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ABSTRACT. The authors’ recent classification of Jesper Villadsen’s remarkable generalization
(based on a self-reproducing seed space) of Glimm’s infinite tensor product (UHF) C*-algebras,
by means of the Cuntz semigroup (in the case of a fixed, well-behaved, seed space), is extended
to the analogous generalization of Bratteli’s approximately finite-dimensional (AF) C*-algebras.
Some progress is made in the direction of distinguishing between algebras based on different seed
spaces.

1. INTRODUCTION

In [4], a beginning was made on classifying simple C*-algebras beyond what might now be called
the classical classifiable class (often just called “classifiable”) in which K-theory and traces suffice
(see, for instance, in the unital finite case under consideration, [3]), by using new information
contained in the Cuntz semigroup. (In particular, what was used in [4] was the Toms radius of
comparison. )

In [], what might be called Villadsen algebras of the first kind (introduced in [I1], and quite
different from the algebras studied later by Villadsen in [12]), or UHF-Villadsen algebras (as they
reduce to Glimm’s infinite tensor product algebras when the seed space is a single point), with
a fixed well-behaved seed space (for instance a cube), were classified. In the present paper, this
is extended to the analogous class of AF-Villadsen algebras.

Examples of this class of algebras were constructed by Hirshberg and Phillips in [5], to show
that the particular Cuntz semigroup information used in [4] (the radius of comparison) was no
longer sufficient. In the present paper, we consider more detailed information, replacing the radius
of comparison, a single number (or as suggested in [5], a single number for each projection), by
a function on the tracial simplex which we call the comparison radius function (with supremum

the Toms invariant—see Corollary and Theorem 5.13)):

Theorem 1.1 (Theorem [1.3). Let X be a K-contractible solid space such that 0 < dim(X) <
oo, and let A(X,G,E) and B(X, H,F) be AF-Villadsen algebras with seed space X with rapid
dimension growth (see ), where G and H are Bratteli diagrams and € and F are point
evaluation sets. Then A = B if, and only if, (Cu(A),[14]) = (Cu(B),[15]). Indeed, A = B if,
and only if,

((Ko(A), K (A4), [1a]o), 70 (A)) = (Ko(B), Kg (B), [15)o), 7 (B)),
where rgg)(A) and rc(g)(B) are the comparison radius functions of A and B respectively.
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The comparison radius function r considered in the theorem above factors through the map

T(A) = Su(Ko(A)). A more general comparison radius function, denoted by r., which does not
necessarily factor through T(A) — S,(Kq(A)), is also constructed in the UHF-Villadsen algebra
case:

Theorem 1.2 (Theorem [5.4). Let A be a UHF-Villadsen algebra with seed space a (finite)
simplicial complex. There is a upper semicontinuous positive valued affine function ro, on TT(A)
with the following properties:

(1) If h € AfE(TH(A)) (continuous affine functions, 0 at 0) and ro. < h, then, h has the
property that for any a,b € (A® K)*,

d,(a) + h(1) < d;(b), T€eTHA) = aZb

(2) If h € AEI(TT(A)) and h(m) < roo(0) for some 19 € TT(A), then, there are a,b €
(A® K)*t such that

d,(a) + (1) < d.(b), T€T(A),
but a is not Cuntz-subequivalent to b.

The general comparison radius function r,, in fact sometimes distinguishes between UHF-
Villadsen algebras with different seed spaces (Corollary , and it also can be used to show
that the action of Aut(A) on the extreme points of T(A), which is the Poulsen simplex (see [4]),
is not transitive for certain UHF-Villadsen algebras A (Corollary .

The question of what the structure of the Cuntz semigroup for Villadsen algebras actually is
clearly of considerable interest. Since the algebras are of stable rank one (as proved by Villadsen),
the recent results of Thiel et al. ([9], [1]) are very much pertinent.

Acknowledgements. The research of the first named author was supported by a Natural Sci-
ences and Engineering Research Council of Canada (NSERC) Discovery Grant, and the research
of the second named author was supported by a Simons Foundation grant (MP-TSM-00002606).

2. AF-VILLADSEN ALGEBRAS AND THE FUNCTION rég)

2.1. Growth along a Bratteli diagram. Fix a metrizable compact space X as the seed space.
Consider an inductive sequence (G, ¢,,), where G,, = Z** with order unit u, = (Un 1, ..., Uns, )-
Consider the following inductive sequence of C*-algebras:

Set

P M., , (C(x")) = A,
j=1

For each 1 < j < s,41, note that the map ¢, : G, — G, is induced by a multiplicity matrix
(m( )

17; ), 1 <i<s,, 1<j<s,41. Then, for each 1 < j < s,,1, choose a partition
P1 M-y Psn = {1,2, ~-~7un+1,j}

such that
P = m{
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Inside each P;, choose another partition

Pi=PFP,U---UP

RULN

such that

i,m;

|Pia =+ =P,
J

For each k € {1, ..., mﬁ’;)}, define 7, to be the projection of X%+ onto the coordinate subset
P, ;.. In this case, we also write m;, € P;. Then, define a map A, — A, 11:

Sn+1 Sp

G A3 (frs fu) = EDED @ fiom € Ay,

7=1 i=1 7w €P;
Let us call P, the supporting coordinates of f;, and define the shape of (¢,); as

(g, ™), oy (1, ™).

Denote the (non-simple) limit algebra by A(X, (G,, ®,),P), where P denotes the choice of

partitions.

Remark 2.1. The reason to include the partition is that, unlike the UHF case, even if we define
¢n and ¢, 1 so that their partitions are standard, the partition associated to the composition
®ni1 © ¢y is not standard. Therefore, there is no canonical choice for the supporting coordinates
of the functions f;, i =1, ..., s,,. However, we shall now show that, up to isomorphism, the limit
algebra A(X, (G, ¢n), P) is independent of the choice of supporting coordinates. Therefore, we
can omit P, and just denote the algebra by A(X, (G, ¢n)).

Proposition 2.2. In the setting above, one has A(X, (Gpn, dn), P) = B(X, (G, ¢n), Q) for any
two partition systems P and Q.

Proof. Tt is enough to construct isomorphisms o, : A, — B,, n = 1,2,..., such that

(2.1) ¢ oo, =0p100N, n=12 ..

n

Set o = id. Assume that o, is defined, and that it is induced by homeomorphisms X" —
Xtni 4 =1,...,8,, by the coordinate permutations:

(T1, s Tup ) = (Toy (1) o Tog(uns))s 0= 1y eesy S
A calculation shows that, up to a permutation, for each j =1, ..., 5,11,

(¢7(1A)(f1v R} f%))j(xh SS) xun+1,j>

= diag{fl(xl> ) xun,l)a ) fl(x(ml,lfl)un,ﬂrla ) mmlyjun,sn)a )

vV
mi,j
fsn ('run+1,j —Msy,,jUn,sp 41500 xunJrl,j_(msn,j)u’ﬂysn'i_un,sn )’ Y fs" (xun+1,]'_u"73n +1s e xun+1,jz}'
v
Msn,j

(As defined above, (gb%A))j has the shape ((u, 1, mgrfj)), ey (Un s, mgn")j)))
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On the other hand,
LG TSI N A (TRSTIND )) ) CORE
(¢%B)(fl(yo1(1)a 23 y01(un,1))7 D) fsn (yﬂsn(1)7 ) yUSn(Un,Sn))))j(ajl’ o xu"+1’j)

= diag{fl(al (@1, s Ty 1)s s J1OU T (g~ Dun 415 -0 Tt e )Z, o

mi,j

fsn (O-Sn (xunﬂ,j*msn,jun,anrl? ooy Ly 15— (M 5 ) n, sy Hiin, sy, ))7 ceey fsn (Usn (xunﬂ,j*un,anrlv ooy Dy yq ))1}

-

Msp,j

So, ((b;B)) ; has the same shape ((uy1, m§”j)  (Uns, s m(") ;). Therefore, there are permutation
homeomorphisms X%+ — XUn+1t:d 5 =1 .. 5,4, Wthh 1nduce an isomorphism 11 : A1 —
A, satisfying (2.1), as desired. O

2.2. Adding point evaluations and the function r®. Let us assume X is K-contractible
(i.e., Ki(C(X)) = K,(C), *=0,1) and
0 < dim(X) < 00

in the rest of the paper.
Let a finite set EZ(?) C X"ni be given for each n, each 1 <i <s,, and each 1 < j < s,41. Set

DM, (C(X") = A,
=1

where 1, ; is defined recursively by

Sn—1

/I]n,i - Z(m(/n 1 )Ei(lzil)

i'=1

)anfl,ila 1 < { < Sn,

for n > 1, and
ﬂl,i:ul,i, 1= 1,...,81.
Define a map ¢, : A, = A, 1 by

Sn+1

(fl?" fSn H@dlag{floﬂ— .. f107T (n)afl(EY:j)))'“afSnO7T§Sn),...7f5nOWS?2>‘7fSn(E§:?j)}.

~~
(n) (n)
my N msn ¥

Define the %—dimension ratios at stage n of the sequence (A; — A;y1) to be

o dlm(X) Unp,j . dlm(X) Zfill mgz 1)Un,17i 1 .
ngj +— 2 ,an o 9 Sm_1 (n—1) (n—1)|\ ~ ‘a ] =1 ...,8n.
7 Yot my T+ BT )i

Note that Ko(A,) = Z**. Then, denote by
O = (1, oy Trs,)

the corresponding continuous affine function on S, (Ko(A,)), and then regard 9 as an element

of Aff(Su(Ko(A)))-
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For each ¢ = 1,2,... and j > ¢, denote the (coordinate) multiplicity matrices of the partial
maps ¢;; and ¢; ; by [¢; ;] and [p; ;] respectively, and denote by [E; ;] the multiplicity matrix of
the point evaluation maps between A; and A;. Note that

[pij]) = [dig] + [Eiy), i=1,2,..., i <],

i = [¢14)(w1) and @ = [pr)(w), i=2,3,...,
and
U1 = Uq.
Then
o A0 () o)
' 2 Cayy T 2 [pral(w)
dim(X)  [¢1)(w)
2 ([pril + [Eri)(w)
dim (X)) [Gi1,3] (- - - [P12] (ur) - - -)
2 ([firil + [Eicr ) (- ([B12] + [Brg])(ud) - +)
where the ratio of two vectors means the vector of individual fractions. So, it is clear from the
last expression that r;, i = 1,2, ..., regarded as a sequence in Aff(S,(Ky(A))), is decreasing.

Now, let us ensure that the point evaluation sets EM

i =181, 7 = 1,..., 8, are suffi-

ciently small that
(2.2) (ri(o) ) converges uniformly to a strictly positive function 0 € Aff(S,(Ko(A))).
(Recall that Aff(S,(Ko(A))) = ligAff(Su(Ko(An))).)

Since the sequence (rgo)) converges uniformly, the function Y is continuous. By compactness

of Su(Ko(A)), there is 6 > 0 such that
r(r) > 1 O(r) > 6, T E€SUKo(A)), i=12,...

This translates to

dim(X)  [¢1](w1) o
2 ([ora) + [Era]) (ua) >0, 1,2,..,

where “ > §” means each entry of the vector is larger than §.

(2.3)

Note that
ORISR dim(X) (0o [01,1] (u1) B (P18 (u1)
’ i 2 S (fral + [Bua) ()’ ([frisk] + [Brise]) (ur)
_ dim(X)( ([#iin) + [Eii]) © [d1,4](ur)
2 ([@iisk] + [Eiigr]) o ([91a] + [Eri]) (wa)

[¢i,z’+k] o [@bl,i] (Ul)
([Piivk] + [Eiizr]) o ([¢14] + [E1]) (wr)
_ dim(X) [Eiitk] © [¢1,](u1) .
= T2 G T Bual) o (ond + B ) © EGuEo(Aii)))
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By the Cauchy criterion, the uniform convergence of ( ) translates to the condition

m su [Eiivk] © [@1,i] (ur) _
24 B WP G + B o (1] + B |,
Lemma 2.3. With the condition one has

im su [ Eiivr] o ([914] + [Er]) (un) _
29 B Woradd + [Bornel) o (o + Br ) |, ~
which, by definition, may be written as

im sup max —([E”Jrk](al))] 1] = Si =

(2.6) ZLW kp {([%Hk](al»] cj=1,...,8.%}=0.
Proof. By , one has

(61 + B Dm) < P20y, ), =12
and therefore, for each i,k = 1,2, ...,

[Eiivn] © ([014] + [Er,]) (ua) o dim(X) 1 [Eiivn] © [fr,](ur)
([Piiv] + [Bigsn]) o ([fra] + [Evi])(w) = 2 0 ([@si4n] + [Eiien]) © ([01] + [Er]) (wa)

Thus, by (24),

lim sup ’ [Eiivk] © (1] + [Era]) (ur) ‘
iwoo g || ([@iirn] + [Eiigr]) o ([@14] + [Era)) (ur) || o
d1m(X)1 lim sup ‘ [Eiivk] 0 [P1.i](u1)
- 2 dimoe g ||([Prin] + [Biirr]) o ([914] + [Era]) (ur) | o
= 0.
which is . OJ
Note that ) dim (X)
0<r9(r) < 5 v TE€ Su(Ko(A)).

Remark 2.4. The function r'y) also can be regarded as an affine function on T T(Ko(A)), the cone
of all positive homomorphisms Ky(A) — R (the simplex S,(G) is a base for T+ (Ky(A))).

Ezample 2.5 ([5]). Let X be K-contractible. Consider two UHF-Villadsen algebras A :=
AX, (n), (kM) and A® = A(X, (n?), (k). Following [5], introduce k" point evalua-

tions from Agl) to Aﬁ)l and kl@’l) point evaluations from AEQ) to Agfl. Thus, the multiplicity
matrices for the connecting maps ¢; and ;, before and after adding point evaluations, are given

by
(1) (1) (1) (2,1)
il = ‘ and | = ‘ + | ¢ .
] ( e ) 4] ( ) ) ( K12 @ )
( Ui ) _ ”El—)1 ”gl) (
Us,2 ng)l n?)

Hence,
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(50) (e g Y (e s V()
2 k‘ﬁlm 77’1(3)1_‘_]{:1(3)1 k§1’2) n§2)+k§2) 1)

Note that the affine map
[pilo + [0,1] = Su(Ko(4s)) < Su(Ko(Ait1)) = [0, 1]

is determined by the extreme point assignments

ST
[0,1] 3 L
(" + kD) + kP Va

Define the compression coefficient
(0 + k)i 3 ERTE
%0+ (0 + kP, (0 + kM) + 5V,

]

and

( +k( )Uz?

1.
ki(l’2 ui,l + (ng ) + kl )fb@g

<0 and [0,1] >

C; =

Choose k§2’1), kl(m), 1 =1,2, ..., sufficiently small that
cico - > 0,
which implies that
(2.7) lim (¢;cip1-++) = 1.

i—00

(This ensures that the simplex S, (Ko(A)) does not collapse to a single point, and hence S, (Ky(A))

[0,1].)
Write the extreme points of S, (Kg(A)) = @([O, 1], ¢F) as

n = (81,82, ) € H[O, ].] and Ty = tl,tg, .. E H O ]_

where s1 < t1, s < ta,.... Then

ti_si:Cic’i-‘rl"') Z:1727“'7

and, by ,

lims; =0 and lim¢ =1.
1—00 1—00

Let us calculate the function Téo). For each i =1, 2,.

L. U U; 1. U; U
r2m) = pdm(X) - (G (A )+ 200 and n@)(m)=§dlm<X>-<a;1<1—ti>+a;§'m.

Hence,

UZQ

1 1
rO (1) = lim 7‘(0) (1) = idim(X) lim 22 and 0 (1) = lim 7‘(0) (19) = édim(X) lim

1—>00 1—>00 Ui 1 1—>00 1—>00 uz 2
b
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3. THE COMPARISON PROPERTY OF rég)
In this section, let us study the comparison properties of the function ré?. It turns out that

the function rY is the smallest continuous affine function on the state space of the order-unit

Ko-group which guarantees comparison. Thus, the function rY can be recovered from the Cuntz

semigroup of the limit algebra A:

Theorem 3.1. Let A be an AF-Villadsen algebra which satisfies (2.6). The function rég), re-
garded as a function on T(A), has the following property:
(3.1) d-(a) +rO(r) < d.(b), T€TA) = aZb abcARK.

On the other hand, assume that X is K-contractible (i.e., K,(C(X)) = K.(C), * =0,1) and
is a finite dimensional solid space (i.e., it contains a Euclidean ball of dimension dim(X)). If
h € Aff(S.(Ko(A))) and if there is T € T(A) such that

h(r) <rQ(r),
then there are a,b € (A® K)" such that
d-(a) + h(r) < d,(b), TeT(A),
but a is not Cuntz subequivalent to b. Hence r is the (unique) minimum among the continuous

affine functions which satisfy and factor through T(A) — S, (Ko(A)).
Proof. Let a,b € (A® K)" be positive elements satisfying
d-(a) + () < d.(b), 7€ T(A).
Fix an arbitrary € > 0 for the time being. Since the function r., is continuous and strictly
positive, by the compactness of T(A), there is § > 0 such that
d.((a—¢e)y) +r0(r) + 6 < d,(b), 7€ T(A).

Since (1) converges to ri uniformly, there is & € N large enough that

drl(a—2)) + () + 5 < d,0), T e T(A),

and,
o
(3.2) 0<rr) —rO(r) < g TETA), n>k,
where T’(§0) and r\) are regarded as elements of Aff (Su(Ko(4y))).
Note that there is a (trivial) projection ¢ € A,, for a sufficiently large n, such that

5 5
(3.3) () g <7le) < (1) + 5. T eT(A),

and then 5
do((a—2)p) @) d:((a—e)) + 7 (7) + 5 <do(B), 7€ T(A).
Since A is simple, this implies that there is N € N such that

(N +1)([(a = €)4] + [g]) < N[b],
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where [-] denotes the Cuntz class. (See the proof of Proposition 3.2 of [§].) Then, by Lemma 5.6
of [6], there are a,,b,, € A,, for n sufficiently large, such that

||an - (CL - 5)4‘” <ég, ”bn - b” <g, bn 3 b7

and
(N + 1)([an] + [g]) < N[bn],
which implies
(3.4) tr(a,(z)) + tr(q(z)) < tr(bn(z)), xe€ X", j=1,.., s,
where tr denotes the normalized trace of a matrix algebra.

Note that, by (3.2)) and (3.3)),

)
T£LO)(T) z5/8 7“](90) (T) < T(Q) - gv TE T(An)7

and hence
r)(r) <7(g), T€T(A).
By (3.4),
tr(a,(x)) + rp(try) < tr(a,(x)) +tr(q(z)) < tr(bn(z)), =z € X", j=1,.., 5,
Since
(X ‘
p0 _ dm&) tng g

J 2 Un,j

this implies
1

(3.5) rank(an,(x)) + §dim(X“”vj) < rank(b,(x)), =€ X", j=1,..,s,.

By Theorem 4.6 of [10], one has a,, 3 by, and hence
(a—2e)y Z((@a—e)r —e)4 Tan Ibu 3.

Since ¢ is arbitrary, one has a < b. This shows (3.1)).
Now, let us show that 7., is the smallest continuous affine function which satisfies (3.1)).
Let h € Aff(S,(Ko(A))) be such that A([7]) < 71()2)([7]) for some 7 € T(A). Set

M = max{h(7) : 7 € Su.(Ko(A))}
and
(3.6) § = sup{r (1) — h(1) : 7 € S, (Ko(A))} > 0.
Since r and h are continuous, and S, (Ko(A)) is compact, there is 75 € S, (Ko(A)) such that
(3.7) 9 (10) — h(7) = 0.

Recall that (since X is K-contractible) Aff(S,(Ky(A))) has a standard inductive limit decom-
position:
(R, [ og) —= (R, [ o) —— - -+ —— Af(Su(Ko(A))),
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where the connecting map R*» — R*»+! is given by

1 “ n n ~ 1 “ n n ~
(3:8) (b1, ts,) = (= >+ ER it oo =——— 3l | ED ) i)
un+1,l i=1 un+1,sn+1 i=1

Choose € > 0 sufficiently small that

2e )

3.9 :
(3:9) 5+§a<64(M+1)

By (3.6]) and (3.7)), a compactness argument shows that if n is sufficiently large, there is h,, € R*"
such that
(0)

"'nin

- hn,jn %8/3 o

for some 7, € {1, ..., s, },

(3.10) | go;‘wo(rflo)) — r&?Hoo <e/3 and ||k o(hn) — hHOO <e/3,
and
(3.11) ) —hag <8+e, j=1,. 5.

Also assume n is sufficiently large that

5
(3.12) g+ 5 < (M +1)

and, furthermore, using ([2.6)), for any k£ > n,

J

En 7/~n7/<—7 .:1’...7 .
;[ #lijin, 6a(M + 1) 7 ok

1
(3.13) —
uk’,j

By simplicity, one may also assume that u,;, j = 1, ..., s,, are sufficiently large that for any
positive real number ¢, there is d € N such that

5
(3.14) g <

For any k > n, consider hy := ¢, (h,) and ), = ¢}, (r,,). Note that there is jj. such that

(0) s
dek - hk7]k ~e 5-
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Then, using (3.8]), (3.11), and the definition of S below, one has
(0)

6 %5 T’kdk - hk‘»]k
1 & . 0
= = (i, + B ) (fn) (r) = hos)
ukvﬂk i=1
1 - 0 1 ~ 0
= — (miy, + B ) ) () = hag) + = (i, + B ) (i) () — D)
Ukjr s Ukt s
1 B 1 B 1)
< (= D (i, + B ) (@) (0 +€) + (=— > (mij, + | B ) (@ni)) 5
)
= (1-7E+2)+17
where
)
S = {Z = 1, ceey S - 7’531) — hn,i < Z}
and
1 N
yim =Y (i, + 1By ])(itn,)-
Ukik ics
Hence,

4]
(1—7)(5+e)+721 >0 — ¢,
which, together with (3.9)), implies

y < 2¢e - )
d+3e  64(M+1)
or
(3.15) LS i+ 1B ) ine) <
iy, 2 : VS 6a(M 1+ 1)

By the choice of 4, ;, j =1, ..., s, (see (3.14])), there are natural numbers d;, j = 1, ..., s, such
that

J  d; J

3.16 —< =L R, < -

( ) 8 ﬁ/n,] 5 4

Note that, together with (3.12)), one has

(3.17) d; < (M +1)itng, j =1, 5n.

If j ¢ S (so that h,; <r,; —0/4), one has

dj ) (0) 1. Unp, i
—L < hp+ = <71 ==dim(X)2
Ty~ t g < g = AT

and so
2dj < uwdlm(X)
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Since X is solid, there is a (2d; + 1)-dimensional Euclidean ball B; C X", and there is a
complex vector bundle E; over B; (= S*%) such that

rank(E;) = d; and ¢4, (E;) € H*%(S5*%)\ {0}.

(Such a vector bundle exists, as, otherwise, the d;-th Chern class of every vector bundle would
be trivial, and then the Chern character would not induce a rational isomorphism between the
K-group and the cohomology group of the sphere S2%.)

Denote by p; € C(S%%) ® K the projection corresponding to Fj;, and extended to a positive
element of C(X") ® K with rank at least d;.

If 7 €S, just choose p; to be a constant function with rank d;. Set

p= ép]*
j=1

Then, by (3.16)),

rank(p; d; Y
. (pJ) > ~-7 >hn,j+_7 xeXn,j; j:17...,8n-
U, j Un,j 8

(3.18) dir, (p) =

Choose g € A,, to be a trivial projection such that
—<71(q) < —=, TeT(4,).

Then it follows from (3.10) and ([3.18)) that

4] )
d,(q) + h(1) < h(7) + 6 < hn(T) + g < d.(p), 7TeT(A).
Let us show that ¢ actually is not Cuntz subequivalent to p. For any k£ > n, consider the direct

summand Ay j,, and consider the closed subset

D;:SZdl x...xS2d1/><...><§'2d1 ><-~-><52d14§X“’“’jk.

-~ -~

™m1,5 m1,5

Then the restriction of p to this closed subset is equivalent to the projection onto a vector bundle
with total Chern class non-zero at degree

2 Z mij, di,
i¢S
and by Remark 3.2 of [4], this implies that any trivial sub-bundle must have rank at most

Sn

Z(mivjk + |E%]k|>dz - Z mi,jkdi-

i=1 ¢S
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Then, by (3.17), (3.15)), and (3.13]), the (normalized) trace of the projection associated to this
trivial sub-bundle is at most

1 &
—— (> (i, + | Big )i = > mijdi)
Uk =1 i¢s
1
= — O (mige +1EijDdi + (i, + |Eig )i = > mi,di)
Ukijk eg i¢Ss igs
1
= —— O _(mag, +1EijNdi + > Bzl di)
Ukijk es i¢S
M+1 N on N
< ——O (mig + 1By i + Y 1By tins)
Ukix e i=1
) 0 )
< (M +1)( )=

Gi(M +1) T ea(Mi 1)) 32
Since the trace of the restriction of ¢ to D is larger than 6/32, this implies that ¢ is not Cuntz
subequivalent to p, as asserted. 0]

Since the trace simplex T(A) is a base for the cone T*(A), Theorem [3.1| can be reformulated
in terms of TT(A) and its affine functions:

Theorem 3.2. Let A be an AF-Villadsen algebra which satisfies (2.6). The function rc(,g), re-
garded as a continuous affine function on TT(A), has the following property:
(3.19) d-(a) +rO(r) < d.(b), TeTT(A)\{0} = a=b

On the other hand, assume that X is a solid space. If h € Aff(TT(Ko(A))), where TT(Ky(A))
denotes the cone RTS,(Ko(A)), and if there is 7 € TT(A) such that

h([7lo) < rQ (7o),
then there are a,b € (A® K)" such that
dr(a) + h([lo) < dr(b), 7€ T7(4)\{0},
(0)

but a is not Cuntz subequivalent to b. Hence rs5 is the (unique) minimum among the continuous

affine functions which factor through TT(A) — TT(Ko(A)) and satisfy (3.19).

Remark 3.3. In Section |5 it will be shown that the function & is not necessarily the minimum
(if this exists) of all continuous affine functions on T*(A) which satisfy (3.19)), but not necessarily
factoring through TT(Ky(A)).

Corollary 3.4. Let A(X,G, &) be an AF-Villadsen algebra, and let o € Aut(A). Then
r(([0)o)* (1)) = (1), 7 € Su(Ko(A)).

Proof. By Theorem the function 72 is the minimum function which has the comparison
property (3.1)), and therefore the function r o ([o]o)* is also the minimum function which has
the comparison property (3.1)). Therefore r9 o ([olo)* = r9. O
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It is straightforward, as we shall now show, that
rc(A) = max{rQ(r) : 7 € T(A)}.

In fact, the radius of comparison of any unital hereditary sub-C*-algebra of A ® K can be
recovered in a similar way.

Theorem 3.5. Let A be a simple unital C*-algebra, and let r € Aff(T*(A)) have the following
three properties:

(1) The function r factors though T+(A) — T+ (Kq(A)),
(2) The function r has the property that for any a,b € (A® K)*,

d.(a) +7(1) <d.(b), Te€eT (A = aZb

(3) r is the smallest element of Aff(TT(A)) factoring though TT(A) — TT(Ko(A)) and having
the comparison property (@, in the following sense: if h € Aff(TH(A)), h factors through
T+(A) — T*(Ko(A)) and h has the comparison property (9), then

r(t) < h(r), 7e€THA).
Then, for any projection p € A® IC, one has
re(p(A® K)p) = max{r(r) : 7(p) =1, 7 € TT(A)}.
Proof. Since p is full, the set
Cp={reT7(4):7(p) =1} = T(p(A® K)p)
is a base for TT(A), and the set
Cp = {7 € T"(Ko(A)) : 7([p]) = 1} = Sp)(Ko(p(A ® K)p))

is a base for TT(Kq(A)).
Let

s<max{r(r):7(p) =1, 7€ TT(A)} = max{r(7) : 7([plo) = 1, 7 € TH(Ko(A))}.

Regard s as a constant affine function on C}. Since C} is a base for T*(K(A)), the affine function
s can be extended to a continuous affine function on T (Ky(A)), 0 at 0, and hence a continuous
affine function on T*(A) (factoring through T+(A4) — T+ (Ky(A))). Still denote it by s.
Then there is 70 € T (A) such that
8(7'0) < 7’(7’0).

By Condition (3), the affine function s does not have the comparison property , and hence
there are positive elements a,b € A ® I such that

d,(a) + s(7) < d.(b), Te€THA),
but a is not Cuntz subequivalent to b. Restricting to C),, one has

d-(a) +s <d.(b), Te€C,.
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Since s is arbitrary,
max{r(7):7(p) =1, 7 € TT(A)} <rc(p(A® K)p).
Let us show the reverse inequality. Assume a,b € A ® K are positive elements such that
d,(a) + max{r(r) : 7(p) = 1, T € TH(A)} < d.(b), T€C,.
Then
d;(a) +r(r) <d.(a) + max{r(7) : 7(p) =1, 1 € TH(A)} < d,(b), 7€C,.
Since C,, is a base for T*(A), one has
d.(a) +r(7) < d.(b), 7€ TT(A).
By the comparison property of r, one has a = b. Therefore,
max{r(r) : 7(p) = 1, 7 € T"(A)} > re(p(A ® K)p),
as desired. m

Corollary 3.6. Let A be an AF-Villadsen algebra which satisfies (2.6)). Then, for any projection
p € ARK, one has

re(p(A ® K)p) = max{rQ(r) : 7(p) = 1, 7 € T*(A)}.
Ezample 3.7 ([5]). Consider the Villadsen algebra of Example 2.5] Assume that

.Ut . Ui
lim — # lim —=,
1—>00 ul’vl 1—>00 ui,2

and hence that

rQ(m) #rQ(m),
where 71 and 7, are the extreme points of S,(Ko(A4)) = [0,1] (see Example 2.5). Then, by
Corollary there is no automorphism o : A — A such that 7 o ([o]p)* = 72. That is, there is
no automorphism which flips S, (Ko(A)) = [0, 1].

Let p € A® K be a projection, and let us calculate re(p(A ® K)p). Without loss of generality,
one may assume that p € A; for some i € N (as, if p is unitarily equivalent to ¢, then the
hereditary sub-C*-algebras generated by p and ¢ are isomorphic).

Note that

THA) = {ar + o, B € [0,+0)},

and then consider the section
{reTH(A):7(p) = 1}.

Write 7 = am; + f72, and then

1 = (am + B72)(p) = ani(p) + Br2(p)-
Since # > 0, a simple calculation shows that

1

T1(p)

0<a<
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Then, by Corollary [3.6]
re(p(A@K)p) = max{rld(am + ) : (an + fr)(p) = 1}

— max OCT’(O) T1 — Ty T(O) T2) : (0% 1
(0)
— max{ > (7—2> r 2 (m) — Tl(p)r(o) DE a L
{ 7_2<p) ( ( 1) 7'2(]7) oo( 2)) 10 < < 7'1(]9)}
(0)
) )
= T e

4. THE ISOMORPHISM THEOREM

In this section, let us show that the AF-Villadsen algebras with a given (finite dimensional,

K-contractible, and solid) seed space are classified by their K-groups together with the function

n9),

Proposition 4.1 (cf. Lemma 7.4 of [4]). Let X be a K-contractible metrizable compact space such
that 0 < dim(X) < oo, and let A(X,GW EWD) and B(X,GB) EB)) be AF-Villadsen algebras
with seed space X such that

(Ko(A), [1a]o, 7R (A4)) = (Ko(B), [15]o, 70 (B))-

Let 01 > 0y > --- be a sequence of strictly positive numbers such that > ;- 0; < 1. Then, on
telescoping, there is a diagram

(4.1) A=A,

|3

U1 P1

By — > By —> - --

such that each of ¢;, 1V, pi, ki, © = 1,2, ..., consists of independent coordinate projections and point
evaluations, i.e., restricted to each direct summand of the domain, it has the form

(f1, fo, .-y fs) > diag{ fi o Py, ..., fs o Ps, point evaluations},

where Py, ..., Py are mutually disjoint sets of coordinate projections, and for eachi = 1,2, ..., there
are decompositions

¢; = diag{Pa;, Ry ;,©n,}, i = diag{Pp,, Ry ;, OB},
and
n; 0 p; = diag{Pas, R}y ;,©:}, pit1om = diag{Pp;, Rp;, O},
where Py, : A; = Aip1 and Pp; : B; = B4y consist of coordinate projections, and ©4, : A; —

Air1 and Op,; : B; = B;y1 consist of point evaluations, such that, for eachi=1,2, ...,

rank (R (1a)) _ vk (R (L))
rank;(©4,(14,)) rank;(©4,(14,)) s J ey Si1s
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and
rank;(Rp;(1p,))  rank;(Rp;(1p,))
rankj(GB,i(lBi)) N I&ij(@B,i(lBi))
In particular, T(A) = T(B), and in a way compatible with the isomorphism of Ko-groups.

. B
<5i; ] :1,...,81(»+%.

Proof. Since X is K-contractible, one has
(Ko(G™W), K§ (GU), [alV]) = (Ko(A), K (A), [1a]o)
and
(Ko(GP), K (GP), [aP]) = (Ko(B), K (B), [15]0)-
Since (Ko(A), [L14lo) = (Ko(B), [Ls]o), there is an isomorphism
Foo + (Ko(GW), Kg (GW), [aV]) = (Ko(GP)), K (G), [at™)]).

Therefore, upon a telescoping, there is a commutative diagram

(4.2) GW G K (GW)

ol ]

GEB) . GgB) e KO(G(B))

which induces the isomorphism K.
Consider the inductive sequences

Al A2 e A’

By By B.

. 0) s (0) sB) . . . .
Write ;7 (A) € R% " and r;, ’(B) € R% ', i =1,2,..., for the affine functions at stage ¢ which
converge (uniformly—see ) to Tég)(A) and rég)(B) respectively.
Consider ¢; and consider A;. It follows from the construction of A that there is A; > 0 such
that for each ¢ > 1, if one decomposes ¢, ; as

¢1,i:P@@:A1—>AZ‘,

where P : A; — A; consists of coordinate projections and © : A; — A; consists of point
evaluations, then

(43) 7—(@(1,41)) > Al, T € T(AZ)
Choose 9] sufficiently small that

207 + (1 — (1 —267)%)
Ay

<51.
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Recall from (2.2) that (rgo)(A)) and (TZ(O)(B)) converge decreasingly and uniformly to r (A)

and rgg)(B) respectively. Since rég)(A) = rég)(B) under the isomorphism induced by ks, and

since rég)(A) and rgg)(B) are strictly positive, there is ¢} such that the differences

WO = Q)| ana OB Q)| L iz,
are small enough that
(44 =) @) < r(B). j>i=i.

By the assumption ({2.6)), ¢} is large enough that

st s
1 "1

(45) D> (b alig — (Dlon )iy < 00D [dn aligitis, §= 1,8, k>,
=1 =1

where D(-) denotes the multiplicity matrix of the coordinate projection component.
Fix 4. Since the ordered groups Ko(G) = Ko(G®)) are simple, if i¥ > 4} is sufficiently large
and if

. _ 4 . _ (B)
(mij), 1= 1,...,51.,1 , J = 1,...,si,1, ,

denotes the multiplicity matrix of H:’?i” then there exist positive integers

- A B
(57‘:‘]33, 7/:1,..-,32(,1)’ j :1,...,5;{))
satisfying
4.B
o 1= 28 < 25 <18, i = L G = Ll
(V]
Recall that
) (8)
0 : i 0 ' ¢
r () = gm0 1 (B) = Gdim(X) (),
i\j by
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and 0 < dim(X) < oo. Then, by (4.4), one has, for each j =1, ..., 555)7

A
e
1
~(B)

Therefore,

(4.7)

S

"1 U(A) 1 5A,B
(A)¢AB ity ~(A)_AB
uiﬁ,iéi,j o Z(»«(;l))(ui’,imi,j ~(B))( AB)
i=1 Uy Un i
1 1>
s
4 ) (4), AB
< Z(a(i&))(ail, mij —gy) (1= 01)
=1 7;/l7Z i,1/7]
S
i A X
_ / 1 (A) A,B
- (1_51)2(11@))( i —5))
l:1 Z‘/17Z le’?j
2 AB A
= (=8 gy () s
(B)
2 (0) ul” .]
< —= 9By, = 22
dimx) " P = o
1

A)

Zu<A)5AB <ul)l j=1,s,

zl,z 2,7

By (2.6)), ¢/ can be chosen even farther out so that

e
i
> (Wirilis —
i=1
which implies

B
S

“1

(4.8) N (Dl al)ig)iy) >

i=1

Then, define the map

of the form

prfis s fym) = (diag{fio Pfl’B, -

“1

where each map

2¥)

s(B)
il
"1

(D[¢11117k])17 ) EBZ) < 5/ Z[¢Z,, ] Zle)’ ] = 1, ceny SI(CB)a k> 2/1/7

=1

s
1

(1—07) Z[W,k]i,ﬂﬁfg, Jj=1, ...,S;B), k> 7.
i—1

/
P Alll — lell

Z1
diag{fi o PA 53),

:// /7//
“1 "1

< ) o)

PAP X o X =1, s =1 s,

AB : .
fua o Py | point evaluations}, ...,
~// s, 7,

f, (A) o P (A) (B),pomt evaluations}),

19
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consists of 5Z-A J?B disjoint coordinate projections, and the Ky-multiplicity of p} is /igf’ﬁ}. Note that
’ "1

this is well defined by (4.7). Then, define
p1 = P,1 © ¢1,i’1 c A — Bi’1’~
The construction above can be illustrated by the following diagram:

¢1,i/1

\pi

B By Bir e B.
1 1

Let us now construct the map n from B back to A. By the construction of B, there is Ay > 0
such that for each ¢ > i/ and if one writes

wi,l,,i =PpoO: Bizlf — B,

where P : Bjy — B; consists of coordinate projections and © : By — B; consists of point
evaluations, then

tr(0(1p,,)) > Ao, 7€ T(By).
Then choose ¢, sufficiently small that
205 + (1 — (1 — 24%)?)
A,

< 09.

One also should ensure that 6;, < d].
By the same argument as for p;, there is a sufficiently large i, > ¢} that

(4.9) (1= &) (k35" (r(B) <r(A), g =,
and

s sP)

‘2 2

(B B . B .

(4.10) > (Wi iy — (D[%,k])i,j)ug,pg < 8> [yuli ,Juf D=1 s k>,

i=1 i=1
and then there is ) > i, sufficiently large that

Sé/ SA//

2

(A . A .

(4.11) > (Dl )iy > (1 - )ZWJ%,] G =18 k>,

=1 =1

and there are positive integers

B,A . (B) . (A)

0,5, 1=1..,s i’2>]*1 S
satisfying

5B,A

i . B) . A
(4.12) 1—20p < —Fp < 1=0h, =18y, =18

.3
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where (mBiA), i=1,.., SE,B), j=1,.., sg,f‘), are the multiplicities of Ii?’?,, and therefore
2 2 2072

7‘7-]
(B)
’2
(B) BA _ (4) . (4)
(4.13) ou ot <) j=1, s
i=1

Thus, there is room to define a map 7y : B, — Ay with the multiplicities of coordinate projec-
tions equal to ((5 ). Then define

M1 =1y 0 Yin it
The construction can be illustrated by the following diagram:

¢1,i’1

\p'l n’l/

B, By, By By By e B.
7‘// i/
1°°2

Let us consider the composition 7; o py, which is (1] o ¥ i1 0 p}) 0 ¢14, and compare it with
the map ¢y 7.
Note that the multiplicity matrix of coordinate projections of 1} o ¥ i o py is the product

B,A AB
<5i,j )( [%’{,zg])(@,j )
Then, using (4.6)), (4.8), and (4.12) (note that &5 < d7), one has

OZ (Dl DEE @) > (1= 200) (mZ) (Dl ) (1 — 265) (mf5™) (@)
> (1= 200 2(mZ (Dl o)) (m5™)) (1)
= (1= 28)%(m5") (Dl 1)) ()
> (1= 2003 () [y ) (@0
= (1= 200 (ki) 3y © [y ) 0 it 2 ) (@)
= (1- 251)3[@1,2»/4](@5?3),

and therefore

(1 — 2613 i) (@) < Dl © iy i 0 1) < [y i) (@)

21,‘

That is,

(A) (A>

11

~(A A

(4.14) Y ([ agligify) — Dlnb o iy iy 0 pllisiis)) < (1= (1—287)° >Z[¢ML (i),

i=1 i=1

(4)

for each j = 17""32"2' )
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Also note that, by (4.5)),

s s
11 11
A . A
(415) D (Bnglig — (Dl <8 bl = S, J=1 .. 55"
i=1 i=1
Therefore, for each j =1, ..., sg,j ), using the equation
s
< (A) _
Z[sz’l,lg] i,jU i i ulg,j
=1
in the last step, one has
S
A
(4.16) Z) 75 © Vi © piisity) — (Dloy sl
s
"1
(A
< Z(‘( [0 © Wiy, 0 P1])s ,JU — [ig ayli E Z ‘[Cbz’ iy Juzl,z - (D[¢z’1,z’2’])z,Juzl,z )
i=1
s o
21 ‘1
(A
SEAOPC ,Ju, )+ (1= (1 =200 [bi s 3)
i=1 i=1
= (6 +(1-(1-26)")a ;

(/
Then, introducing the matrix (¢; ;) w

) . A) . A
¢; ;= min{(D[n] o Vi ir © 1), [@1712] ihi=1, ...,sz(.,1 ), ji=1,. S(//),

and defining P : Ay — Ay to be the diagonal map consisting of coordinate projections with
multiplicities given by (¢;;), one has the decompositions

Gi iy = P & Ry,
7710"%” i °P1:P€BR17

where, by (4.16) and ( - for each 7 =1,. //),
(4.17) rankj((Ro(lAii))) = rankj((Rl(lAii))) < (01 + (1= (1= 281)%)) + 6} )iy .
Write

P10, = P1 @O,
where P : A; — Ay is a coordinate projection map and © : A} — Ay is a point evaluation map;
then

¢1,i’2’ = @’1 iy © ¢1,i’1
(P@RQ)O(Pl@@)
= (PoP)® (Ryo 1)@ ((P® Ry)o0O)
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and
mopr = (0o opy)odry
= (P@Rl)O(P1®@)
— (PoPl)@(Rlopl)@((P@Rl)o@)
Note that, since © is a point-evaluation map,
(4.18) (P®Ry)oO = (P®R;)00.
- (A)
By (4.17) and (4.3)), for each j =1, ..., Sy, one has
rank;(Ryo Py)(1a,) < rankiRO(lAlg)
rank;((P @ Ry) 0 O)(1a,) — rankj(gbi/mg 00)(14,)
_ O+ (0= (- 200)%) + )i,
- rank;(¢y iy 0 ©)(14,)
(01 + (1 — (1 —261)%)) + 0
(trj o @ir i) (O(14,))

/ . ) FYAY: /
BURACES (RS i KLY
1

and, by the same argument,

rank;(R; o Py)(14,)
rankj((P D Rl) o @>(1A1)

Then the maps p; and 7, possess the properties of the proposition with

<(51, jzl,,SE?)

PAJ:POPl, :471:R00P1, RZXJZROOPh and @AJ:(P@R())O@.

23

Repeating this process, one has the maps p;, n;, ¢« = 1, 2, ..., which have the desired property. [

Recall the following stable uniqueness theorem:

Theorem 4.2 (Theorem 7.5 of [4]). Let X be a K-contractible metrizable compact space (i.e.,
Ko(C(X)) = Z and K1(C(X)) = {0}), and let A : C(X)* — (0,+00) be a map. For any
finite set F C C(X) and any € > 0, there exists a finite set H C C(X)" with supp(h) # X
for each h € H and there exists M € N such that the following property holds: for any unital

homomorphisms
6,0 C(X) = M,(C(Y)) and 6:C(X)— M,(C) <M, (C(Y)),
where 0 s a unital point-evaluation map with nM < m, and such that
tr(6(h)) > A(h), heH,
there is a unitary u € My, (C(Y")) such that
[diag{¢(a), 0(a)} — u"diag{y(a),0(a)}ul <&, acF.
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Theorem 4.3. Let X be a K-contractible solid space such that 0 < dim(X) < oo, and let
A(X,G,E) and B(X,H,F) be AF-Villadsen algebras with seed space X satisfying (2.2) (and
therefore ([2.6)) ), where G and H are Bratteli diagrams and € and F are point evaluation sets.
Then A = B if, and only if, (Cu(A),[14]) = (Cu(B),[15]). Indeed, A = B if, and only if,

((Ko(A), K5 (A4), [1alo), 7 (A)) = (Ko(B), K (B), [15]0), i (B))-
Proof. Assume that

(Cu(A), [14]) = (Cu(B), [15]).

By Theorem [3.1], this implies that

((Ko(A), Kg (A4), [Lalo), 7 (4)) = (Ko(B), K (B), [15]0), ) (B))-

Let us prove the implication

(Ko(A), K¢ (A), [Lalo), 7 (A)) = (Ko(B), K§ (B), [Ls)0), 7Q(B)) = A=B.

Choose finite subsets .E(A) C A, ]-"i(B) C A;,i=1,2,..., such that
FYCFYC and FPCFHRPC..,
and

GE(A) = A and GFF) =B.
=1 =1

Choose €1 > €9 > - -+ > 0 such that

o0
E g; < 0.
=1

For each A;, i = 1,2, ..., consider
AW(a) ;= inf{r(a) : 7 € T(A)}, a€ A,
and for each B;, 1 =1,2, ...,
AP (b) .= inf{r(b) : 7 € T(B)}, be B;.
For each (F, .(A), ei), applying Theorem with respect to %A(A), one obtains a finite set of

7

positive contractions ’HZ(A) C A; and Mi(A) € N with the property of Theorem . Similarly, for
each (.FZ»(B), ei), applying Theorem with respect to %A(B), one obtains a finite set of positive

contractions ”HEB) C B; and Mi(B) € N with the property of Theorem .
By Proposition |4.1, upon a telescoping, there is a diagram

(4.19) A —2a,
|
p1 p2
1 U1

Blﬁ.BZﬁ....

such that each of ¢;,;, p;, ki, © = 1,2, ..., consists of independent coordinate projections and
point evaluations, i.e., restricted to each direct summand of the domain, it has the form

(f1, fo, .., fs) — diag{f1 o P, ..., fs o Ps, point evaluations},
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where P, ..., P, are mutually disjoint sets of coordinate projections, and for each ¢ = 1,2, ...,
there are decompositions

¢i = diag{Pa;, Ry ;, 04}, i = diag{Pp,, R ;, Op.},
and
n; 0 py = diag{Pa;, R}y ;, O}, piy10m = diag{Pp;, Rp;, Op,},
where Py, : A; = A;y1 and Pp,; : B; = B, 41 consist of coordinate projections, and © 4, : A; —

Ai11 and ©p,; : B; = B;;4 consist of point evaluations, such that, for each 7 = 1,2, ...

ranky (Rl (1a)) _ rank;(RE(L)) o
I‘ankj(@A,i(lAi» rankj(@A’i(lAi)) i J sy Sid

Y

and
rank; (R, (15,)) _ rank;(Rp,(15)) _ ¢ P
rankj(@B,i(lBi)) rankj(@Bﬁi(lBi)) v N H—l’
where
) 1 1 1 1 A B
0; = mln{w, W’ §A(A)(h(A)), §A(B)(h(B)) A ¢ Hz( )7 h®B) ¢ Hz( )}'

% i

Let us compare the maps
¢1 = diag{ P, Rf4,1: ©a1} and 1y 0py = diag{Pa,, RZx,b ©an}-

Since none of the elements of HY‘) has full support, for each h € ’HY‘), there is ¢ € X;, where
X, is the base space of Ay, such that h(zg) = 0. Since the map P4 consists of coordinate
projections, there is yy € X, where X5 is the base space of Ay, such that Py 1(h)(yo) = 0, and
therefore

tr(o1(h)(yo)) = tr(diag{Pa1(h)(yo), Ry 1(h)(%0), ©a1(h)(yo)}) > AgA)(h%

where tr is the normalized trace of the matrix algebra over .
Hence

> AP (h),

Tr(¢r(h) (o))  Tr(Ry1(h)(y0)) + Tr(©41(h)(y0))

rank(1g, , +le,,) n rank(Ra1(1a,) +©a1(14,))
where Tr is the unnormalized trace of the matrix algebra over yg, and therefore (note that the
image of ©4; consists of constant functions),

Tr(©a1(h)) (4) rank(Ra1(14,)) _ Tr(Ry 4 (R)(v0))
k@) A W@ty T Y T k@1 a )

rank(R, ,(La,))  Tr(Rl , (h)(yo))
rank(@AJ(lAl)) raﬂk( (1A1>>

> AWM +1) —

> AW(n) =6
1
SO ().
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Since
rank; (R (14,)) . rank; (R ;(14,)) <8< —— j=
rank;(©41(1s,)) rank;(©41(14,)) Z Ml(A)’ !

it follows from Theorem [4.2] that there is a unitary u; € A such that

o1(f) — wi(mo pr)(flusl <e1, feFD.
Replacing 71 (+) by uin(-)ui, and still denoting it by 7;, we have

l61(f) = (m o p) (N <er, feFD.

Repeating this process, we have a diagram

(4.20) A=A,
| 2
P1 P2
1 1

By —> By ——> - -
such that for each i = 1,2, ...,
l6:(f) = (o p) (Dl <& f € FY,

and
[0i(f) = (pigrom)(f)ll <ei, f€ ]-"i(B).

By the approximate intertwining argument (Theorems 2.1 and 2.2 of [2]), we have A = B, as
desired. O

5. A GENERALIZED VERSION OF THE COMPARISON RADIUS FUNCTION FOR
UHF-VILLADSEN ALGEBRAS

Note that the function & of Section [2| and Section degenerates to the radius of comparison
rc(A) if A is a Villadsen algebra of UHF type. In this section, let us introduce a more general
function, denoted by r.,, for Villadsen algebras of UHF type, which is not constant in general,
but still has similar properties to the (numerical) radius of comparison (Theorem [5.4)).

Definition 5.1. Let X be a compact Hausdorff space. For each z € X, define
loc.dim(z) = min{dim(V’) : V' is a closed neighbourhood of z}.

Note that the function x + loc.dim(x) is upper semicontinuous, and, if X is a simplicial
complex, then

loc.dim((x1, ..., z,)) = loc.dim(zy) + - - - + loc.dim(z,), (z1,...,2,) € X",

Let X be a finite simplical complex, and let A(X, (ns), (ks)) be a Villadsen algebra with seed
space X (see [4] and [I1]). Let us briefly recall its construction [4]: A(X, (ns), (ks)) is the
inductive limit of the sequence

(51) C(X> - M(n1+k1)(C(an>> - M(n1+k1)(n2+k2)(C(anru)) —
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where the seed for the sth-stage map,
B CXM071) o My, (C(X™ 711,
is defined by

f = diag{fom,..,fom,, f(ls1), ., f(Osk.,)}

where 0,1, ...,05, € X" ™1 are evaluation points. The evaluation points are chosen in such a
way (dense enough) that the limit algebra is simple, and the growth sequences (ns) and (k) are
chosen so that

Ny Ny Uz

n .
2 lim i . = lim i =1
(5 ) SLDSO ti}g} (ns + ks) tee (nt -+ kt) Zilgjilg(ns + :I{?s) <7’Lt + kt)

Note that, by Corollary 6.2 of [4], the simple limit algebra is independent of the evaluation points.
For each s = 1,2, ..., consider the function

1 loc.dim(z)

— . ) x € an'“ns—ll
2 (m + kl) cee (n571 + ksfl)

rs(T) =

It is an upper semicontinuous function on X"~ = JT(A,), and hence is an upper semicon-
tinuous affine function on T(A;), and hence on T(A).

On regarding = — loc.dim(x) as the upper left corner of A;, there is a decreasing sequence of
positive contractions (fs,) C A, such that
(5.3) lim 7(fs,) =rs(7), 7€ T(A).

n—oo

(This will be used in the proof of Theorem [5.4(1) below.)

Lemma 5.2. The sequence ri,1s, ..., of upper semicontinuous positive real-valued affine functions
on T(A) is decreasing, and for any s < t,

Ny« Ng_1 Ny -Ng1

L.
Irs =relloe < S dim O T ) ) (e F )

2

Proof. For each x € X (™ ms-1ns note that

(0)u () (o) = ﬁ(rs(:ﬁ) o (@) ra(0) ()
_ % ) e 1 s (loc.dim(zy) + - - - + loc.dim(z,,)) +
% T 1 oy o dim(®1) 4+ loc.dim(8,)
_ % T 1 e A ) +
% Sowws 1 O (loc.dim(6y) + - - - + loc.dim(fy,)).
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In particular, rs > s, 1 and

1 1
— — - loc.dim(6 -+« +loc.dim(#
1 k
Z. 5 o ng_q)dim(X).
92 (nl + kl) . (ns + ks) (nl n 1) 1m( )
In general, the same argument shows that for any s < t,
L (ns+ko) (1 +key) —ng - nyy :
. — < Z. coomg_q)dim(X
||T TtHoo = 5 (n1+k1)"'(nt—1+kt_1) (nl n 1) lm( )
Lo a(ns ko) ey +key) — - 1 i (X)
2 (1 + k) - (g1 + ke1)
1 ny---MNs—1 ny---Ng1 .
= . - dim(X).
2 <(n1 + ki) (nemy +ksm1) (o F k) (e +kt71>> &

O

Thus, by (5.2)), the sequence (r5) converges uniformly. Denote its limit by r.. By the construc-
tion, the function r4, is the pointwise limit of a decreasing sequence of the upper semicontinuous
functions rs, s = 1,2, ..., and hence 74, is also upper semicontinuous.

Definition 5.3. Let A be a simple C*-algebra. Define the set of (continuous) gap functions,
G 4, to be the set of continuous positive real-valued affine functions h : T*(A4) — [0,4+00), 0 at
0, such that for any a,b € (A® K)™,

do(a) + h(r) <d,(b), 7€ TH(A) = a=b.

Theorem 5.4. Let A be a UHF-Villadsen algebra with seed space a (finite) simplicial complex.
Then the upper semicontinuous positive real-valued affine function ro on Tt (A) has the property

(5.4) {h € AF(T*(A)) : roo < h} =Ga.
Remark 5.5. Since 74 is upper semicontinuous and affine, one has
Too = inf{h € Af(TT(A)) : roo < h}.
Together with (5.4), this implies
Too = inf G 4.

Proof. To prove (|5.4)), it is enough to show the following two properties:

(1) If h is a continuous positive real-valued affine function on T*(A), 0 at 0, and ro, < h,
then h € G 4; that is, h has the property that for any a,b € (A® K)*,

dy(a) + h(r) < d.(b), 7€ TT(A) = a=b.

(2) If h is a continuous positive real-valued affine function on T+ (A) and h(7) < 70 (70) for
some 79 € TT(A), then h ¢ G4; that is, there are a,b € (A ® K)* such that

d,(a) + h(r) < d,(b), T€T(A),

but a is not Cuntz subequivalent to b.
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Proof of (1). Let h € Aff(T*(A)) be continuous and 7o, < h, and let a,b € (A ® K)* be such
that

(5.5) d.(a) + (1) < d.(b), 7€ T(A).
Let € > 0 be arbitrary. There is § > 0 such that
(5.6) d,((a—e)y)+h(r)+6 <d.(b), 7eT"(A).

Since 75 < h and, by Lemma 5.2 (r,) converges uniformly to re, there is k such that
(5.7) re(7) < h(T) + g, T € T(A).

Choose a non-zero trivial projection ¢ € A; for some i € N such that
(5.8) %5<d@<& e AL

Since A has stable rank one, by Theorem 8.11 of [9] there is ¢ € (A ® K)* such that

d.(¢) = h(r), T€T(A).
Therefore, by and ,
d(a®c®q) <d.(b), TeT(A).

Note that, since 7 — d,(¢) = h(7) is continuous, by Dini’s theorem, there is ¢’ > 0 such that

o )
(5.9) h(t) — 1= d,(c) — 2 <7(fs(c)) <d.(c) =h(r), 7€T(A),
where fs : R — [0, 1] is the continuous function which is 0 on (=00, '], 1 on [2’, 00), and linear
in between. Fix ¢.

Since A is simple, by the proof of Proposition 3.2 of [§], there is N € N such that
(a®c®q) @Iy 30 1y,

By Lemma 5.6 of [6] (and its proof), for any &’ > 0 (to be determined later), there is i € N such
that there are positive elements a, ¢, and b in A; (and ¢ € A;) such that

|m—au<g,|¢—an<a,‘@—éu<g,

(a—e)e@E—)@q@lyn 3bely, and b3b.

Hence
d,(a — 5')+ +d, (¢ — 5’)+ +7(q) < dT(I;), T € T(4)).
and, by (5:5),
(510) df(d — 5/)+ + d‘,-(é — €I)+ + %(5 < d-,-(g), T E T(Al)

Note that, with & sufficiently small, one has

Ise) ~ f @] < 2.
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and hence
)
(5.11) (e (@) < 3 7€ T(A).
Then, with &’ < ¢, by and ,
(5.12) d.(c—¢&)y >7(fs(0)) > 7([f5(c)) — Z > h(rT) — g, T e T(A).
By one has one more step,
(5.13) d. (=& > 7(fs(C) > 7(fs:(c)) — g > h(T) — g > (1) — %5, T € T(A).

One should also assume that ¢’ < e. Then, fix €. Since 7+ 74(7) is upper semicontinuous, a
compactness argument (Dini’s theorem) shows that there is 6” > 0 such that

- 3
(5.14) 7(fsr((¢ —€")1)) > ri(T) — 15, 7€ T(A).
Thus, there is n such that
. 3 3
(5.15) T(for((€ —€")1)) > 7(frn) — 15 > rp(T) — 157 T € T(A),
where (fxn)n is defined in (5.3)), as, for any 75 € T(A), by (5.14)), there is N € N such that

10(for((¢—€")1)) > 10(frm) — %5 > r(10) — %(5, n > N.

Since 7y, is upper semicontinuous and (f,), is decreasing, there is a neighbourhood U C T(A)
of 79 such that

(G =)2)) > 7(fen) — z(s > ro(7) — 25, n>N, rel.

Then, a compactness argument shows ((5.15)).
Then, by (5.15)), there is s > max{i, k} such that

. 3 3
(5.16) T(for((¢ —€)1)) > 7(fem) — 1_15 > () — 16, T € T(Ay).
As, otherwise, there is a sequence 75, € T(As,), Ts, € T(As,), ... such that

(= <)) < 7(fin) = 58, 7€ T(AL).

Extend each 7, i« = 1,2,..., to a state of A, and pick 7, to be an accumulation point of
{7s;, i =1,2,...}. Then 7, € T(A) and it fails to satisfy (5.15].
Therefore,
. _ 3
(5.17) dr((€ =€) 2 7(for((€ = )4)) > mil7) = 20, 7 € T(A).

Then, by (5.17) and (5.10)), for all 7 € T(Ay), one has
~ ~ ~ / ~ ! 3 7
dr((a = e)s) +75(7) < dr((@ —€)4) +ru(7) <de((@ —£)4) +dr((€ = £)4) + 70 < dr(b).
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In particular,

(5.18) rank((@ — ). (x)) + % Noc.dim(z) < rank(b(z)), = € XM,
Since X is a (finite) simplicial complex, writing
loc.dim(X) = {di,ds, ....d; },
where d; > dy > -+ > d;, and defining
Xy, = {z € X"t loc.dim(z) = d;},
one has
dim(Xy) =di, i=1,..1L
Note that there is a decomposition
XMt = Xy U Xy Us--U Xy,
and, since the function loc.dim(+) is upper semicontinuous, the sets
Y= XU - UXy, i=1,..1
are closed. This induces a recursive subhomogeneous decomposition (see [7])
As = Mgtk a 4k, ) (CLX™T 7)) = (- (AL @ 40 A2) B0 A3) B -+ +) @400 A,
where
A = Moty vke 0 (C(Xa)) - and AL = Moy sy yake ) (CYin1 N X)),
For each X;, 2 =1,...,1, one has

dim(X;) = d; = loc.dim(z), =€ X;.
Thus, by (515),

rank((a —e)4(x)) + % -dim(X;) < rank(b(z)), z€ X;, i=1,..,1.
By Theorem 4.6 of [10], )
(@—e)y Z3b30D.
Since
argar, (a—e)y,

one has

(a —2e)y 2.
Since ¢ is arbitrary, this implies a 3 b. This shows (1).
Proof of (2). Let h € Aff*(T*(A)) such that

h(70) < reo(T0)

for some 19 € TT(A). Let us show that h ¢ G 4.
Set
§ =max{ro(7) — h(r) : 7 € TH(A), 7(14) =1} >0
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and
M = max{h(7) : 7 € T (A), 7(14) = 1}.
By (5.1), one has the following inductive limit decomposition of the ordered Banach space
Aff(T(A)):

©1

Cr(X) 2 Ca(X) =2 Cp(Xmime) P AR(T(A)).

Then there is hy € Cr+(X™ ") such that

(5.19) |hs = h|l < Z

Hence, with s sufficiently large, there is 79 € T(A;) = M (X™ ") such that
hs(1o) < rs(T0) — 26,

and this implies that there is zqg € X" such that

3. 1 loc.dim(zo) 3
hs(0) < 75(0) 1’73 (r + k) -~ (s + ks) 1

Since X™ ™ is a (finite) simplical complex, there is a loc.dim(zg)-dimensional ball By C
X" in any neighbourhood of xy. Then, since hg is continuous, there is a Euclidean ball
Bs, € X™" (in any neighbourhood of xy) with dimension d,,, where

i - loc.dim(zy), if loc.dim(zy) is odd,
) loc.dim(xg) — 1, if loc.dim(x) is even,

such that
3 3
(5.20) hs(z) < rg(z) — 15 = rs(x0) — 15, r € Bs.
One should also assume s is sufficiently large that

loc.dim(z) — 1 J
5.21 —r, < -
( ) (n1+k1)---(ns+ks) " (I) 4
and

M1 ny 9
5.22 1-— <=, t>s.
( ) <ns+1 + kst1 (nt + kt) 8 ’

Over 0B, which is a (d,, — 1)-dimensional sphere, there is a complex vector bundle E such

that )
E(dxo —1) and Cdzg—1 € H%o~t(S%o=1)\ {0}.

(Such a vector bundle exists, as, otherwise, the

rank(E) =

dug—1
2
be trivial, and then the Chern character would not induce a rational isomorphism between the

K-group and the cohomology group of the sphere S%o~1.)
Denote by p the projection associated to F;. Then,

1 dyy — 1

2 (ni+ ki) (ng + ks)

-th Chern class of every vector bundle would

(5.23) tr.(p) = x € 0B,
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where tr, is the tracial state of A, which is concentrated at x. Extend p to a positive element of
A, @ K = C(X™ ) ® K and still denote it by p.
Choose a positive matrix e such that

rank(e) > (M +20)(ny + ki) -+ - (ns + k),

and set

po: XM 5 dist(z, 0By)e € K.
Consider the element p + py, and still denote it by p. Then, together with (5.23), (5.21f), and
(5.20)), one has

(5.24) T(p) > hs(T) + g, T € T(Ay),

and the restriction of p to dB, is a projection such that the corresponding vector bundle has
non-zero total Chern class at degree loc.dim(zg) — 1.
Let ¢ € A, be a trivial projection with

) )
1 > 7(q) > 3 T € T(Ay).

Then, by (5-19) and (5:23),
) )
7(q) + h(1) < 1 + (hs(T) + Z) <7(p), T€TA.

To show the theorem, it is enough to show that ¢ is not Cuntz sub-equivalent to p.
Let t > s be arbitrary, and consider the building block A;. Consider the closed subset
Cp:=0Bg X -+ x 0By C XM x .- x X",

~~ ~~
Ns41-Mt MNg41°Mt

Then
¢s,t(p)|ct = diag{pst oy, ---,P|aBS O Tngyqnts C},

where ¢ is a constant positive matrix of rank at most
(n1 4+ k1) - (e + ki) — (ng + k1) - (ns + Eks) (Mg -+ - ).

Hence the positive element ¢ +(p)|c, is Cuntz equivalent to a projection of rank at most

Ret= 5 (day = 1)(neia 1) - (1 B = (e R) = (1K) (a4 ) (a0

and with non-zero total Chern class (by the Kiinneth Theorem) at
H(dm_l)(ns“mm)(ct).

Thus, by Remark 3.2 of [4], the trivial subprojection of [¢s:(p)|c,| has rank at most

1

Ry — §(d$0 - 1)<ns+1 . 'nt)7
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and hence has (normalized) trace at most

Ry — %(dzo — D) (nsg1---my)
(ny +ky) - (ng + k)
(ny4Fk1) - (ne + k) — (na + k) - (s 4 F) (Nggr -+ - )
(ny +ky) - (ng + k)
Ns+1 L
Nsp1 + ksy1 e+ Ky

)

< g
Since 7(¢s(q)) > 0/8 for all 7 € T(A;), this implies that ¢ is not Cuntz subequivalent to p. This
shows (2). O

Remark 5.6. If X has the property that loc.dim(-) is constant, then
Too(T) =1c(A)(T(14)), 7€ TT(A).

Corollary 5.7. Let X; = [0,1]* and Xy = [0,1] V [0,1]?, and let A; = A(X1, (n;), (k;)) and
Ay = (Xa, (ny), (ki) be UHF-Villadsen algebras with seed spaces X1 and Xo respectively. Then

rc(A;) =rc(4z) but A QK 2 Ay @ K.

Indeed,
Cu(Al) % CU(AQ) .

Proof. By Remark the affine function r(A;) is constant on T(A;), and so it factors through
T*(A;) — TH(Ko(Ay)) = RT. On the other hand, the function r,,(A3) is not constant on
T(As), and so does not factor through T*(Ay) — T (Kg(As)) = RT. By Theorem the func-
tions 7 (A1) and 7o (Az) are invariant (uniquely determined by the Cuntz semigroup). Hence,

Cu(A;) 2 Cu(Asy), as desired. O
Remark 5.8. Note that, since X; and X, are contractible, by Corollary 6.1 of [13],
D

So, the Cuntz semigroup of a Villadsen algebra contains information which is finer than the
infinite product of the seed space.

On the other hand, the Villadsen algebras A([0, 1], (n;), (k;)) and A([0,1]2, (n;), (k;)) are stably
isomorphic (but not isomorphic). Therefore, their Cuntz semigroups are isomorphic.

Remark 5.9. Let X; = [0,1] v [0,1]* and X, = [0,1] V [0,1]?> V [0, 1]. It would be interesting to
know if the Villadsen algebras A; = A(Xy, (n;), (k;)) and Ay = A(Xs, (n;), (k;)) share the same
Cuntz semigroup.

Corollary 5.10 (cf. Corollary [3.4). Let A(X,(n;), (k;)) be a UHF-Villadsen algebra, and let
o € Aut(A). Then

Too((07(T))) = reo(T), 7€ T(A).
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Proof. Since o is an automorphism, one has 0,.(G4) = G4, and therefore 0,(r) is also a lower
enveloping function of G4. By Lemma|[5.5] such a lower enveloping function is unique, and hence
0:(Too) = reo, s asserted. O

Corollary 5.11 (cf. Example 3.7). Let A = A(X, (ni), (ki) be a UHF-Villadsen algebra with
seed space X = [0,1] V [0,1]>. Then the action of Aut(A) on the extreme points of T(A), the
Poulsen simplex (see [4]), is not transitive.

Proof. The restriction of the function 7., to T(A) is not constant, and so there are 11,75 € IT(A)
such that r«(71) # 7oo(72). By the corollary above, there is no o € Aut(A) such that o*(7) = 72,
as desired. ]

Definition 5.12. Let A be a C*-algebra. An upper semicontinuous extended positive real valued
affine function r,, on T*(A) will be called the comparison radius function if it has the following

property:
{he Af(TT(A)) : 1o < h} = Ga.

Note that, by Remark [5.5] the comparison radius function, if it exists, satisfies
Too = inf G As

and hence is unique.

The radius of comparison can be recovered from the comparison radius function r, (cf. Remark
p.0).

Theorem 5.13. Let A be a C*-algebra such that the comparison radius function r, ezists (e.g.,
A is a UHF-Villadsen algebra with seed space a (finite) simplicial complex). Then, for any
non-zero projection p € A® IC, one has

re(p(A® K)p) = sup{roo(7) : 7(p) = 1, 7 € TT(A)}.

Proof. Let s > sup{re(7) : 7(p) = 1, 7 € TT(A)} be a real number. Then, regarding s as a
constant (continuous) affine function on the section {7 € T*(A) : 7(p) = 1} = T(p(A ® K)p),
and extending s to T*(p(4A ® K)p) = TT(A), one has

Teo(T) < s(7), 7€ TT(A).
Therefore s € G4 (see (1) of Theorem [5.4), and so s has the property
d.(a) +s<d(b), TET(P(A®K)p) = aZb, abe(AK)",
and hence rc¢(p(A ® K)p) < s. This shows that
re(p(A @ K)p) < sup{roo(7) : 7(p) =1, 7 € TT(A)}.

Now, let s < sup{ro(7) : 7(p) =1, 7 € TT(A)} be areal number. Then, for an arbitrary ¢ > 0,
there is 70 € {7 € TT(A) : 7(p) = 1} such that s — e < r(7). Regarding s — € as a continuous
affine function on T*(A) as above (constant equal to the number s — e on T(p(A ® K)p)), one
has s — e ¢ G4 (by (2) of Theorem [5.4)); that is, there are a,b € (A ® K)* such that

d.(a)+ (s —¢) <d,(b), 7€ T(p(A® K)p),
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but a is not Cuntz subequivalent to b. Therefore,
s—e <rc(p(A® K)p).

Since ¢ is arbitrary, this implies s < rc(p(A ® K)p). This shows that

sup{reo(7) : 7(p) = 1, 7 € TT(A)} < re(p(A ® K)p).
Together with the opposite inequality proved above, one has

re(p(A® K)p) = sup{ro(7) : 7(p) = 1, 7 € TT(A)},
as asserted. U

Remark 5.14. Since r, is upper semicontinuous, one has
sup{ro(7) : 7(p) = 1, 7 € TT(A)} = max{ro(7) : 7(p) = 1, 7 € TT(A)}.

Remark 5.15. Does the comparison radius function r., exist for every simple C*-algebra? At
least for simple C*-algebras of stable rank one?
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