1ηδ1(χ1,ε1(˜̃g))u1] = [u∗1ηδ1(χ1,ε1(˜̃g))u1].

One should assume δ′′ is sufficiently small that

(8.41) ∥ηε1/4([u∗1χ1,ε1(˜̃g)u1])− ηε1/4(u
∗
1χ1,ε1(˜̃g)u1)∥2,T(A) < δ1,

and

(8.42) ∥η2δ1([u∗1χ1,ε1(˜̃g)u1])− η2δ1(u
∗
1χ1,ε1(˜̃g)u1)∥2,T(A) < δ1.
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Note that (use (8.32) in the third and fifth steps),

(u∗1χ1,ε1(˜̃g)u1)χ2(f) ≈3Nε1 (u∗1χ1,ε1(˜̃g)u1)χ2,3ε1(f)

= (u∗1χ1,ε1(˜̃g)u1)ξ
−
1,ε1

(f)χ2,3ε1(f)

≈∥·∥2
δ′′ (u∗1χ1,ε1(˜̃g)u1)ηδ′′(u

∗
1χ1,ε1(˜̃g)u1)ξ

−
1,ε1

(f)χ2,3ε1(f)

≈δ′′ ηδ′′(u
∗
1χ1,ε1(˜̃g)u1)ξ

−
1,ε1

(f)χ2,3ε1(f)

≈∥·∥2
δ′′ ξ−1,ε1(f)χ2,3ε1(f)

= χ2,3ε1(f) ≈3Nε1 χ2(f).

With δ′′ sufficiently small, one has

(8.43) [u∗1χ1,ε1(˜̃g)u1]χ2(f) ≈∥·∥2
7Nε1

χ2(f).

Note that, by (8.39),

(8.44) |τ([u∗1ηδ1(χ1,ε1(˜̃g))u1])− τ(u∗1ηδ1(χ1,ε1(˜̃g))u1)| < ρ1/8, τ ∈ T(A).

With δ′′ sufficiently small, one has

(8.45) τ(ηδ1(χ1,ε1(˜̃g))) ≈ρ1/8 τ(u
∗
1ηδ1(χ1,ε1(˜̃g))u1), τ ∈ T(A),

and

(8.46) ∥ηδ1(u∗1χ1,ε1(˜̃g)u1)− u∗1ηδ1(χ1,ε1(˜̃g))u1∥2 < δ1/4.

Hence, by (8.44) and (8.45),

dτ (χ2,ε1(˜̃g)) ≤ τ(ηδ1(χ1,ε1(˜̃g)))− ρ1/2

≈ρ1/8 τ(u∗1ηδ1(χ1,ε1(˜̃g))u1)− ρ1/2

≈ρ1/8 τ([u∗1ηδ1(χ1,ε1(˜̃g))u1])− ρ1/2

< dτ ([u
∗
1ηδ1(χ1,ε1(˜̃g))u1])− ρ1/2,

for all τ ∈ T(A), and therefore

(8.47) dτ (χ2,ε1(˜̃g)) < dτ ([u
∗
1ηδ1(χ1,ε1(˜̃g))u1]), τ ∈ T(A).

By (8.32) (and (8.39), (8.46)), (note that 3ε1 < 1/N and δ′′ ≪ δ1)

[u∗1ηδ1(χ1,ε1(˜̃g))u1](ξ
+
2,ε1

(f)) = [u∗1ηδ1(χ1,ε1(˜̃g))u1](ξ
−
1,ε1

(f))(ξ+2,ε1(f))(8.48)

≈∥·∥2
δ1

(u∗1ηδ1(χ1,ε1(˜̃g))u1)(ξ
−
1,ε1

(f))(ξ+2,ε1(f))

≈∥·∥2
δ1

ηδ1((u
∗
1(χ1,ε1(˜̃g))u1))(ξ

−
1,ε1

(f))(ξ+2,ε1(f))

≈∥·∥2
δ′′ (ξ−1,ε1(f))(ξ

+
2,ε1

(f))

= ξ+2,ε1(f),

and therefore, one also has

(8.49) [u∗1ηδ1(χ1,ε1(˜̃g))u1](ξ
−
2,ε1

(f)) ≈∥·∥2
3δ1

ξ−2,ε1(f).

Now, fixing δ′′, we have the contraction u1 ∈ A.
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Let us inductively assume that contractions u1, ..., uk, where k ≤ N−1, have been constructed

such that (note that (8.51) and (8.53) are void if k = 1)

(8.50) dist2,T(A)(u
∗
iχi,ε1(˜̃g)ui, (D)+1 ) < min{ε0, δ2, ε/4}, i = 1, ..., k, ((8.36) when k = 1)

(8.51) ∥χi−1(f)(u
∗
iχi,ε1(˜̃g)ui)− (u∗iχi,ε1(˜̃g)ui)∥2,T(A) < 4δ1 < ε1, i = 1, ..., k,

(8.52)

∥(u∗iχi,ε1(˜̃g)ui)χi+1(f)− χi+1(f)∥2,T(A) < 7Nε1 + 3iδ1, i = 1, ..., k, ((8.43) when k = 1)

and

(8.53) ∥(u∗i−1χi,ε1(˜̃g)ui−1)(u
∗
iχi,ε1(˜̃g)ui)− (u∗iχi,ε1(˜̃g)ui)∥2,T(A) < 6δ1, i = 1, ..., k,

(8.54)

|τ((u∗ixui)j)−τ(xj)| < δ1, i = 1, ..., k, j = 1, ...,M, x ∈ (A)1, τ ∈ T(A). ((8.35) when k = 1)

Moreover, the contraction uk satisfies

(8.55) ηε1/4(u
∗
kχk,ε1(˜̃g)uk) ∈

∥·∥2
δ1

ξ+k,ε1(f)Aξ
+
k,ε1

(f), ((8.31) when k = 1; note that δ′′ < δ)

and there are positive contractions [u∗kχk,ε1(˜̃g)uk], [u
∗
kηδ1(χk,ε1(˜̃g))uk] ∈ D such that

(8.56) η2δ1([u
∗
kχk,ε1(˜̃g)uk])[u

∗
kηδ1(χk,ε1(˜̃g))uk] = [u∗kηδ1(χk,ε1(˜̃g))uk], ((8.40) when k = 1)

(8.57) ∥ηε1/4([u∗kχk,ε1(˜̃g)uk])− ηε1/4(u
∗
kχk,ε1(˜̃g)uk)∥2,T(A) < δ1, ((8.41) when k = 1)

(8.58) ∥η2δ1([u∗kχk,ε1(˜̃g)uk])− η2δ1(u
∗
kχk,ε1(˜̃g)uk)∥2,T(A) < δ1, ((8.42) when k = 1)

(8.59) dτ (χk+1,ε1(˜̃g)) < dτ ([u
∗
kηδ1(χk,ε1(˜̃g))uk]), τ ∈ T(A), ((8.47) when k = 1)

(8.60) [u∗kηδ1(χk,ε1(˜̃g))uk](ξ
+
k+1,ε1

(f)) ≈∥·∥2
3kδ1

ξ+k+1,ε1
(f), ((8.48) when k = 1)

and

(8.61) [u∗kηδ1(χk,ε1(˜̃g))uk](ξ
−
k+1,ε1

(f)) ≈∥·∥2
3kδ1

ξ−k+1,ε1
(f). ((8.49) when k = 1)

Let us construct uk+1. Define〈
ξ−k+1,ε1

(f)
〉
:= [u∗kηδ1(χk,ε1(˜̃g))uk](ξ

−
k+1,ε1

(f)) ∈ Her([u∗kηδ1(χk,ε1(˜̃g))uk]) ∩D.

It follows from (8.61) that

(8.62) ∥
〈
ξ−k+1,ε1

(f)
〉
− ξ−k+1,ε1

(f)∥2,T(A) < 3kδ1.

Then, for all τ ∈ T(A),

τ(θk+1,ε1(f)) > dτ (ξ
−
k+1,ε1

(f))+2γ ≥ dτ ([u
∗
kηδ1(χk,ε1(˜̃g))uk]ξ

−
k+1,ε1

(f))+2γ = dτ (
〈
ξ−k+1,ε1

(f)
〉
)+2γ,

and hence

τ(θk+1,ε1(˜̃g)) ≈γ τ(θk+1,ε1(f)) > dτ (
〈
ξ−k+1,ε1

(f)
〉
) + 2γ.

In particular,

(8.63) τ(θk+1,ε1(˜̃g)) > dτ (
〈
ξ−k+1,ε1

(f)
〉
), τ ∈ T(A).
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Also define

(8.64)
〈
ξ+k+1,ε1

(f)
〉
:= [u∗k(ηδ1(χk,ε1(˜̃g))uk](ξ

+
k+1,ε1

(f)) ∈ Her([u∗k(ηδ1((χk,ε1(˜̃g)))uk]) ∩D.

Then,

τ(ηε1/2(χk+1,ε1(f)))

< τ(ξ+k+1,ε1
(f))− 3γ ((8.20))

≈3kδ1 τ([u∗k(ηδ1(χk,ε1(˜̃g))uk](ξ
+
k+1,ε1

(f)))− 3γ ((8.60))

= τ(
〈
ξ+k+1,ε1

(f)
〉
)− 3γ

< dτ (
〈
ξ+k+1,ε1

(f)
〉
)− 3γ,

and therefore

τ(ηε1/2(χk+1,ε1(˜̃g))) ≈2γ τ(ηε1/2(χk+1,ε1(f))) < dτ ([ξ
+
k+1,ε1

(f)])− 3γ + 3kδ1.

In particular (note that 3Nδ1 < γ/2),

(8.65) τ(ηε1/2(χk+1,ε1(˜̃g))) < dτ ([ξ
+
k+1,ε1

(f)]), τ ∈ T(A).

With (8.59), (8.63), and (8.65), by Lemma 8.1, for any δ′′ > 0 (to be fixed later), there is a

contraction uk+1 ∈ A such that

(8.66) u∗k+1χk+1,ε1(˜̃g)uk+1 ∈∥·∥2
δ′′ [u∗kηδ′(χk,ε1(˜̃g))uk]A[u

∗
kηδ′(χk,ε1(˜̃g))uk],

(8.67) ηε1/4(u
∗
k+1χk+1,ε1(˜̃g)uk+1) ∈∥·∥2

δ′′

〈
ξ+k+1,ε1

(f)
〉
A
〈
ξ+k+1,ε1

(f)
〉
,

(8.68) ηδ′′(u
∗
k+1χk+1,ε1(˜̃g)uk+1)

〈
ξ−k+1,ε1

(f)
〉
≈∥·∥2

δ′′

〈
ξ−k+1,ε1

(f)
〉
,

(8.69) dist2,T(A)(uk+1du
∗
k+1, D1) < δ′′, dist2,T(A)(u

∗
k+1duk+1, D1) < δ′′, d ∈ D1,

and

(8.70) ∥uk+1u
∗
k+1 − 1∥2,T(A), ∥u∗k+1uk+1 − 1∥2,T(A) < δ′′.

By (8.69) and (8.70), with δ′′ sufficiently small,

(8.71) dist2,T(A)(u
∗
k+1χk+1,ε1(˜̃g)uk+1, (D)+1 ) < 3δ′′ < min{ε0, δ2, ε/2}.

This verifies Assumption (8.50) for k + 1.

Also note

u∗k+1(χk+1,ε1(˜̃g))uk+1

≈∥·∥2
δ′′ (u∗k+1(χk+1,ε1(˜̃g))uk+1)(η2δ1([u

∗
kχk,ε1(˜̃g)uk])) ((8.66), (8.56))

≈∥·∥2
δ1

(u∗k+1(χk+1,ε1(˜̃g))uk+1)(η2δ1(u
∗
kχk,ε1(˜̃g)uk)) ((8.58))

≈∥·∥2
2δ1

(u∗k+1(χk+1,ε1(˜̃g))uk+1)(η2δ1(u
∗
kχk,ε1(˜̃g)uk))(ukχk,ε1(˜̃g)uk)

≈δ1+δ′′ (u∗k+1(χk+1,ε1(˜̃g))uk+1)(u
∗
kχk,ε1(˜̃g)uk). ((8.66), (8.56), (8.58))
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In other words,

(u∗kχk,ε1(˜̃g)uk)(u
∗
k+1(χk+1,ε1(˜̃g))uk+1) ≈∥·∥2

6δ1
u∗k+1(χk+1,ε1(˜̃g))uk+1.

This verifies Assumption (8.53) for k + 1.

By (8.55) and (8.66), (8.56), (8.57),

χk(f)(u
∗
k+1(χk+1,ε1(˜̃g))uk+1) ≈δ′′ χk(f)η2δ1([u

∗
kχk,ε1(˜̃g)uk])(u

∗
k+1(χk+1,ε1(˜̃g))uk+1) ((8.56))

= χk(f)ηε1/4([u
∗
kχk,ε1(˜̃g)uk])(u

∗
k+1(χk+1,ε1(˜̃g))uk+1)

≈∥·∥2
δ1

(χk(f)ηε1/4(u
∗
kχk,ε1(˜̃g)uk))(u

∗
k+1(χk+1,ε1(˜̃g))uk+1) ((8.57))

≈∥·∥2
δ1

ηε1/4(u
∗
kχk,ε1(˜̃g)uk)(u

∗
k+1(χk+1,ε1(˜̃g))uk+1) ((8.55))

≈∥·∥2
δ1

ηε1/4([u
∗
kχk,ε1(˜̃g)uk])(u

∗
k+1(χk+1,ε1(˜̃g))uk+1) ((8.57))

= u∗k+1(χk+1,ε1(˜̃g))uk+1.

So,

χk(f)(u
∗
k+1(χk+1,ε1(˜̃g))uk+1) ≈∥·∥2

4δ1
u∗k+1(χk+1,ε1(˜̃g))uk+1.

This verifies Assumption (8.51) for k + 1.

If k + 1 ≤ N − 1, with the same argument as for (8.43),

(u∗k+1χk+1,ε1(˜̃g)uk+1)χk+2(f)

≈3Nε1 (u∗k+1χk+1,ε1(˜̃g)uk+1)χk+2,3ε1(f)

= (u∗k+1χk+1,ε1(˜̃g)uk+1)ξ
−
k+1,ε1

(f)χk+2,3ε1(f)

≈∥·∥2
3kδ1

(u∗k+1χk+1,ε1(˜̃g)uk+1)
〈
ξ−k+1,ε1

(f)
〉
χk+2,3ε1(f) ((8.62))

≈∥·∥2
δ′′ (u∗k+1χk+1,ε1(˜̃g)uk+1)ηδ′′(u

∗
k+1χk+1,ε1(˜̃g)uk+1)

〈
ξ−k+1,ε1

(f)
〉
χk+2,3ε1(f) ((8.68))

≈δ′′ ηδ′′(u
∗
k+1χk+1,ε1(˜̃g)uk+1)

〈
ξ−k+1,ε1

(f)
〉
χk+2,3ε1(f)

≈∥·∥2
δ′′

〈
ξ−k+1,ε1

(f)
〉
χk+2,3ε1(f) ((8.68))

≈∥·∥2
3kδ1

χk+2,3ε1(f) ≈3Nε1 χk+2(f). ((8.62))

Thus,

(u∗k+1(χk+1,ε1(˜̃g))uk+1)χk+2(f) ≈∥·∥2
7Nε1+3k+1δ1

χk+2(f).

This verifies Assumption (8.52) for k + 1 (which is void if k + 1 = N).

With δ′′ sufficiently small, one has

|τ((u∗k+1xuk+1)
j)− τ(xj)| < δ1, j = 1, ...,M, x ∈ (A)1, τ ∈ T(A).

This verifies (8.54) for k + 1.

If k + 1 ≤ N − 1, let us verify that (with δ′′ sufficiently small), the contraction uk+1 satisfies

the inductive assumptions (8.55), (8.56), (8.57), (8.58), (8.59), (8.60), and (8.61) for k + 1.

By (8.64) and noting that [u∗k(ηδ1(χk,ε1(˜̃g))uk] and (ξ+k+1,ε1
(f)) commute (both are in D), one

has 〈
ξ+k+1,ε1

(f)
〉
A
〈
ξ+k+1,ε1

(f)
〉
⊆ ξ+k+1,ε1

(f)Aξ+k+1,ε1
(f).

Thus, Assumption (8.55) for k + 1 follows from (8.67).
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For the other assumptions, let us repeat the argument of u1: Set

ρk+1 := min{τ(ρk+1,δ1(˜̃g)) : τ ∈ T(A)},

where

ρk+1,δ1 =


0, t ≤ k+1

N
+ ε1 − δ1,

linear, k+1
N

+ ε1 − δ1 ≤ t ≤ k+1
N

+ ε1 − δ1/2,

1, t = k+1
N

+ ε1 − δ1/2,

linear, k+1
N

+ ε1 − δ1/2 ≤ t ≤ k+1
N

+ ε1,

0, t ≥ k+1
N

+ ε1.

Since (k + 1)/N + ε1 is not isolated from the left in sp(˜̃g) and A is simple, we have that ρ1 > 0.

By (8.71), with a sufficiently small δ′′, there is a positive contraction

[u∗k+1χk+1,ε1(˜̃g)uk+1] ∈ D

such that

∥[u∗k+1χk+1,ε1(˜̃g)uk+1]− u∗k+1χk+1,ε1(˜̃g)uk+1∥2,T(A) < 3δ′′ < δ1.

With δ′′ sufficiently small, one has

∥ηδ1([u∗k+1χk+1,ε1(˜̃g)uk+1])− u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1∥2,T(A) < min{ρk+1/8, δ1}.

Define

(8.72) [u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1] := ηδ1([u
∗
k+1χk+1,ε1(˜̃g)uk+1]) ∈ D.

Then

(8.73) ∥[u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1]− u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1∥2,T(A) < min{ρk+1/8, δ1}.

Moreover (by (8.72)),

(8.74) η2δ1([u
∗
k+1χk+1,ε1(˜̃g)uk+1])[u

∗
k+1ηδ1(χk+1,ε1(˜̃g))uk+1] = [u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1].

This verifies (8.56) for k + 1.

One should assume δ′′ is sufficiently small that

(8.75) ∥ηε1/4([u∗k+1χk+1,ε1(˜̃g)uk+1])− ηε1/4(u
∗
k+1χk+1,ε1(˜̃g)uk+1)∥2,T(A) < δ1,

and

(8.76) ∥η2δ1([u∗k+1χk+1,ε1(˜̃g)uk+1])− η2δ1(u
∗
k+1χk+1,ε1(˜̃g)uk+1)∥2,T(A) < δ1.

This verifies (8.57) and (8.58) for k + 1.

Note that, by (8.73),

(8.77) |τ([u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1])− τ(u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1)| < ρk+1/8, τ ∈ T(A).

With δ′′ sufficiently small, one has

(8.78) τ(ηδ1(χk+1,ε1(˜̃g))) ≈ρk+1/8 τ(u
∗
k+1ηδ1(χk+1,ε1(˜̃g))uk+1), τ ∈ T(A),

and

(8.79) ∥ηδ1(u∗k+1χk+1,ε1(˜̃g)uk+1)− u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1∥2,T(A) < δ1/4.
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Hence, by (8.77) and (8.78),

dτ (χk+2,ε1(˜̃g)) ≤ τ(ηδ1(χk+1,ε1(˜̃g)))− ρk+1/2

≈ρk+1/8 τ(u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1)− ρk+1/2

≈ρk+1/8 τ([u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1])− ρk+1/2

< dτ ([u
∗
k+1ηδ1(χk+1,ε1(˜̃g))uk+1])− ρk+1/2,

for all τ ∈ T(A), and therefore

(8.80) dτ (χk+2,ε1(˜̃g)) < dτ ([u
∗
k+1ηδ1(χk+1,ε1(˜̃g))uk+1]).

This verifies (8.59) for k + 1.

By (8.68) and (8.62) (and (8.73), (8.79)), (note that 3ε1 < 1/N and δ′′ ≪ δ1)

[u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1](ξ
+
k+2,ε1

(f))(8.81)

= [u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1](ξ
−
k+1,ε1

(f))(ξ+k+2,ε1
(f))

≈∥·∥2
δ1

(u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1)(ξ
−
k+1,ε1

(f))(ξ+k+2,ε1
(f)) ((8.73))

≈∥·∥2
δ1

ηδ1((u
∗
k+1(χk+1,ε1(˜̃g))uk+1))(ξ

−
k+1,ε1

(f))(ξ+k+2,ε1
(f)) ((8.79))

≈∥·∥2
3kδ1

ηδ1((u
∗
k+1(χk+1,ε1(˜̃g))uk+1))

〈
ξ−k+1,ε1

(f)
〉
(ξ+k+2,ε1

(f)) ((8.62))

≈∥·∥2
δ′′

〈
ξ−k+1,ε1

(f)
〉
(ξ+k+2,ε1

(f)) ((8.68))

≈∥·∥2
3kδ1

(ξ−k+1,ε1
(f))(ξ+k+2,ε1

(f)) ((8.62))

= ξ+k+2,ε1
(f),

and therefore, one also has

(8.82) [u∗k+1ηδ1(χk+1,ε1(˜̃g))uk+1](ξ
−
k+2,ε1

(f)) ≈∥·∥2
3k+1δ1

ξ−k+2,ε1
(f).

This verifies (8.60) and (8.61) for k + 1. Fix δ′′, and we obtain the desired uk+1.

By induction, there are contractions u1, u2, ..., uN ∈ A such that (note that 3Nδ1 < ε1)

(8.83) dist2,T(A)(u
∗
iχi,ε1(˜̃g)ui, (D)+1 ) < min{ε0, δ2, ε/4} ≤ ε0, i = 1, ..., N,

(8.84) ∥χi−1(f)(u
∗
iχi,ε1(˜̃g)ui)− (u∗iχi,ε1(˜̃g)ui)∥2,T(A) < 4δ1 < ε0, i = 2, ..., N,

(8.85) ∥(u∗iχi,ε1(˜̃g)ui)χi+1(f)− χi+1(f)∥2,T(A) < 7Nε1 + 3iδ1 < 8Nε1 < ε0, i = 1, ..., N − 1,

(8.86) ∥(u∗i−1χi,ε1(˜̃g)ui−1)(u
∗
iχi,ε1(˜̃g)ui)− (u∗iχi,ε1(˜̃g)ui)∥2,T(A) < 6δ1 < δ0, i = 1, ..., N,

and

(8.87) |τ((u∗ixui)j)− τ(xj)| < δ1 < δ0, i = 1, ..., N, j = 1, ...,M, x ∈ (A)1, τ ∈ T(A).

Define

g :=
1

N
(u∗1χ1,ε1(˜̃g)u1 + · · ·+ u∗NχN,ε1(˜̃g)uN).
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Then, by (8.83), (8.84) and (8.85), it follows from Lemma 7.4 that

(8.88) ∥f − g∥2,T(A) < ε/2.

Note that

(˜̃g − ε1)+ =
1

N
(χ1,ε1(˜̃g) + · · ·+ χN,ε1(˜̃g)).

By (8.86) and (8.87), it follows from Lemma 7.5 that

(8.89) |τ(χ 1
2
+ε1,δ

((˜̃g − ε1)))− τ(χ 1
2
+ε1,δ

(g))| < ε/4, τ ∈ T(A).

By 8.83 again, one has

dist2,T(A)(g, (D)+1 ) < min{δ2, ε/4};

together with (8.88), (8.89), and the choice of δ2 ((8.23)), there is a positive contraction in D,

still denoted by g, such that

∥f − g∥2,T(A) < ε/2 + ε/4 = 3ε/4

and,

|τ(χ 1
2
+ε1,δ

((˜̃g − ε1)))− τ(χ 1
2
+ε1,δ

(g))| < ε/4 + ε/4 = ε/2, τ ∈ T(A)

By (8.27), one has

τ(χ 1
2
+ε1,δ

(g)) < ε/2 + ε/2 = ε.

Stretching g to move 1
2
+ ε1 to

1
2
(and note that ε1 < ε/2), it satisfies the desired approximations

(8.17) and (8.18). □

As a consequence of Theorem 8.3, one has the following characterizations of Z-absorption of

AH algebras with diagonal maps or the crossed product C*-algebras C(X)⋊ Γ:

Theorem 8.4. Let A be a simple AH algebra with diagonal maps, or let A = C(X)⋊ Γ, where

(X,Γ) is free, minimal, and has the (URP) and (COS). Let D ⊆ A be the canonical commutative

subalgebra. Then the following conditions are equivalent:

(1) A has Property (S).

(2) (D,T(A)) has the (SBP).

(3) A ∼= A⊗Z.
(4) The strict order on Cu(A) is determined by traces.

(5) qRR(l∞(A)/J2,ω,T(A)) = 0 (Definition 6.2).

(6) RR(l∞(A)/J2,ω,T(A)) = 0.

(7) RR(l∞(D)/J2,ω,T(A)) = 0.

(8) A has uniform property Γ (Definition 2.5).

(9) (D,A) has strong uniform property Γ (Definition 2.15).

(10) (D,T(A)) is approximately divisible (Definition 2.15).

In the case that A = C(X)⋊ Γ, each statement above is also equivalent to

(11) mdim(X,Γ) = 0.
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Proof. (1) ⇒ (2): By Theorem 4.6 and Theorem 5.3 respectively, the C*-algebra pair (D,A) has

Properties (C) and (E). Since A has Property (S), by Theorem 8.3, (D,T(A)) has the (SBP).

(2) ⇒ (3): For the crossed product C*-algebras, this follows from Theorem 4.7 of [9] in the

case Γ = Z and follows in general from Theorem 5.4 of [23] and Theorem 4.8 of [26]. For the AH

algebras with diagonal maps, this implication follows from Proposition 4.10 of [10].

(3) ⇒ (8): Theorem 5.6 of [1].

(8) ⇒ (1): Proposition 6.4.

(2) ⇔ (7): Theorem 2.12 of [10].

(10) ⇒ (2): Theorem 3.5 of [10].

(1) ⇔ (5) ⇔ (6): Proposition 6.3.

(2) ⇒ (9): In the case of C(X) ⋊ Γ, this follows from the proof of Theorem 9.4 of [18]. For

AH algebras with diagonal maps, this follows from Theorem A.1 of the appendix.

(9) ⇒ (10): Trivial.

(3) ⇔ (4): In the case of C(X)⋊Γ, this follows from Corollary 7.14 of [20]. In the case of AH

algebras with diagonal maps, this follows from Theorem 4.1 of [6] and Theorem 9.5 of [31]

This shows the equivalence of Conditions (1)–(10).

(11) ⇒ (2): Theorem 5.1 of [26] ([15] and [16] for Zd-actions).

(2) ⇒ (11): Theorem 5.4 of [23]. □

Remark 8.5. The relative comparison property (COS) only plays a role in (2) ⇒ (3). So, all

conditions except (3) and (4) are equivalent without assuming the (COS). Indeed, a Villadsen

algebra of the second type ([39]), which has unique trace but is not Z-absorbing, satisfies all

conditions of the theorem above except (3) and (4).

Since free and minimal Zd-actions always have the (URP) and (COS) ([28]), a special case of

Theorem 8.4 is the following corollary:

Corollary 8.6. Let (X,Zd) be a free and minimal dynamical system, and let A = C(X) ⋊ Zd.

Then the conditions (1)–(11) of Theorem 8.4 (with D = C(X)) are equivalent.

Since real rank zero of A implies Condition (5) of Theorem 8.4, then it actually implies the

zero mean dimension of the dynamical system, and hence the Z-absorption of A. (Note that for

AH algebras with diagonal maps, this implication was already shown in [25].)

Corollary 8.7. Let (X,Γ) be a free and minimal dynamical system with the (URP), and let

A = C(X) ⋊ Γ. If RR(A) = 0, then mdim(X,Γ) = 0. If (X,Γ) also has the (COS), then

A⊗Z ∼= A.

Proof. It is clear that RR(A) = 0 implies qRR(l∞(A)/J2,ω,T(A)) = 0. Then the corollary follows

from Theorem 8.4 (and Remark 8.5). □

Remark 8.8. In fact, a slightly stronger statement was shown in [25]: if a simple unital AH

algebra with diagonal maps has the property that its projections separate traces, then it is Z-

absorbing. It would be interesting to ask if this statement also holds for the crossed product

C*-algebra C(X)⋊ Γ.
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Since Villadsen algebras of the first type ([38]) are AH algebras with diagonal maps, and they

are not Z-absorbing, the following corollary is straightforward.

Corollary 8.9. Villadsen algebras of the first type do not have uniform property Γ.

Remark 8.10. Although Villadsen algebras of the first type are not Z-absorbing, if the seed

spaces are finite products of a given contractible finite CW-complex, they are classified by the

Cuntz semigroup (indeed, by the K0-group together with the radius of comparison)([7]).
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Appendix A. Strong uniform property Γ for AH algebras

Theorem A.1. Let A be a simple unital AH algebra with diagonal maps, and let D be the stan-

dard diagonal subalgebra. If (D,T(A)) has the (SBP), then (D,A) has strong uniform property

Γ.

Proof. Let F ⊆ A, ε > 0 and n ∈ N, and let us construct mutually orthogonal positive contrac-

tions p1, ..., pn ∈ D such that

(A.1) ∥1− (p1 + · · ·+ pn)∥2,T(A) < ε,

(A.2) ∥pif − fpi∥ < ε, f ∈ F , i = 1, ..., n,

and

(A.3) |τ(pifpi)−
1

n
τ(f)| < ε, i = 1, ..., n, τ ∈ T(A).

Then, strong uniform property Γ follows.

To simplify the notation, let us only prove the theorem for the case that Ai = Mn1(C(Xi)).

The general case follows from the same argument.

Let us first construct a new AH decomposition of A with diagonal maps such that each building

block contains D as its diagonal subalgebra.

Note that the AH algebra A is generated by the diagonal subalgebra D and the standard

AF subalgebra F . Start with A1 = Mn1(C(X1)). Consider the rank-one diagonal projections

p
(1)
1 , ..., p

(1)
n1 ∈ Mn1(C) ⊆ A and the partial isometry

v(1) =


0 1

. . . . . .

0 1

0

 ∈ Mn1(C) ⊆ A,

and consider the C*-algebra

C1 := C∗{p(1)i Dp
(1)
i , v(1) : i = 1, ..., n1} ⊆ A.

Note that

C1
∼= Mn1(p

(1)
1 Dp

(1)
1 ).

Moreover, since p
(1)
1 , ..., p

(1)
n1 ⊆ D and p

(1)
1 + · · · + p

(1)
n1 = 1, one has that D ⊆ C1 as the diagonal

subalgebra, and there is a canonical homomorphism Λ∗
1 : A1 → C1 induced by the inductive limit

D1 → D2 → · · · → D, where Di is the diagonal subalgebra of Ai, i = 1, 2, ....
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Similarly, consider the rank-one diagonal projections p
(2)
1 , ..., p

(2)
n2 ∈ Mn2(C) ⊆ A and the partial

isometry

v(2) =


0 1

. . . . . .

0 1

0

 ∈ Mn2(C) ⊆ A,

and consider the C*-algebra

C2 := C∗{p(2)i Dp
(2)
i , v(2) : i = 1, ..., n2} ⊆ A.

Note that

C2
∼= Mn2(p

(2)
1 Dp

(2)
1 ).

Since the partition of unity {p(2)1 , ..., p
(2)
n2 } refines {p(1)1 , ..., p

(1)
n1 }, one has that C1 ⊆ C2, and the

following diagram commutes:

Mn1(p
(1)
1 Dp

(1)
1 ) �
� // Mn2(p

(2)
1 Dp

(2)
1 ) �
� // A

Mn1(C(X1)) //

Λ∗
1

OO

Mn2(C(X2)) //

Λ∗
2

OO

A.

Repeating this process, one has the following commutative diagram:

Mn1(p
(1)
1 Dp

(1)
1 ) �
� // Mn2(p

(2)
1 Dp

(2)
1 ) �
� // · · · � � // A

Mn1(C(X1)) //

Λ∗
1

OO

Mn2(C(X2)) //

Λ∗
2

OO

· · · // A,

and therefore, we have the following AH decomposition of A:

(A.4) Mn1(p
(1)
1 Dp

(1)
1 ) �
� // Mn2(p

(2)
1 Dp

(2)
1 ) �
� // · · · � � // A.

For each i = 1, 2, ..., also write

p
(i)
1 Dp

(i)
1 = C(X̃i),

where X̃i is metrizable and compact.

Without loss of generality, one may assume that F ⊆ Mn1(C(X̃1)). Choose a finite open cover

U of X̃n1 such that

(A.5) ∥f(x)− f(y)∥ < ε, x, y ∈ U, U ∈ U , f ∈ F .

Since (D,T(A)) has the (SBP), by Lemma 2.4 of [10], there is an open set Û ⊆ U for each U ∈ U
such that the subsets

Û , U ∈ U ,
are mutually disjoint, and

(A.6) µτ (X̃1 \
⋃
U∈U

Û) <
ε

n1

, τ ∈ T(A).
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Choose xU ∈ Û for each U ∈ U .
Choose m0 ∈ N such that if m0 = nk + r, where 0 ≤ r < n, then r/m0 < ε.

Move to the next stage sufficiently far out, say C2, such that by the simplicity of A,

|{i = 1, ...,m : λi(x) ∈ Û}| ≥ m0, U ∈ U , x ∈ X̃2,

and by (A.6),
1

m
|{i = 1, ...,m : λi(x) ∈

⋃
U∈U

Û}| > 1− ε, x ∈ X̃2,

where λ1, ..., λm : X̃2 → X̃1 are the eigenvalue maps of C1 → C2.

By the compactness of X̃n2 , there is an open cover V of X̃2 such that for each V ∈ V and each

U ∈ U , there is αU,V ⊆ {1, 2, ...,m} such that

(A.7) λi(V ) ⊆ Û , i ∈ αU,V ,

(A.8)
1

m

∑
U∈U

|αU,V | > 1− ε and |αU,V | > m0, U ∈ U , V ∈ V .

Since (D,T(A)) has the (SBP), by Lemma 2.4 of [10], there is an open set V̂ ⊆ V for each

V ∈ V such that the open sets V̂ , V ∈ V , are mutually disjoint, and

(A.9) µτ (X̃2 \
⋃
V ∈V

V̂ ) <
ε

n2

, τ ∈ T(A).

Then there are continuous functions hV : X̃2 → [0, 1], V ∈ V , such that hV |V̂ c = 0 and

(A.10) ∥1−
∑
V ∈V

hV ∥2,T(A) < ε.

Inside each αU,V , by the choice of m0, there are mutually disjoint sets

β
(1)
U,V , ..., β

(n)
U,V ⊆ αU,V

such that

(A.11) |β(1)
U,V | = · · · = |β(n)

U,V |

and

(A.12)
1

|αU,V |
(|β(1)

U,V |+ · · ·+ |β(n)
U,V |) > 1− ε.

Then, define

p1 =
∑
V ∈V

∑
U∈U

∑
i∈β(1)

U,V

(hV )ei, ..., pn =
∑
V ∈V

∑
U∈U

∑
i∈β(n)

U,V

(hV )ei,

where, for each i = 1, ...,m, ei denotes the diagonal projection of C2 corresponding to the

eigenvalue map λi. Then the contractions p1, ..., pn have the desired property.
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Indeed, it is clear that p1, ..., pn ∈ D and are mutually orthogonal. It follows from (A.12),

(A.8), and (A.10) that

∥1− (p1 + · · ·+ pn)∥2,T(A) = ∥1−
∑
V ∈V

∑
U∈U

(
∑

i∈β(1)
U,V

(hV )ei + · · ·+
∑

i∈β(n)
U,V

(hV )ei)∥2,T(A)

= ∥1−
∑
V ∈V

∑
U∈U

(
n∑

j=1

∑
i∈β(j)

U,V

ei)hV ∥2,T(A)

≈ε ∥1−
∑
V ∈V

∑
U∈U

(
∑

i∈αU,V

ei)hV ∥2,T(A)

≈ε ∥1−
∑
V ∈V

hV ∥2,T(A)

≈ε 0.

This verifies (A.1).

Let us verify (A.2). For each f ∈ F , its image in C2 is

m∑
j=1

(f ◦ λj)ej.

Therefore, for each i = 1, ..., n, noting that hV , V ∈ V , are in the center of C2, we have

(
m∑
j=1

(f ◦ λj)ej)pi = (
m∑
j=1

(f ◦ λj)ej)(
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )ej)

=
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )(f ◦ λj)ej

= (
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )ej)(
∑
j

(f ◦ λj)ej)

= pi(
m∑
j=1

(f ◦ λi)ej).

This verifies (A.2).

Let us verify (A.3). For each f ∈ F , its image in C2 is

m∑
j=1

(f ◦ λj)ej
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and then, for each i = 1, ..., n and τ ∈ T(A), by (A.7) and (A.5),

τ(pi(
m∑
j=1

(f ◦ λj)ej)) = τ((
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )ej)(
m∑
j=1

(f ◦ λj)ej))

= τ(
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )(f ◦ λj)ej)

≈ε τ(
∑
V ∈V

∑
U∈U

∑
j∈β(i)

U,V

(hV )(f(xU))ej).

By (A.11) and (A.12), it follows that∑
V ∈V

∑
U∈U

τ(f(xU)
∑

j∈β(i)
U,V

hV ej) ≈ε

∑
V ∈V

∑
U∈U

1

n
τ(f(xU)

∑
j∈αU,V

hV ej), U ∈ U , V ∈ V , τ ∈ T(A),

and therefore, by (A.7), (A.5), (A.6), and (A.10),

τ(
∑
V ∈V

∑
U∈U

ϕ(xU)
∑

j∈β(i)
U,V

hV ej) ≈ε
1

n
τ(
∑
V ∈V

∑
U∈U

f(xU)
m∑
j=1

hV ej)

=
1

n
τ(
∑
V ∈V

∑
U∈U

m∑
j=1

(hV )(f(xU))ej)

≈ε
1

n
τ(
∑
V ∈V

∑
U∈U

m∑
j=1

(hV )(ϕ ◦ λj)ej)

=
1

n
τ((

∑
V ∈V

∑
U∈U

hV ej)(
m∑
j=1

(f ◦ λj)ej))

≈2ε
1

n
τ(

m∑
j=1

(f ◦ λj)ej).

Thus,

τ(pifpi) ≈2ε τ(pif) ≈5ε
1

n
τ(f), i = 1, ..., n, τ ∈ T(A),

as desired. □
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