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Abstract. We show that Villadsen algebras, which are not Z-stable, are singly generated.

More generally, we show that any simple unital AH algebra with diagonal maps is singly

generated.

1. Introduction

The generator problem asks about the minimal number of generators for a given C*-

algebra—see [13] for a survey of this problem. In particular, one wonders if a given C*-

algebra is singly generated, and it is an interesting open question whether or not every

simple separable unital C*-algebra is singly generated. In [13], it is shown that every simple

separable unital Z-stable C*-algebra B is singly generated (i.e., B⊗Z ∼= B, where Z denotes

the Jiang-Su algebra [11]). But Villadsen algebras (of the first type, Definition 2.1 below)

provide examples of simple unital C*-algebras which are not Z-stable, and the motivation

for the current work is to show (Corollary 3.2) that these algebras are nevertheless singly

generated.

Being non-Z-stable, Villadsen algebras are not covered by the current classification the-

orem for C*-algebras ([3], [4], [7], [14], [9], [1], [10]). However, one regularity property they

do possess is stable rank one; that is, the invertible elements in a Villadsen algebra form a

norm dense subset of the algebra. Moreover, some partial classification results for Villadsen

algebras are obtained in [6] using the radius of comparison (or Cuntz semigroup).

In this paper, we show that Villadsen algebras are singly generated. In fact, we show that

any simple unital AH algebra with diagonal maps (Definition 2.2 below) is singly generated.

To show these algebras are singly generated, we introduce the following concept: a C*-

algebra B has an AF-action if it contains a simple AF algebra A and a C*-subalgebra D

such that

(1) B is generated by A and D,

(2) D commutes with a certain “diagonal” subalgebra of A,
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(3) vdv∗ ∈ D for any d ∈ D and v ∈ V ,

where V denotes a special set of partial isometries in A which are intimately connected with

the diagonal subalgebra in the second condition (for a precise statement, see Definition 2.3).

Our main theorem (Theorem 3.1) states that any C*-algebra with an AF-action is singly

generated.

In Section 2, we establish some definitions and some simple consequences of these defini-

tions, and the remainder of the paper is dedicated to proving our main theorem at the end

of Section 3.

2. Definitions

Definition 2.1. Let (ci)i∈N, (ki)i∈N and (li)i∈N be sequences of natural numbers, X be a

compact connected metric space, and Ei be a set of cardinality ki for each i ∈ N such that,

writing X1 = X and Xi+1 = Xci
i ,

(1) Ei ⊆ Xi,

(2) the set

Ei+1 ∪
( ci+1⋃

s=1

πs(Ei+2)

)
∪
( ∞⋃

j=3

ci+1···ci+j−1⋃
s=1

πs(Ei+j)

)
is dense in Xi+1, where πs denotes the coordinate projection,

(3) lim
i→∞

l1···li
(l1+k1)···(li+ki)

6= 0,

for each i ∈ N. A Villadsen algebra is the limit of an inductive sequence (Bi, φi)i∈N of C*-

algebras, where Bi = Mni−1
(C(Xi)), n0 ∈ N and ni = ni−1(li + ki), and the seed for φi is

given by

C(Xi) 3 f 7→ diag
{
f ◦ π1, . . . , f ◦ π1︸ ︷︷ ︸

si,1

, . . . , f ◦ πci , . . . , f ◦ πci︸ ︷︷ ︸
si,ci

, f(xi,1), . . . , f(xi,ki)
}

∈ Mli+ki

(
C(Xi+1)

)
,

where si,t ∈ N for each 1 ≤ t ≤ ci and si,1 + · · ·+ si,ci = li.

Note that the above definition of a Villadsen algebra is more general than the original

construction in [15]; in addition to the algebras in [15], Definition 2.1 also includes as a

special case some algebras constructed by Goodearl in [8] (see [6, Remark 2.1]).

Given an arbitrary inductive sequence (Bi, φi)i∈N of C*-algebras, define φi,i′ := φi′−1◦· · ·◦φi

for i′ > i + 1 and φi,i+1 := φi. Suppose (Bi, φi)i∈N is as in Definition 2.1. Then φi is unital,

and a direct calculation shows that for i′ > i + 1 the seed for φi,i′ is (up to permutation)
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given by

C(Xi) 3 f 7→ diag
{
f ◦ π1, . . . , f ◦ πci···ci′−1︸ ︷︷ ︸

li···li′−1

,(2.1)

f ◦ π1(Ei′−1), . . . , f ◦ πci···ci′−2
(Ei′−1)︸ ︷︷ ︸

li···li′−2

,

f ◦ π1(Ei′−2), . . . , f ◦ πci···ci′−3
(Ei′−2)︸ ︷︷ ︸

li···li′−3

1li′−1+ki′−1
,

f ◦ π1(Ei′−3), . . . , f ◦ πci···ci′−4
(Ei′−3)︸ ︷︷ ︸

li···li′−4

1(li′−1+ki′−1)(li′−2+ki′−2)
, . . . ,

f ◦ π1(Ei+1), . . . , f ◦ πci(Ei+1)︸ ︷︷ ︸
li

1(li′−1+ki′−1)···(li+2+ki+2),

f(Ei)1(li′−1+ki′−1)···(li+1+ki+1)

}
∈ M(li+ki)···(li′−1+ki′−1)

(
C(Xi′)

)
.

Definition 2.2. Let B be the limit of an inductive sequence (Bi, φi)i∈N of unital C*-algebras,

where each φi is unital. We call B a (unital) AH algebra with diagonal maps if Bi =⊕
1≤j≤Ki

Mni,j
(C(Xi,j)), where Xi,j is a compact connected metric space and ni,j, Ki ∈ N,

and if for any i′ > i the restriction of the map φi,i′ to any direct summands Mni,j
(C(Xi,j))

and Mni′,j′
(C(Xi′,j′)) has a seed of the form f 7→ 0 or f 7→ diag{f ◦ λ1, . . . , f ◦ λm} for some

continuous maps λ1, . . . , λm : Xi′,j′ → Xi,j.

If (Bi, φi)i∈N is as in Definition 2.2 and each φi is injective, it is well-known that the limit

algebra B is simple if and only if, for any i ∈ N and nonzero b ∈ Bi, there is an i0 ≥ i

such that for every i′ ≥ i0, φi,i′(b)(x) 6= 0 for every x ∈
⊔

1≤j≤Ki′
Xi′,j ([5, Proposition 2.3]).

From this characterization of simplicity for B, one sees that the unital AF subalgebra A of

B obtained as the limit of the inductive sequence (Ai, ψi)i∈N, where Ai =
⊕

1≤j≤Ki
Mni,j

and

ψi = φi|Ai
, is simple if B is.

Letting (Bi, φi)i∈N be as in Definition 2.1 once again, it is clear that the Villadsen algebra

arising from this inductive sequence is an AH algebra with diagonal maps with injective

connecting maps; moreover, from the above characterization of simplicity for such an algebra,

one sees almost immediately that it is simple. Indeed, fix i ∈ N and let f ∈ Bi+1 be nonzero;

then, by Condition 2 of Definition 2.1, there exists some i0 ≥ i+ 1 and y ∈ Ei0−1 for which

f ◦ πs(y) 6= 0; we then see from Equation (2.1) that for every i′ ≥ i0, φi+1,i′(f)(x) 6= 0 for

any x ∈ Xi′ .

Definition 2.3. Let B be a unital C*-algebra containing a simple separable unital AF

subalgebra A and a separable unital C*-subalgebra D. Let (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N be a

canonical inductive limit decomposition for A, where ni,j, Ki ∈ N. Denote the set of canonical
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matrix units for Mni,j
by Vi,j, and define

V :=
⋃
i∈N

Ki⋃
j=1

Vi,j, Ei,j := {v ∈ Vi,j | v = v∗}, D0 := C*

(⋃
i∈N

Ki⋃
j=1

Ei,j

)
.

We say that B has an AF-action if

(1) B = C*(A,D),

(2) [d, d′] = 0 for any d ∈ D and d′ ∈ D0,

(3) vdv∗ ∈ D for any d ∈ D and v ∈ V .

In the sequel, to emphasize the dependence of B on A and D, we may write B(A,D) for B;

moreover, associated to B is the inductive limit decomposition (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N of A,

which we may simply refer to as the “associated decomposition of A.”

The following lemmas are straightforward consequences of this definition.

Lemma 2.1. A simple AH algebra with diagonal maps has an AF-action. In particular, a

Villadsen algebra has an AF-action.

Proof. Let B = limi→∞(Bi, φi) be a simple AH algebra with diagonal maps, where Bi and φi

are as in Definition 2.2, and let A = limi→∞(Ai, ψi) be the AF subalgebra of B as described

in the paragraph following Definition 2.2. Denote the set of canonical matrix units for Mni,j

by Vi,j and define the sets V , Ei,j, and D0 as in Definition 2.3. Moreover, define

D := C*
(
{p⊗ f | p ∈ Ei,j, f ∈ C(Xi,j), i ∈ N, 1 ≤ j ≤ Ki}

)
.

Notice D is a separable unital C*-subalgebra of B. Furthermore, that B = C*(A,D)

follows from the fact that any b ∈ Mni,j
(C(Xi,j)) may be written as a finite sum of elements

of the form v(p⊗ f)v′ for v, v′ ∈ Vi,j, p ∈ Ei,j, and f ∈ C(Xi,j); since D is commutative and

D0 ⊆ D, we have [d, d′] = 0 for any d ∈ D and d′ ∈ D0; finally, clearly v(p ⊗ f)v∗ ∈ D for

any v ∈ Vi,j, p ∈ Ei′,j′ , and f ∈ C(Xi′,j′) so that vdv∗ ∈ D for any v ∈ V and d ∈ D. �

Lemma 2.2. Let B = B(A,D) have an AF-action, and let C be a separable unital simple

C*-algebra. Then B ⊗ C has an AF-action.

Proof. Define Ai :=
⊕

1≤j≤Ki
Mni,j

⊗C1C for each i ∈ N, where (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N is

the associated decomposition of A, so that A =
⋃

i∈NAi is a simple AF subalgebra of

B ⊗ C. Identify the set Vi,j of canonical matrix units for Mni,j
with the set Vi,j = {v ⊗ 1C |

v ∈ Vi,j} in B ⊗ C. Then, writing V =
⋃

i∈N
⋃

1≤j≤Ki
Vi,j, Ei,j = {v ∈ Vi,j | v = v∗},

D0 = C*(
⋃

i∈N
⋃

1≤j≤Ki
Ei,j), and D = D ⊗ C, it follows that B ⊗ C = C*(A,D), [d, d′] = 0

for any d ∈ D and d′ ∈ D0, and vdv∗ ∈ D for any d ∈ D and v ∈ V . �
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3. A Generator for an Algebra with an AF-action

3.1. Preliminary Lemmas. Let B be a unital C*-algebra, and let a ∈ B be such that

qiaqj = 0 for i > j, where (qi)1≤i≤n ⊆ B is a finite sequence of nonzero mutually orthogonal

projections summing to the identity (a is “upper triangular” with respect to (qi)). It is

well-known that σ(a) ⊆
⋃

1≤i≤n σ(qiaqi), and the following lemma gives a similar result for

infinite sequences.

Lemma 3.1.1. Let B be a unital C*-algebra, let a ∈ B, and let (pi)i∈N ⊆ B be a sequence

of nonzero mutually orthogonal projections such that

(1) (1−
n∑

i=1

pi)a
n∑

i=1

pi = 0 for each n ∈ N,

(2) lim
n→∞

‖(1−
n∑

i=1

pi)a(1−
n∑

i=1

pi)‖ = 0,

(3) σ(piapi) ∩ σ(pi′api′) = Ø for i 6= i′,

(4) 0 6∈ σ(piapi) for any i ∈ N.

Then

σ(a) ⊆
∞⋃
i=1

σ(piapi) ∪ {0} and (pi)i∈N ⊆ C*(a).

Proof. Define Pn :=
∑

1≤i≤n pi, and write 1 − Pn = P⊥n for each n ∈ N; also, define P0 := 0

so that P⊥0 = 1. Notice for any n ∈ N, P⊥n−1 = pn +P⊥n , pnP
⊥
n = 0, and P⊥n (P⊥n−1aP

⊥
n−1)pn =

P⊥n aPnpn = 0 by Condition 1. Fixing n ∈ N, it then follows from the paragraph preceding

this lemma that σ(P⊥n−1aP
⊥
n−1) ⊆ σ(pnapn) ∪ σ(P⊥n aP

⊥
n ); by induction,

σ(P⊥n−1aP
⊥
n−1) ⊆

m⋃
j=n

σ(pjapj) ∪ σ(P⊥maP
⊥
m), ∀m ≥ n.(3.1)

If λ ∈ σ(P⊥n−1aP
⊥
n−1) and λ 6∈ σ(pjapj) for any j ≥ n, Equation (3.1) implies λ ∈ σ(P⊥j aP

⊥
j )

for every j ≥ n; then, by Condition 2, λ = 0 and

σ(P⊥n−1aP
⊥
n−1) ⊆

∞⋃
j=n

σ(pjapj) ∪ {0}.(3.2)

Taking n = 1, we have the desired containment for σ(a).

Let n ∈ N be arbitrary again. By Equation (3.2) and Conditions 3 and 4, σ(pnapn) ∩
σ(P⊥n aP

⊥
n ) = Ø. It follows that

pn ∈ C*(P⊥n−1aP
⊥
n−1);(3.3)

we refer the reader to [12, Theorem 1] and [2, p. 22] for the details. If p1, . . . , pn−1 ∈ C*(a),

expanding P⊥n−1aP
⊥
n−1 in terms of p1, . . . , pn−1 reveals that P⊥n−1aP

⊥
n−1 ∈ C*(a). Now, taking

n = 1 in Equation (3.3), we see p1 ∈ C*(a); thus (pi)i∈N ⊆ C*(a) by induction. �
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Lemma 3.1.2. Let B be a unital C*-algebra, and suppose B contains a unital C*-subalgebra

D and a finite set {vk}1≤k≤n of nonzero partial isometries such that

(a) v1 is the range projection of each vk, i.e., v1 = vkv
∗
k,

(b) the source projections form a partition of unity for B, i.e., (v∗kvk)(v∗k′vk′) = 0 for

k 6= k′ and
∑

1≤k≤n(v∗kvk) = 1,

(c) the source projections commute with D, i.e., [v∗kvk, d] = 0 for any d ∈ D,

(d) vkdv
∗
k ∈ D for any d ∈ D.

Then, the map

Φ: Mn

(
(v1v

∗
1)D(v1v

∗
1)
)
→ C*(D, v1, . . . , vn), [bi,j]

n
i,j=1 7→

n∑
i=1

n∑
j=1

v∗i bi,jvj

is a ∗-isomorphism.

Proof. It is clear that Φ is linear and preserves adjoints. For multiplicativity, notice

Φ
(
[bi,j]

)
Φ
(
[ci,j]

)
=
( n∑

i=1

n∑
j=1

v∗i bi,jvj

)( n∑
i=1

n∑
j=1

v∗i ci,jvj

)
=
( n∑

i=1

v∗i bi,1v1 + · · ·+
n∑

i=1

v∗i bi,nvn

)( n∑
j=1

v∗1c1,jvj + · · ·+
n∑

j=1

v∗ncn,jvj

)
=
( n∑

i=1

v∗i bi,1v1

)( n∑
j=1

v∗1c1,jvj

)
+ · · ·+

( n∑
i=1

v∗i bi,nvn

)( n∑
j=1

v∗ncn,jvj

)
=

n∑
i=1

n∑
j=1

v∗i

( n∑
k=1

bi,kck,j

)
vj

= Φ
(
[ai,j]

)
,

where ai,j =
∑

1≤k≤n bi,kck,j and where the third equality is a result of Condition (b). Hence,

Φ([bi,j])Φ([ci,j]) = Φ([bi,j][ci,j]).

Now, notice v1 = v1v
∗
1 = v11v

∗
1 ∈ D by Condition (a) and Condition (d). Fixing some

1 ≤ k ≤ n and defining [bi,j] such that b1,k = (v1v
∗
1)v1(v1v

∗
1) = v1 and bi,j = 0 otherwise, it

follows from the previous sentence that [bi,j] ∈ Mn((v1v
∗
1)D(v1v

∗
1)). We then see vk is in the

image of Φ since Φ([bi,j]) = v∗1v1vk = v1vk = vkv
∗
kvk = vk. Moreover, for any d ∈ D,

d =
( n∑

i=1

v∗i vi

)
d
( n∑

i=1

v∗i vi

)
=

n∑
i=1

(v∗i vi)d(v∗i vi)(3.4)

by Condition (b) and Condition (c); by Condition (a),

n∑
i=1

(v∗i vi)d(v∗i vi) =
n∑

i=1

v∗i (v1v
∗
1)di(v1v

∗
1)vi,(3.5)
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where di = vidv
∗
i ∈ D for each 1 ≤ i ≤ n. Putting Equation (3.4) and Equation (3.5)

together, we see d is in the image of Φ since Φ([ci,j]) = d when ck,k = (v1v
∗
1)dk(v1v

∗
1), for

each 1 ≤ k ≤ n, and ci,j = 0 otherwise. Thus Φ is onto.

Finally, notice if Φ([bi,j]) = 0, then

0 = vkΦ
(
[bi,j]

)
v∗l =

n∑
i=1

n∑
j=1

vkv
∗
i bi,jvjv

∗
l = δk,ibi,jδj,l

for every 1 ≤ k, l ≤ n, where δ denotes the Kronecker delta function; in particular, Φ is

injective. �

Lemma 3.1.3 below references a result from the paper of Olsen and Zame [12]; we reproduce

a version of it here for the reader’s convenience.

Lemma (Olsen and Zame). Let A be a unital C*-algebra generated by the k(k + 1)/2 in-

vertible self-adjoint elements a1, . . . , ak(k+1)/2 with pairwise disjoint spectra. Then, Mk(A) is

generated by the upper triangular matrix
a1 a2 · · · ak

0 ak+1 · · · a2k−1
...

. . . . . .
...

0 · · · 0 ak(k+1)/2

 .

Lemma 3.1.3. Let B, D, and {vk}1≤k≤n be as in Lemma 3.1.2. Let m be a positive integer

such that n > 2m − 1, and let {d1, . . . , dm} ⊆ D \ {0} be a subset of self-adjoint elements.

Then, there exists an invertible element g ∈ B such that d1, . . . , dm ∈ C*(g).

Proof. As in Equation (3.4) and Equation (3.5), we can write di ∈ {d1, . . . , dm} as

di =
n∑

j=1

v∗j (v1v
∗
1)di,j(v1v

∗
1)vj, di,j = vjdiv

∗
j ∈ D.

Consider the self-adjoint elements (v1v
∗
1)di,j(v1v

∗
1) ∈ (v1v

∗
1)D(v1v

∗
1) for 1 ≤ i ≤ m and

1 ≤ j ≤ n. Suppose the distinct nonzero such elements constitute a set S ′, and let S =

S ′ ∪ {v1v∗1}. Denoting the cardinality of S by N , C*(S) is a unital C*-algebra generated

by N ≤ nm + 1 ≤ n(n + 1)/2 self-adjoint elements; it is then an simple consequence of the

continuous function calculus that C*(S) is generated by n(n + 1)/2 invertible self-adjoint

elements with disjoint spectra, say a1, . . . , an(n+1)/2. It follows from Olsen and Zame that
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Mn(C*(S)) is generated by an element g of the form

g =


a1 a2 · · · an

0 an+1 · · · a2n−1
...

. . . . . .
...

0 · · · 0 an(n+1)/2

 ;

notice g is invertible since its diagonal entries are (see the paragraph preceding Lemma 3.1.1).

Now, consider the map Φ: Mn((v1v
∗
1)D(v1v

∗
1)) → C*(D, v1, . . . , vn) from Lemma 3.1.2.

Clearly Φ(C*(g)) = C*(Φ(g)), and Φ(g) is invertible. Fix 1 ≤ i ≤ m; since C*(g) contains

the element [ak,l], where aj,j = (v1v
∗
1)di,j(v1v

∗
1) for 1 ≤ j ≤ n and ak,l = 0 otherwise, Φ(C*(g))

contains the element Φ([ak,l]) = di. Writing g = Φ(g), the result follows. �

3.2. Lemmas Pertaining Specifically to Algebras with AF-actions. LetB = B(A,D)

have an AF-action, and let (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N be the associated decomposition of A. Fix

i0 ∈ N, and denote the multiplicity of the embedding of Mni0,j
′ into Mni,j

via φi0,i by mi0,i;j′,j,

where i > i0, 1 ≤ j′ ≤ Ki0 , and 1 ≤ j ≤ Ki. For a positive integer N , note that one can

always find an i > i0 such that mi0,i;j′,j > N for each 1 ≤ j′ ≤ Ki0 and 1 ≤ j ≤ Ki; this is a

simple consequence of the fact that A is simple.

Lemma 3.2.1. Let B = B(A,D) have an AF-action, and let (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N be the

associated decomposition of A; denote the set of canonical matrix units for Mni,j
by Vi,j and

the subset of Vi,j consisting of all self-adjoint elements by Ei,j. Let p ∈ Ei′,j′ for some i′ ∈ N
and some 1 ≤ j′ ≤ Ki′, and let {d1, . . . , dm} ⊆ pDp be a subset of self-adjoint elements.

Then, there exists an invertible element g ∈ pBp such that d1, . . . , dm ∈ C*(g).

Proof. Let i be such that mi′,i;j′,j > 2m − 1 for each 1 ≤ j ≤ Ki, and write mi′,i;j′,j = Mj

for convenience. For each 1 ≤ j ≤ Ki, there is a subset {vj,k}1≤k≤Mj
⊆ Vi,j of cardinality

Mj such that vj,1 is the range projection of each vj,k and p =
∑

1≤j≤Ki

∑
1≤k≤Mj

(v∗j,kvj,k);

writing pj =
∑

1≤k≤Mj
(v∗j,kvj,k), it follows that the source projections of the members of the

set {vj,k}1≤k≤Mj
form a partition of unity for pjBpj. Moreover, notice vj,k and v∗j,k commute

with pj so that vj,kpjdpjv
∗
j,k = pjvj,kdv

∗
j,kpj ∈ pjDpj for any 1 ≤ k ≤ Mj and d ∈ D; also,

the source projections of the members of the set {vj,k}1≤k≤Mj
are contained in D0 so that

(v∗j,kvj,k)pjdpj = pjdpj(v
∗
j,kvj,k) for any d ∈ D. We conclude that for each 1 ≤ j ≤ Ki, pjBpj

is a unital C*-algebra containing a unital C*-subalgebra pjDpj and a finite set {vj,k}1≤k≤Mj

of nonzero partial isometries such that

(a) vj,1 = vj,kv
∗
j,k,

(b) (v∗j,kvj,k)(v∗j,k′vj,k′) = 0 for k 6= k′ and
∑

1≤k≤Mj
(v∗j,kvj,k) = pj,

(c) [v∗j,kvj,k, d
′] = 0 for any d′ ∈ pjDpj,

(d) vj,kd
′v∗j,k ∈ pjDpj for any d′ ∈ pjDpj.
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For each 1 ≤ j ≤ Ki, consider the self-adjoint elements pjd1pj, . . . , pjdmpj ∈ pjDpj;

take the distinct nonzero such elements and form a set Sj ⊆ pjDpj \ {0}. Then, |Sj| (the

cardinality of Sj) is a positive integer such that Mj > 2m− 1 ≥ 2|Sj| − 1. By Lemma 3.1.3,

there exists an invertible element gj ∈ pjBpj such that pjd1pj, . . . , pjdmpj ∈ C*(gj) for each

1 ≤ j ≤ Ki.

Assuming σ(gj) ∩ σ(gj′) = Ø for j 6= j′ (which we may by the functional calculus), we

claim that the C*-algebra generated by g =
∑

1≤j≤Ki
gj ∈ pBp contains d1, . . . , dm. Indeed,

g is “diagonal” with respect to the sequence (pj)1≤j≤Ki
, and it is a simple corollary of Lemma

3.1.1 that (pj)1≤j≤Ki
⊆ C*(g); hence gj ∈ C*(g), hence pjd1pj, . . . , pjdmpj ∈ C*(g), for each

1 ≤ j ≤ Ki. But, notice dl =
∑

1≤j≤Ki
pjdlpj for each 1 ≤ l ≤ m (since D and D0 commute).

The result follows. �

Lemma 3.2.2. Let B(A,D), (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N, Vi,j, and Ei,j be as in Lemma 3.2.1. Fix

i ∈ N. For each 1 ≤ j ≤ Ki, let pj ∈ Ei,j and {vj,k}1≤k≤ni,j
⊆ Vi,j be a subset of cardinality

ni,j such that vj,1 = pj is the range projection of each vj,k. Then, given a self-adjoint element

d ∈ D, there exists a subset G = {gj}1≤j≤Ki
⊆ B such that

(1) gj ∈ pjBpj,
(2) 0 6∈ σ(gj),

(3) d ∈ C*({v1,k}1≤k≤ni,1
, . . . , {vKi,k}1≤k≤ni,Ki

, G).

Proof. Notice the source projections of the elements of the set {vj,k}1≤k≤ni,j
exhaust the

elements of Ei,j for each 1 ≤ j ≤ Ki so that the projections in the set
⋃

1≤j≤Ki
{v∗j,kvj,k}1≤k≤ni,j

form a partition of unity for B. We can then write d as

d =
( Ki∑

j=1

ni,j∑
k=1

(v∗j,kvj,k)
)
d
( Ki∑

j=1

ni,j∑
k=1

(v∗j,kvj,k)
)

(3.6)

=

Ki∑
j=1

ni,j∑
k=1

(v∗j,kvj,k)d(v∗j,kvj,k)

=

Ki∑
j=1

ni,j∑
k=1

v∗j,k(pjvj,k)d(v∗j,kpj)vj,k

=

Ki∑
j=1

ni,j∑
k=1

v∗j,k(pjdj,kpj)vj,k

where dj,k = vj,kdv
∗
j,k. Consider the subset {pjdj,1pj, . . . , pjdj,ni,j

pj} ⊆ pjDpj of self-adjoint

elements for each 1 ≤ j ≤ Ki; Lemma 3.2.1 implies there exists an invertible element

gj ∈ pjBpj such that pjdj,1pj, . . . , pjdj,ni,j
pj ∈ C*(gj). Defining G := {g1, . . . , gKi

}, the final

assertion follows from the last equality in Equation (3.6). �
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We remark that the subsets {vj,k}1≤k≤ni,j
⊆ Vi,j from the previous lemma generate the

finite-dimensional C*-algebra
⊕

1≤j≤Ki
Mni,j

; that is,

Ki⊕
j=1

Mni,j
= C*

(
{v1,k}

ni,1

k=1, . . . , {vKi,k}
ni,Ki
k=1

)
For this, it is sufficient to show Vi,j ⊆ C*({vj,k}1≤k≤ni,j

) for each 1 ≤ j ≤ Ki. Indeed, fix

j, and let Vi,j = {es,t | 1 ≤ s, t ≤ ni,j}. Then, etk,tk = v∗j,kvj,k for each 1 ≤ k ≤ ni,j, where

1 ≤ tk ≤ ni,j and tk 6= tk′ for k 6= k′; thus vj,k = esk,tk for some 1 ≤ sk ≤ ni,j. But, vj,1 is

the range projection of each vj,k so that vj,1 = esk,sk = es1,t1 ; hence s1 = t1 = sk for each

1 ≤ k ≤ ni,j so that vj,k = es1,tk . Then, to obtain es,t for some 1 ≤ s, t ≤ ni,j, take the

product v∗j,kvj,k′ for k and k′ such that tk = s and tk′ = t.

3.3. Main Results. Let B = B(A,D) have an AF-action, and let (
⊕

1≤j≤Ki
Mni,j

, φi)i∈N

be the associated decomposition of A; denote the set of canonical matrix units for Mni,j
by

Vi,j and the subset of Vi,j consisting of all self-adjoint elements by Ei,j. To prove our main

theorem, that every C*-algebra with an AF-action is singly generated, we will construct a

generator for the C*-algebra B. We now define the sets of elements from which we will build

a generator for B.

Let (si)i∈N be a sequence of natural numbers such that ns1,j > 1 for each 1 ≤ j ≤ Ks1 and

msi,si+1;j′,j > 1 for each 1 ≤ j′ ≤ Ksi and 1 ≤ j ≤ Ksi+1
; for convenience, write

Ki = Ksi , Ni,j′ = nsi,j′ , Mi+1;j′,j = msi,si+1;j′,j, 1 ≤ j′ ≤ Ki, 1 ≤ j ≤ Ki+1;

moreover, define K0 := 1 and M1;j′,j := N1,j for each 1 ≤ j′ ≤ K0 and 1 ≤ j ≤ K1.

Inductively on i, construct sets of projections Qi;j′,j = {qi;j′,j,k}1≤k≤Mi;j′,j
for each 1 ≤ j′ ≤

Ki−1 and 1 ≤ j ≤ Ki of cardinality Mi;j′,j such that

(Q1) Qi;j′,j ⊆ Esi,j for each 1 ≤ j′ ≤ Ki−1,

(Q2) pi−1,j′ =
∑

1≤j≤Ki

∑
q∈Qi;j′,j

q for each 1 ≤ j′ ≤ Ki−1, where p0,1 is the identity and

pi−1,j′ = qi−1;Ki−2,j′,Mi−1;Ki−2,j
′ for i > 1.

We take Q1;1,j = Es1,j for 1 ≤ j ≤ K1 to start the induction. To each set of projections

Qi;j′,j, associate a set of partial isometries Wi;j′,j = {wi;j′,j,k}1≤k≤Mi;j′,j
of cardinality Mi;j′,j

such that

(W1) Wi;j′,j ⊆ Vsi,j for each 1 ≤ j′ ≤ Ki−1,

(W2) the range projection of each member of Wi;j′,j is wi;1,j,1 for 1 ≤ j′ ≤ Ki−1,

(W3) the source projection of wi;j′,j,k is qi;j′,j,k.

For each i ∈ N and 1 ≤ j ≤ Ki, choose additional sets of partial isometries Ui,j =

{vi;j,k}1≤k≤Ni,j
of cardinality Ni,j such that

(U1) Wi;j′,j ⊆ Ui,j ⊆ Vsi,j for each 1 ≤ j′ ≤ Ki−1,
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(U2) vi;j,1 = wi;1,j,1 is the range projection of each member of Ui,j.

We then have the following lemma.

Lemma 3.3.1. For each i ∈ N and 1 ≤ j ≤ Ki+1, one has

Ui+1,j ⊆ C*
( Ki⊕

j=1

MNi,j
,Wi+1;1,j, . . . ,Wi+1;Ki,j

)
.

Proof. Let Vsi,j′ = {ej′;l,k | 1 ≤ l, k ≤ Ni,j′} for 1 ≤ j′ ≤ Ki and Vsi+1,j = {fj;l,k | 1 ≤ l, k ≤
Ni+1,j} for 1 ≤ j ≤ Ki+1. Then for each j there exist positive integers Lj′,j,k,t for 1 ≤ j′ ≤ Ki,

1 ≤ k ≤ Ni,j′ , and 1 ≤ t ≤ Mi+1;j′,j such that

(a) 1 ≤ Lj′,j,k,t ≤ Ni+1,j,

(b) Lj′1,j,k1,t1
6= Lj′2,j,k2,t2

for j′1 6= j′2 or k1 6= k2 or t1 6= t2,

(c) ej′;l,k =
Ki+1∑
j=1

Mi+1;j′,j∑
t=1

fj;Lj′,j,l,t,Lj′,j,k,t
.

Thus, since for some 1 ≤ Jj′ ≤ Ni,j′ we have qi;Ki−1,j′,Mi;Ki−1,j
′ = ej′;Jj′ ,Jj′ , it follows from

Condition (c) that Qi+1;j′,j = {fj;Lj′,j,Jj′ ,t
,Lj′,j,Jj′ ,t

| 1 ≤ t ≤ Mi+1;j′,j} for 1 ≤ j′ ≤ Ki; hence,

for some Ij ∈ {Lj′,j,Jj′ ,t
| 1 ≤ j′ ≤ Ki, 1 ≤ t ≤ Mi+1;j′,j}, we have Wi+1;j′,j = {fj;Ij ,Lj′,j,Jj′ ,t

|
1 ≤ t ≤ Mi+1;j′,j} and Ui+1,j = {fj;Ij ,k | 1 ≤ k ≤ Ni+1,j}. But Conditions (a) and (b) imply

that the set of numbers {Lj′,j,k,t | 1 ≤ j′ ≤ Ki, 1 ≤ k ≤ Ni,j′ , 1 ≤ t ≤ Mi+1;j′,j} exhausts the

integers in the interval [1,Ni+1,j]. Hence, we can rewrite Ui+1,j as

Ui+1,j = {fj;Ij ,Lj′,j,k,t
| 1 ≤ j′ ≤ Ki, 1 ≤ k ≤ Ni,j′ , 1 ≤ t ≤ Mi+1;j′,j}.

Finally, since fj;Ij ,Lj′,j,Jj′ ,t
ej′;Jj′ ,k = fj;Ij ,Lj′,j,k,t

for 1 ≤ j′ ≤ Ki, 1 ≤ k ≤ Ni,j′ , and 1 ≤ t ≤
Mi+1;j′,j, the result follows. �

Let {d1, d2, . . . } be a subset of self-adjoint generators for D. Then, for each i ∈ N, by

Lemma 3.2.2, there exists a subset Gi = {gi,j}1≤j≤Ki
⊆ B such that

(G1) gi,j ∈ wi;1,j,1Bwi;1,j,1,

(G2) 0 6∈ σ(gi,j),

(G3) di ∈ C*(Ui,1, . . . , Ui,Ki
, Gi);

moreover, we may assume (using the functional calculus)

(G4) σ(gi,j) ∩ σ(gi′,j′) = Ø for i 6= i′ or j 6= j′,

(G5) ‖gi,j‖ ≤ 2−i−j−2.

Also, let Λ = {λi;j′,j,k | i ∈ N, 1 ≤ j′ ≤ Ki−1, 1 ≤ j ≤ Ki, 1 ≤ k ≤ Mi;j′,j} be a set of

mutually different positive real numbers such that Λ ∩ (
⋃

i∈N
⋃

1≤j≤Ki
σ(gi,j)) = Ø and

Ki−1∑
j′=1

Ki∑
j=1

Mi;j′,j∑
k=1

λi;j′,j,k ≤ 2−i−5, ∀i ∈ N.
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With the necessary ingredients now defined, we claim that a generator for B(A,D) is given

by G =
∑

i∈N Gi, where

Gi =



Ki∑
j=1

(
gi,j +

Mi;1,j−1∑
k=2

λi;1,j,kqi;1,j,k +
Mi;1,j∑
k=2

λi;1,j,kwi;1,j,k

)
, Ki−1 = 1

Ki∑
j=1

(
gi,j +

Mi;1,j∑
k=2

λi;1,j,kqi;1,j,k +
Mi;1,j∑
k=2

λi;1,j,kwi;1,j,k

+
Ki−1−1∑
j′=2

Mi;j′,j∑
k=1

(
λi;j′,j,kqi;j′,j,k + λi;j′,j,kwi;j′,j,k

)
+

Mi;Ki−1,j
−1∑

k=1

λi;Ki−1,j,kqi;Ki−1,j,k +
Mi;Ki−1,j∑

k=1

λi;Ki−1,j,kwi;Ki−1,j,k

)
, Ki−1 6= 1

.

It is plain to see

‖Gi‖ < 2−i−2 + 8

Ki−1∑
j′=1

Ki∑
j=1

Mi;j′,j∑
k=1

λi;j′,j,k ≤ 2−i−1(3.7)

so that G is well-defined.

Before proving that G generates B(A,D), we perform some straightforward calculations

which will be needed in the proof. In what follows, we drop the indices on the elements

of Λ to make our equations more readable. It is immaterial which specific member of Λ is

attached to which partial isometry; what is important is that for distinct partial isometries,

there are distinct members of Λ attached to each. Nevertheless, for the sake of rigor, we

make the following rule. Whenever an expression of the form aλui;j′,j,kb appears below, for

a, b ∈ B and ui;j′,j,k ∈ Qi;j′,j ∪Wi;j′,j (for any i ∈ N, 1 ≤ j′ ≤ Ki−1, and 1 ≤ j ≤ Ki), it is to

be interpreted as aλi;j′,j,kui;j′,j,kb for λi;j′,j,k ∈ Λ.

Define

S :=
⋃
i∈N

Ki−1⋃
j′=1

Ki⋃
j=1

Qi;j′,j,

and let qi;j′,j,k, qr;s′,s,t ∈ S. We calculate the product qi;j′,j,kqr;s′,s,t for i + 1 < r, i + 1 = r,

and i = r. Indeed, for i+ 1 < r,

qi;j′,j,kqr;s′,s,t =

qr;s′,s,t, j′ = Ki−1, j = Ki, k = Mi;Ki−1,Ki

0, otherwise
,(3.8)
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and

qi;j′,j,kqi+1;s′,s,t =

qi+1;s′,s,t, j′ = Ki−1, j = s′, k = Mi;Ki−1,j

0, otherwise
,(3.9)

qi;j′,j,kqi;s′,s,t =

qi;s′,s,t, j′ = s′, j = s, k = t

0, otherwise
.(3.10)

Taking adjoints and relabeling indices yields the products for i− 1 = r and i− 1 > r.

Now consider the subset of S given by R = S \ {qi;Ki−1,j,Mi;Ki−1,j
| i ∈ N, 1 ≤ j ≤ Ki}, and

let qr;s′,s,t ∈ R. Then

qr;s′,s,tGi =



Ki∑
j=1

(
qr;s′,s,tqi;1,j,1gi,j

+
Mi;1,j−1∑

k=2

qr;s′,s,tλqi;1,j,k +
Mi;1,j∑
k=2

qr;s′,s,tqi;1,j,1λwi;1,j,k

)
, Ki−1 = 1

Ki∑
j=1

(
qr;s′,s,tqi;1,j,1gi,j +

Mi;1,j∑
k=2

qr;s′,s,tλqi;1,j,k +
Mi;1,j∑
k=2

qr;s′,s,tqi;1,j,1λwi;1,j,k

+
Ki−1−1∑
j′=2

Mi;j′,j∑
k=1

(
qr;s′,s,tλqi;j′,j,k + qr;s′,s,tqi;1,j,1λwi;j′,j,k

)
+

Mi;Ki−1,j
−1∑

k=1

qr;s′,s,tλqi;Ki−1,j,k +
Mi;Ki−1,j∑

k=1

qr;s′,s,tqi;1,j,1λwi;Ki−1,j,k

)
, Ki−1 6= 1

so that, using Equations (3.8)–(3.10), we find qr;s′,s,tGi = 0 when i 6= r and

qr;s′,s,tG = qr;s′,s,tGr

(3.11)

=



gr,s +
Mr;1,s∑
k=2

λwr;1,s,k

+
Kr−1−1∑
j′=2

Mr;j′,s∑
k=1

λwr;j′,s,k + (1− δ1,Kr−1)
Mr;Kr−1,s∑

k=1

λwr;Kr−1,s,k, s′ = 1, t = 1

λqr;s′,s,t, otherwise

.
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It follows that

qr;s′,s,tGqr;s′,s,t =



gr,sqi;1,s,1qr;s′,s,t +
Mr;1,s∑
k=2

λwr;1,s,kqr;1,s,kqr;s′,s,t

+
Kr−1−1∑
j′=2

Mr;j′,s∑
k=1

λwr;j′,s,kqr;j′,s,kqr;s′,s,t

+(1− δ1,Kr−1)
Mr;Kr−1,s∑

k=1

λwr;Kr−1,s,kqr;Kr−1,s,kqr;s′,s,t, s′ = 1, t = 1

λqr;s′,s,tqr;s′,s,t, otherwise

(3.12)

=

gr,s, s′ = 1, t = 1

λqr;s′,s,t, otherwise
.

Moreover,

Giqr;s′,s,t =



Ki∑
j=1

(
gi,jqi;1,j,1qr;s′,s,t

+
Mi;1,j−1∑

k=2

λqi;1,j,kqr;s′,s,t +
Mi;1,j∑
k=2

λwi;1,j,kqi;1,j,kqr;s′,s,t

)
, Ki−1 = 1

Ki∑
j=1

(
gi,jqi;1,j,1qr;s′,s,t +

Mi;1,j∑
k=2

λqi;1,j,kqr;s′,s,t +
Mi;1,j∑
k=2

λwi;1,j,kqi;1,j,kqr;s′,s,t

+
Ki−1−1∑
j′=2

Mi;j′,j∑
k=1

(
λqi;j′,j,kqr;s′,s,t + λwi;j′,j,kqi;j′,j,kqr;s′,s,t

)
+

Mi;Ki−1,j
−1∑

k=1

λqi;Ki−1,j,kqr;s′,s,t +
Mi;Ki−1,j∑

k=1

λwi;Ki−1,j,kqi;Ki−1,j,kqr;s′,s,t

)
, Ki−1 6= 1

,

so that, using Equations (3.8)–(3.10) again, we find Giqr;s′,s,t = 0 when i > r, Giqr;s′,s,t =

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;s′,s,t when i+ 1 < r, and

Gr−1qr;s′,s,t = λwr−1;Kr−2,s′,Mr−1;Kr−2,s
′qr;s′,s,t,

Grqr;s′,s,t =

gr,s, s′ = 1, t = 1

λqr;s′,s,t + λwr;s′,s,t, otherwise
.
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Hence,

Gqr;s′,s,t =
r∑

i=1

Giqr;s′,s,t(3.13)

=
r−2∑
i=1

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;s′,s,t + λwr−1;Kr−2,s′,Mr−1;Kr−2,s

′qr;s′,s,t + Grqr;s′,s,t

=



r−2∑
i=1

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;1,s,1

+(1− δr,1)λwr−1;Kr−2,1,Mr−1;Kr−2,1
qr;1,s,1 + gr,s, s′ = 1, t = 1

r−2∑
i=1

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;s′,s,t

+(1− δr,1)λwr−1;Kr−2,s′,Mr−1;Kr−2,s
′qr;s′,s,t

+λqr;s′,s,t + λwr;s′,s,t, otherwise

.

Theorem 3.1. A C*-algebra with an AF-action is singly generated.

Proof. We will prove that C*(G) = B(A,D). For this, our goal is to show that R ⊆ C*(G).

Once this is done, we will be able to use the elements of R to extract the finite-dimensional

algebras
⊕

1≤j≤Ki
MNi,j

(and hence the AF algebra A) from C*(G) along with the self-adjoint

generators d1, d2, . . . of D. Since B = C*(A,D), the result will then follow.

Let � denote the lexicographic order on R; to be precise, qi;j′,j,k � qr;s′,s,t if i < r or if i = r

and j′ < s′ or if i = r, j′ = s′, and j < s or if i = r, j′ = s′, j = s, and k ≤ t. Let p1 = q1;1,1,1,

and for every i ∈ N, define pi+1 ∈ R such that pi+1 � q for every q ∈ R\{p1, . . . , pi} (roughly

speaking, pi+1 is the smallest element in R greater than pi). To show that R ⊆ C*(G), it is

sufficient to show that G and the sequence (pi)i∈N of nonzero mutually orthogonal projections

satisfy the hypotheses of Lemma 3.1.1. That G and (pi)i∈N satisfy Conditions 3 and 4 of

Lemma 3.1.1 is clear from the spectral properties of the members of
⋃

r∈NGr (in particular,

from Conditions G2 and G4), the definition of Λ, and Equation (3.12).

We now show that Condition 1 of Lemma 3.1.1 holds; defining Pn :=
∑

1≤i≤n pi, we wish

to show (1 − Pn)GPn = 0 for every n ∈ N. Appealing to Equations (3.12) and (3.13), we

have (1− P1)GP1 = Gq1;1,1,1 − q1;1,1,1Gq1;1,1,1 = g1,1 − g1,1 = 0 so that the desired equality is

true for the case n = 1. Fix n ∈ N, and suppose (1− Pn)GPn = 0. Notice

(1− Pn+1)GPn+1 =
(
1− (Pn + pn+1)

)
G(Pn + pn+1)

= (1− Pn)GPn + Gpn+1 − PnGpn+1 − pn+1GPn − pn+1Gpn+1;

thus, to ensure (1− Pn+1)GPn+1 = 0, we need

Gpn+1 − PnGpn+1 − pn+1GPn − pn+1Gpn+1 = 0.(3.14)
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To that end, assume pn+1 = qr;s′,s,t, and notice from the definition of Pn that

Pnpi = piPn =

pi, i ≤ n

0, i > n
.(3.15)

Hence, appealing to Equation (3.13),

PnGpn+1 =



r−2∑
i=1

Pnqi;1,Ki,1λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;1,s,1

+(1− δr,1)Pnqr−1;1,1,1λwr−1;Kr−2,1,Mr−1;Kr−2,1
qr;1,s,1

+Pnqr;1,s,1gr,s, s′ = 1, t = 1
r−2∑
i=1

Pnqi;1,Ki,1λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;s′,s,t

+(1− δr,1)Pnqr−1;1,s′,1λwr−1;Kr−2,s′,Mr−1;Kr−2,s
′qr;s′,s,t

+Pnλqr;s′,s,t + Pnqr;1,s,1λwr;s′,s,t, otherwise

(3.16)

=



r−2∑
i=1

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;1,s,1

+(1− δr,1)λwr−1;Kr−2,1,Mr−1;Kr−2,1
qr;1,s,1, s′ = 1, t = 1

r−2∑
i=1

λwi;Ki−1,Ki,Mi;Ki−1,Ki
qr;s′,s,t

+(1− δr,1)λwr−1;Kr−2,s′,Mr−1;Kr−2,s
′qr;s′,s,t + λwr;s′,s,t, otherwise

,

and appealing to Equation (3.11),

pn+1GPn =



gr,sqr;1,s,1Pn +
Mr;1,s∑
k=2

λwr;1,s,kqr;1,s,kPn

+
Kr−1−1∑
j′=2

Mr;j′,s∑
k=1

λwr;j′,s,kqr;j′,s,kPn

+(1− δ1,Kr−1)
Mr;Kr−1,s∑

k=1

λwr;Kr−1,s,kqr;Kr−1,s,kPn, s′ = 1, t = 1

λqr;s′,s,tPn, otherwise

(3.17)

= 0.

Thus, we see from Equations (3.13), (3.16), (3.17), and (3.12) that in fact Equation (3.14)

holds; that is, G and (pi)i∈N satisfy Condition 1 of Lemma 3.1.1.

Finally, to see Condition 2 of Lemma 3.1.1 holds for G and (pi)i∈N, we wish to show

lim
n→∞

‖(1− Pn)G(1− Pn)‖ = lim
n→∞

‖(1− Pn)G− (1− Pn)GPn‖ = lim
n→∞

‖G− PnG‖ = 0,
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where the second equality follows from what we just proved in the previous paragraph. Fix

n ∈ N, and assume pn+1 = qr;s′,s,t again. Notice

PnGi =



Ki∑
j=1

(
Pnqi;1,j,1gi,j +

Mi;1,j−1∑
k=2

Pnλqi;1,j,k +
Mi;1,j∑
k=2

Pnqi;1,j,1λwi;1,j,k

)
, Ki−1 = 1

Ki∑
j=1

(
Pnqi;1,j,1gi,j +

Mi;1,j∑
k=2

Pnλqi;1,j,k +
Mi;1,j∑
k=2

Pnqi;1,j,1λwi;1,j,k

+
Ki−1−1∑
j′=2

Mi;j′,j∑
k=1

(
Pnλqi;j′,j,k + Pnqi;1,j,1λwi;j′,j,k

)
+

Mi;Ki−1,j
−1∑

k=1

Pnλqi;Ki−1,j,k +
Mi;Ki−1,j∑

k=1

Pnqi;1,j,1λwi;Ki−1,j,k

)
, Ki−1 6= 1

.

That is, PnGi is a sum of terms of the form Pnqb for q ∈ (
⋃

1≤j′≤Ki−1

⋃
1≤j≤Ki

Qi;j′,j)∩R and

b ∈ B; in particular, by Equation (3.15), Pnqb = 0 for pn+1 � q and Pnqb = qb otherwise. It

follows that

PnGi =

Gi, 1 ≤ i < r

0, i > r
,

and subsequently, that

‖G− PnG‖ =
∥∥∥ ∞∑

i=r+1

Gi + Gr − PnGr

∥∥∥ < ∞∑
i=r+1

2−i−1 + ‖Gr − PnGr‖ <
∞∑

i=r+1

2−i−1 + 2−r−1.

Noticing that as n goes to infinity so does r, Condition 2 of Lemma 3.1.1 follows. We

conclude that R ⊆ C*(G).

Now, notice Wr;s′,s ⊆ C*(G) for every r ∈ N, 1 ≤ s′ ≤ Kr−1 and 1 ≤ s ≤ Kr. Indeed,

for any r ∈ N and 1 ≤ s ≤ Kr, wr;1,s,1 ∈ C*(G) since wr;1,s,1 = qr;1,s,1 ∈ R; moreover, from

Equation (3.11)

1

λr;1,s,k
(qr;1,s,1G− gr,s)qr;1,s,k = wr;1,s,k ∈ C*(G), 2 ≤ k ≤ Mr;1,s,

1

λr;j′,s,k
(qr;1,s,1G− gr,s)qr;j′,s,k = wr;j′,s,k ∈ C*(G), 1 < j′ < Kr−1, 1 ≤ k ≤ Mr;j′,s,

1

λr;Kr−1,s,k

(qr;1,s,1G− gr,s)qr;Kr−1,s,k = wr;Kr−1,s,k ∈ C*(G), 1 ≤ k < Mr;Kr−1,s;
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also,

1

λr;Kr−1,s,Mr;Kr−1,s

(
qr;1,s,1G− gr,s −

Mr;1,s∑
k=2

λwr;1,s,k −
Kr−1−1∑
j′=2

Mr;j′,s∑
k=1

λwr;j′,s,k

− (1− δ1,Kr−1)

Mr;Kr−1,s
−1∑

k=1

λwr;Kr−1,s,k

)
= wr;Kr−1,s,Mr;Kr−1,s

∈ C*(G).

Since U1,j = W1;1,j for each 1 ≤ j ≤ K1, we see
⊕

1≤j≤K1
MN1,j

⊆ C*(G) (see the discussion

following Lemma 3.2.2); hence, by Lemma 3.3.1,
⊕

1≤j≤Ki
MNi,j

⊆ C*(G) for each i ∈ N, and

we see A ⊆ C*(G). Furthermore, it is clear from Equation (3.12) that Gi ⊆ C*(G) for each

i ∈ N; but di ∈ C*(
⊕

1≤j≤Ki
MNi,j

, Gi) by Condition G3 so that {d1, d2, . . . } and hence D is

contained in C*(G). �

The following corollaries now follow from the discussion at the end of Section 2.

Corollary 3.1. A simple AH algebra with diagonal maps is singly generated.

Corollary 3.2. A Villadsen algebra is singly generated.

Corollary 3.3. Let B = B(A,D) have an AF-action, and let C be a separable unital simple

C*-algebrabe. Then B ⊗ C is singly generated. In particular, if B is a Villadsen algebra,

then B ⊗ C is singly generated.
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