VILLADSEN ALGEBRAS ARE SINGLY GENERATED
CHUN GUANG LI, ZHUANG NIU, AND VINCENT M. RUZICKA

ABSTRACT. We show that Villadsen algebras, which are not Z-stable, are singly generated.
More generally, we show that any simple unital AH algebra with diagonal maps is singly

generated.

1. INTRODUCTION

The generator problem asks about the minimal number of generators for a given C*-
algebra—see [13] for a survey of this problem. In particular, one wonders if a given C*-
algebra is singly generated, and it is an interesting open question whether or not every
simple separable unital C*-algebra is singly generated. In [13], it is shown that every simple
separable unital Z-stable C*-algebra B is singly generated (i.e., B® Z = B, where Z denotes
the Jiang-Su algebra [11]). But Villadsen algebras (of the first type, Definition 2.1 below)
provide examples of simple unital C*-algebras which are not Z-stable, and the motivation
for the current work is to show (Corollary 3.2) that these algebras are nevertheless singly
generated.

Being non-Z-stable, Villadsen algebras are not covered by the current classification the-
orem for C*-algebras ([3], [4], [7], [14], [9], [1], [10]). However, one regularity property they
do possess is stable rank one; that is, the invertible elements in a Villadsen algebra form a
norm dense subset of the algebra. Moreover, some partial classification results for Villadsen
algebras are obtained in [6] using the radius of comparison (or Cuntz semigroup).

In this paper, we show that Villadsen algebras are singly generated. In fact, we show that
any simple unital AH algebra with diagonal maps (Definition 2.2 below) is singly generated.
To show these algebras are singly generated, we introduce the following concept: a C*-
algebra B has an AF-action if it contains a simple AF algebra A and a C*-subalgebra D
such that

(1) B is generated by A and D,

(2) D commutes with a certain “diagonal” subalgebra of A,
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(3) vdv* € D for any d € D and v € V,

where V' denotes a special set of partial isometries in A which are intimately connected with
the diagonal subalgebra in the second condition (for a precise statement, see Definition 2.3).
Our main theorem (Theorem 3.1) states that any C*-algebra with an AF-action is singly
generated.

In Section 2, we establish some definitions and some simple consequences of these defini-
tions, and the remainder of the paper is dedicated to proving our main theorem at the end
of Section 3.

2. DEFINITIONS

Definition 2.1. Let (¢;)ien, (ki)ien and (I;);en be sequences of natural numbers, X be a

compact connected metric space, and E; be a set of cardinality k; for each ¢ € N such that,
writing X; = X and X, = X",

(1) E; C X,
(2) the set

Cit1 00 Cit1'Citj—1
Ei1 U ( U Ws(Ei+2)> U <U U WS(EHJ'))
=3 s=1

s=1

is dense in X1, where 7, denotes the coordinate projection,
. -1,
(3) D e 70,
for each i € N. A Villadsen algebra is the limit of an inductive sequence (B, ¢;)ien of C*-
algebras, where B; = M,,,_,(C(X;)), no € N and n; = n;_1(l; + k;), and the seed for ¢; is
given by
C(X;) > f»—>diag{fowl,...,fowl,...,fowci,...,fowcyf(xi,l),...,f(xi7ki)}

Vv NV

S Mli—i-ki (C(Xl—i-l)) )

where s;; € N for each 1 <t <¢; and s;; + -+ s;, = ;.

Note that the above definition of a Villadsen algebra is more general than the original
construction in [15]; in addition to the algebras in [15], Definition 2.1 also includes as a
special case some algebras constructed by Goodearl in [8] (see [6, Remark 2.1]).

Given an arbitrary inductive sequence (B;, ¢;);en of C*-algebras, define ¢, ; := ¢y_10- - -0¢;
for i/ > ¢+ 1 and ¢; ;41 := ¢;. Suppose (B;, ¢;)ien is as in Definition 2.1. Then ¢; is unital,

and a direct calculation shows that for ¢ > ¢ 4+ 1 the seed for ¢, is (up to permutation)
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given by

(2.1) C(Xy) > f— diag{ fom, ..., foTec, |

v~

iy

fo 7T1(Ez'/—1)a ., fo Ty g (Ei’—1)7

J/

~—
il o

fo 771(Ei/72)7 ., fo iy _g (Ei’72) 1li/_1+ki/_1>
N 7

~—
Livly g

fom (Ei'*3)’ o fo Teicy_y <Ei'*3> 1(lz"71+ki’71)(lz"—2+ki’72)7 T

~—
Ll

f o 7T1(Ei+1)7 cee f © 7Tc2-(Ez'+1)l1(li,,1+ki,,1)~--(li+2+ki+2)7

-~

l;

f<Ei)1(li/_1+ki/_1)“‘(li+l+ki+1)} € M(li+ki)"‘(li’—1+ki’—1) (C(XZ/)) :

Definition 2.2. Let B be the limit of an inductive sequence (B;, ¢;);en of unital C*-algebras,
where each ¢; is unital. We call B a (unital) AH algebra with diagonal maps if B; =
D1<jcr, M, ; (C(Xi;)), where X;; is a compact connected metric space and n;;, K; € N,
and if for any ¢ > 7 the restriction of the map ¢;; to any direct summands M, (C(X;;))
and M,,,, ,(C(Xy ;7)) has a seed of the form f+— 0 or f > diag{foAi,..., foAy,} for some

continuous maps Ay, ..., Ay Xy — X, 5.

If (B, ¢i)ien is as in Definition 2.2 and each ¢; is injective, it is well-known that the limit
algebra B is simple if and only if, for any ¢+ € N and nonzero b € B;, there is an 79 >
such that for every i’ > ig, ¢;,#(b)(x) # 0 for every x € [ |,;<x, Xiv; ([5, Proposition 2.3]).
From this characterization of simplicity for B, one sees that the unital AF subalgebra A of
B obtained as the limit of the inductive sequence (A;, ¥;)ien, where A; = @, <j<i; My, ; and
;i = @i a,, is simple if B is.

Letting (B;, ¢;):en be as in Definition 2.1 once again, it is clear that the Villadsen algebra
arising from this inductive sequence is an AH algebra with diagonal maps with injective
connecting maps; moreover, from the above characterization of simplicity for such an algebra,
one sees almost immediately that it is simple. Indeed, fix ¢« € N and let f € B;.1 be nonzero;
then, by Condition 2 of Definition 2.1, there exists some ¢y > 7+ 1 and y € E;,_; for which
foms(y) # 0; we then see from Equation (2.1) that for every ¢ > ig, ¢ip1.0(f)(x) # 0 for
any r € Xy .

Definition 2.3. Let B be a unital C*-algebra containing a simple separable unital AF
subalgebra A and a separable unital C*-subalgebra D. Let (@1§j§Ki M, ;, ®i)ien be a

canonical inductive limit decomposition for A, where n; ;, K; € N. Denote the set of canonical
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matrix units for My, ; by V;;, and define

K, Ki
V= UV Eij={veViylv=1v"} Dy:=C* (U U E”)

€N j=1 1€N j=1

We say that B has an AF-action if

(1) B=C*(A, D),
(2) [d,d'] =0 for any d € D and d’ € D,
(3) vdv* € D for any d € D and v € V.

In the sequel, to emphasize the dependence of B on A and D, we may write B(A, D) for B;
moreover, associated to B is the inductive limit decomposition (€D, << x, M, ;, @i)ien of A,

which we may simply refer to as the “associated decomposition of A.”
The following lemmas are straightforward consequences of this definition.

Lemma 2.1. A simple AH algebra with diagonal maps has an AF-action. In particular, a

Villadsen algebra has an AF-action.

Proof. Let B = lim;_,(B;, ¢;) be a simple AH algebra with diagonal maps, where B; and ¢;
are as in Definition 2.2, and let A = lim; ,(A4;, ;) be the AF subalgebra of B as described
in the paragraph following Definition 2.2. Denote the set of canonical matrix units for M, ;
by V;; and define the sets V', E; ;, and Dy as in Definition 2.3. Moreover, define

D:=C* ({p®f‘pEEi,ja felC(Xy;),ieN, 1 SjSKz‘})-

Notice D is a separable unital C*-subalgebra of B. Furthermore, that B = C*(A, D)
follows from the fact that any b € My, ;(C(X;;)) may be written as a finite sum of elements
of the form v(p ® f)v' for v,v' € Vi ;, p € E;;, and f € C(X;;); since D is commutative and
Dy C D, we have [d,d] = 0 for any d € D and d' € Dy; finally, clearly v(p ® f)v* € D for
any v € V;;, p € Ey j, and f € C(Xy ) so that vdv* € D for any v € V and d € D. O

Lemma 2.2. Let B = B(A, D) have an AF-action, and let C' be a separable unital simple
C*-algebra. Then B @ C' has an AF-action.

Proof. Define A; := @, <, Mn,; ®Clc for each i € N, where (D, j<x, Mn,;, di)ien is
the associated decomposition of A, so that A = [J,cyAi is a simple AF subalgebra of
B @ C. Identify the set V;; of canonical matrix units for M,,, ; with the set V; ; = {v® 1 |
v € Vijt in B® C. Then, writing V = U;cyUicjcr, Vigs &y = {v € Vi | v = v},
Dy = C*(UienUi<j<k, &), and D = D ® C, it follows that B ® C' = C*(A, D), [d,d] =0

for any d € D and d’ € Dy, and vdv* € D for any d € D and v € V. O
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3. A GENERATOR FOR AN ALGEBRA WITH AN AF-ACTION

3.1. Preliminary Lemmas. Let B be a unital C*-algebra, and let a € B be such that
giaq; = 0 for ¢ > j, where (¢;)1<i<n € B is a finite sequence of nonzero mutually orthogonal
projections summing to the identity (a is “upper triangular” with respect to (g;)). It is
well-known that o(a) C <<, 0(¢iag:), and the following lemma gives a similar result for

infinite sequences.

Lemma 3.1.1. Let B be a unital C*-algebra, let a € B, and let (p;)ien € B be a sequence

of nonzero mutually orthogonal projections such that
(1) (1 — sz-)aZpi =0 for each n € N,

(2) lim H(l—sz) (1—sz)H =0,

(5) (pzapz) n U(pz’apz ) = Q fori# i,
(4) 0 & o(pap;) for any i € N.
Then

o(a) C

o(p;ap;) U{0} and (pi)ien € C*(a).

e

i=1

Proof. Define P, := ZKK” p;, and Write 1 — P, = P for each n € N; also, define Py := 0
so that P;- = 1. Notice for any n € N, P, = p, + P}, p, P =0, and P (P, ,aP |)p, =
PtaP,p, = 0 by Condition 1. Fixing n € N, it then follows from the paragraph preceding
this lemma that o(PL ;aPt ) C o(pyap,) U o(PaPl); by induction,

(3.1) o(P Pt ) C U o(pjap;) Ua(PraPy), Ym >n.

j=n
If X € o(P,-,aP, ) and A € o(p;ap;) for any j > n, Equation (3.1) implies A € o(P;"aP;")
for every j > n; then, by Condition 2, A = 0 and

(3.2) (P U o(pjap;) U {0}.

Taking n = 1, we have the desired containment for o(a).
Let n € N be arbitrary again. By Equation (3.2) and Conditions 3 and 4, o(p,ap,) N
o(PtaPt) = (. Tt follows that

(3.3) Pn € C¥(P,_yaPy);

we refer the reader to [12, Theorem 1] and [2, p. 22] for the details. If py,...,p,—1 € C*(a),
expanding Pt jaPL | in terms of py, ..., p, 1 reveals that P aPL , € C*(a). Now, taking
n =1 in Equation (3.3), we see p; € C*(a); thus (p;)ien € C*(a) by induction. O
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Lemma 3.1.2. Let B be a unital C*-algebra, and suppose B contains a unital C*-subalgebra

D and a finite set {vy}1<k<n of nonzero partial isometries such that
(a) vy is the range projection of each vy, i.e., v1 = VEV},

(b) the source projections form a partition of unity for B, i.e., (vivg)(vivp) = 0 for
k # K and Z1gkgn(v;§vk) =1,

(¢c) the source projections commute with D, i.e., [vivg,d] =0 for any d € D,
(d) vpdvy € D for any d € D.

Then, the map

P Mn ((Ul’UT)D(Ul’UT)) — C*(D, U1y - ,Un), [bi,j]?,jzl — Z Z ’U:bi’j'l)j

i=1 j=1

18 a *-isomorphism.

Proof. 1t is clear that & is linear and preserves adjoints. For multiplicativity, notice

Bt @) = (3 wibsns) (0D wrensns)

i=1 j=1 i=1 j=1

= <Z vibivr + -+ Z vjbi,nvn) (Z/U:TCL]'UJ' + 4 vaﬁbcn,jvo
i=1 i=1 j=1 J=1

— < z”: v;kbivlzq) < Z vlcmv]) < Z vrb; nvn> < z”: v;“Lcwvj)
— =

n n

=33 ()

=1 j5=1
- q)([ai,j])7
where a;; = >, <k<n b; kcx; and where the third equality is a result of Condition (b). Hence,
D ([bi;])®([ci]) = P([bigl[ci)])-
Now, notice v; = vjv] = v11vf € D by Condition (a) and Condition (d). Fixing some
1 < k < n and defining [b; ;] such that by, = (v1v])v1(v1v]) = vy and b;; = 0 otherwise, it
follows from the previous sentence that [b; ;] € M, ((v1v7)D(v1v7)). We then see vy, is in the

image of ® since ®([b; ;]) = vivivp = vV1vg = VRULVE = Ug. Moreover, for any d € D,

(3.4) d= (ivfw) <Zv vl> = zj: (vfv;)d (v} v;)

by Condition (b) and Condition (c); by Condition (a),

(3.5) Z(U:Uz (v v;) Zv v107)d; (V107 vy,

=1
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where d; = v;dv} € D for each 1 < ¢ < n. Putting Equation (3.4) and Equation (3.5)
together, we see d is in the image of ® since ®([¢;;]) = d when ¢ = (v1v])dg(v107), for
each 1 <k <mn, and ¢;; = 0 otherwise. Thus ® is onto.

Finally, notice if ®([b;;]) = 0, then

0 = v, ®([bi])v; = Z Z URUT b jUU = O bi 05

i=1 j=1
for every 1 < k,l < n, where ¢ denotes the Kronecker delta function; in particular, ® is

injective. U

Lemma 3.1.3 below references a result from the paper of Olsen and Zame [12]; we reproduce

a version of it here for the reader’s convenience.

Lemma (Olsen and Zame). Let A be a unital C*-algebra generated by the k(k + 1)/2 in-
vertible self-adjoint elements ay, . .., apgr1y/2 with pairwise disjoint spectra. Then, My(A) is

generated by the upper triangular matriz

al a2 P ak
0 apqr -+ agp—
0 - 0 agrsn2

Lemma 3.1.3. Let B, D, and {vk}1<k<n be as in Lemma 3.1.2. Let m be a positive integer
such that n > 2m — 1, and let {dy,...,d,,} € D\ {0} be a subset of self-adjoint elements.
Then, there exists an invertible element g € B such that dy, ..., d,, € C*(g).

Proof. As in Equation (3.4) and Equation (3.5), we can write d; € {dy,...,d,,} as

d; = Zv;(vlvf)di,j(vlvf)vj, dij = vidiv; € D.
j=1
Consider the self-adjoint elements (vivy)d; ;(v1v7) € (viv])D(vivf) for 1 < ¢ < m and
1 < j < n. Suppose the distinct nonzero such elements constitute a set S’, and let S =
S" U {viv7}. Denoting the cardinality of S by N, C*(S) is a unital C*-algebra generated
by N <nm+ 1 <n(n+ 1)/2 self-adjoint elements; it is then an simple consequence of the
continuous function calculus that C*(S) is generated by n(n + 1)/2 invertible self-adjoint

elements with disjoint spectra, say ai,...,anmn+1)/2. It follows from Olsen and Zame that
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M, (C*(S)) is generated by an element g of the form

a/l a2 « e . an

0 Gpy1 -+ ap—1
g=1. . . . ;

0 -+ 0 Gpmy1)2

notice g is invertible since its diagonal entries are (see the paragraph preceding Lemma 3.1.1).

Now, consider the map ®: M, ((v;v])D(v1v7)) — C*(D,vq,...,v,) from Lemma 3.1.2.
Clearly ®(C*(g)) = C*(®(g)), and ®(g) is invertible. Fix 1 < ¢ < m; since C*(g) contains
the element [ay,], where a; ; = (v107)d; j(v1v]) for 1 < j < nand a;; = 0 otherwise, ®(C*(g))
contains the element ®([ax,]|) = d;. Writing g = ®(g), the result follows. O

3.2. Lemmas Pertaining Specifically to Algebras with AF-actions. Let B = B(A, D)
have an AF-action, and let (€D, <j<K; My, ®;)ien be the associated decomposition of A. Fix
19 € N, and denote the multiplicity of the embedding of Mnio,j’ into My, ; via @i, ; by mi, .5 5,
where i > iy, 1 < j/ < K;,, and 1 < j < K. For a positive integer N, note that one can
always find an ¢ > ig such that m;, ;,;» ; > N for each 1 < 5’ < K;; and 1 < j < Kj; this is a

simple consequence of the fact that A is simple.

Lemma 3.2.1. Let B = B(A, D) have an AF-action, and let (D, ;<x, Mn, ;. ¢i)ien be the
associated decomposition of A; denote the set of canonical matriz units for M,,, . by Vi ; and
the subset of V; ; consisting of all self-adjoint elements by E; ;. Let p € Ey j for some i € N
and some 1 < j' < Ky, and let {dy,...,d,} € pDp be a subset of self-adjoint elements.
Then, there exists an invertible element g € pBp such that dy, ..., d,, € C*(g).

Proof. Let @ be such that my ;7 ; > 2m — 1 for each 1 < j < K;, and write my ;.5 ; = M;
for convenience. For each 1 < j < Kj, there is a subset {v;x}i1<r<n, € Vi of cardinality
Mj such that v;; is the range projection of each vjy and p = 37, i re D21 cpens, (V4Vsk);
writing p; = >, <k<M, (v;f’kvj,k), it follows that the source projections of the members of the
set {v;x h1<r<ar; form a partition of unity for p; Bp;. Moreover, notice vjx and vj, commute
with p; so that v;xp;dp;v;, = pjvjedvjp; € p;Dp; for any 1 < k < M; and d € D; also,
the source projections of the members of the set {v;x}1<k< M; are contained in Dy so that
(V5 xVik)Pidp; = pidp;(v;vs) for any d € D. We conclude that for each 1 < j < Kj, p; Bp;
is a unital C*-algebra containing a unital C*-subalgebra p; Dp; and a finite set {v;x }1<k<ns,
of nonzero partial isometries such that

(a) vj1 = ViRV

(b) (v 5,k Y3, k) (V] 5.k'U3, ) =0 for k # k' and Z1gk§Mj (v;‘:kvj,k) = Dj>

() [v] V), ] =0 for any d' € p; Dp;,

(d) vjrd'vj, € p;Dp; for any d’ € p; Dp;.
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For each 1 < j < Kj, consider the self-adjoint elements p;dip;,...,p;dnp; € p;jDpj;
take the distinct nonzero such elements and form a set S; C p;Dp; \ {0}. Then, |S;| (the
cardinality of S;) is a positive integer such that M; > 2m — 1 > 2|5;| — 1. By Lemma 3.1.3,
there exists an invertible element g; € p;Bp; such that p;dip;,...,p;dmp; € C*(g;) for each
1<) <K,

Assuming o(g;) No(gy) = O for j # j' (which we may by the functional calculus), we
claim that the C*-algebra generated by g = Zlgngi g;j € pBp contains dy, ..., d,,. Indeed,
g is “diagonal” with respect to the sequence (p;)1<;<k,, and it is a simple corollary of Lemma
3.1.1 that (p;)1<j<k, € C*(g); hence g; € C*(g), hence p;dipj, ..., p;dnp; € C*(g), for each
1 < j < K;. But, notice d; = ZlSjSKi p;dip; for each 1 <1 < m (since D and Dy commute).
The result follows. 0

Lemma 3.2.2. Let B(A, D), (@1Sj§Ki My, ;, @i)ien, Vij, and E; j be as in Lemma 3.2.1. Fiz
i € N. For each 1 < j < K, let pj € Ejj and {vjx}i1<k<n,;, € Vi be a subset of cardinality
n, ; such that v;; = p; is the range projection of each v;j. Then, given a self-adjoint element
d € D, there exists a subset G = {g;}1<j<k, € B such that

(1) g; € pjBp;,
(2) 0 & a(g;),
(3) d € C*({vrkhichzniys -+ {UK K H1<kn «,» G)-

Proof. Notice the source projections of the elements of the set {vjx}1<k<n,, exhaust the
elements of £ ; for each 1 < j < K; so that the projections in the set (U, < re, {0} x Vi b1<i<n, ;

form a partition of unity for B. We can then write d as

K; Mij K; 7nij
(3.6) d= < Z(v;kvj,k))d( S Z(v;kvj,kw
j=1 k=1 j=1 k=1
K; nij
= Z Z(U;,kvj,k)d(vzk%k)
j=1 k=1
K; nij
=Y W psik) AV ps)vs
j=1 k=1
K; nij
= v k(pidispivin
j=1 k=1

where d;; = vj,dv},. Consider the subset {p;d;ip;,...,pjdjn, ;pj} € p;jDp; of self-adjoint
elements for each 1 < 57 < K;; Lemma 3.2.1 implies there exists an invertible element
g; € pjBp; such that p;d;ip;, ..., pidjn, ;p; € C*(g;). Defining G := {g1,...,9x,}, the final
assertion follows from the last equality in Equation (3.6). O
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We remark that the subsets {vjx}1<p<n,; € Vi; from the previous lemma generate the

finite-dimensional C*-algebra @B, <, My, ;; that is,

K;
P M., = C* ({ona i o)
j=1

For this, it is sufficient to show V;; € C*({vjx}1<k<n, ;) for each 1 < j < K;. Indeed, fix
gy and let Vi; = {es; | 1 < s,t <ny;}. Then, ey 4, = vj, v for each 1 < k <y, where
1 <ty <n;,;and ty # ty for k # k'; thus v, = ey, 4, for some 1 < s, < n,; ;. But, v, is
the range projection of each v, so that v;; = e;, 5, = €s,+,; hence s = t; = s; for each
1 < k < mn;,; so that v;; = es,+,. Then, to obtain ez; for some 1 < s,¢ < n;;, take the

product v} v;p for k and k' such that ¢, = s and ¢ = 1.

3.3. Main Results. Let B = B(A, D) have an AF-action, and let (€D, <, Mn,;, ®i)ien
be the associated decomposition of A; denote the set of canonical matrix units for M,,, . by
Vi; and the subset of V; ; consisting of all self-adjoint elements by E; ;. To prove our main
theorem, that every C*-algebra with an AF-action is singly generated, we will construct a
generator for the C*-algebra B. We now define the sets of elements from which we will build
a generator for B.

Let (s;)ien be a sequence of natural numbers such that n,, ; > 1 for each 1 < j < K, and
M,

j>1foreach 1 <j <K and 1 <j < K, ,; for convenience, write

Si+1;4" +17

./ . .
Ki=Ks,, Niy=nsj, My =mss 0 1<7 <Kiy 1 <5 < Kigg;

moreover, define Ky := 1 and My, ; := Ny j for each 1 < j' <Ky and 1 < 5 <Kj.

Inductively on 4, construct sets of projections @Q;.;: ; = {qi;j/,jyk}lgkgMi‘j,j foreach 1 < j' <
Ki—1 and 1 < j < K; of cardinality M;,;s ; such that

(Ql) Qiyrj C Es, ; for each 1 < j' < K;_q,

(Q2) pic1jr = D1<jek, quQi;j/,j q for each 1 < j* < K;_1, where pg; is the identity and

Pi-1," = Gi-15K; 2,5/ My 14, , 50 for ¢ > 1.

We take Qi,1; = Es, j for 1 < j < K; to start the induction. To each set of projections
Qi.j.;, associate a set of partial isometries W ; = {wi;j’,j,k}ISkSMi;j/,j of cardinality M;; ;
such that

(W1) W,y C Vi, jforeach 1 < j" <Ky,

(W2) the range projection of each member of Wi/ ; is w;q ;1 for 1 < j" < K,_q,

(W3) the source projection of w.jr ;1S s j k-
For each i € N and 1 < j < K;, choose additional sets of partial isometries U;; =

{Ui;j,k}lgszNi,j of cardinality Nm’ such that

(Ul) Wi;j’,j Q U,’J Q Vghj for each 1 S j/ S Ki—la
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(U2) ;51 = wia 41 is the range projection of each member of U ;.

We then have the following lemma.

Lemma 3.3.1. For eachi € N and 1 < j <K, 1, one has

K;
Uit1; C C* (ED Mn, ;, Witti1js- - - Wittik,g) -
j=1
Proof. Let Vy, jo = {ejur | 1 <1,k <N;j;} for 1 <j" <K, and Vj ={fiur | 1 <Lk <
N;y1;} for 1 < j <K;;. Then for each j there exist positive integers Lj ;5 for 1 < 5/ <K,
1 <k<N,j,and 1 <t <My, ; such that
(a) 1< Ly jrs < Nijaj,

(b) Lyt kit 7 Ljp ko, TOr j1 # Jy o1 ky 7 ko or £y # 1o,
M

i+1,J

Kir1 Mita505
(C) ej,§lvk = Z Z fj ] NERA ] gkt
j=1 t=1

Thus, since for some 1 < Jy < N;;» we have gk, , Mg, |5 = Ci'jrdys it follows from
Condition (c) that Qi11.57.; = {fj.L, ot ot L 50 |1<t< Mz+1,g’,j} for 1 < j" < K;; hence,
for some I; € {Ljr ;7,1 <7 <K, 1<t < My}, we have Wiy = Uity |
1 <t < Mgyt and Upprj = {fipe | 1 <k < Ngyy b But Conditions (a) and (b) imply
that the set of numbers {Ljs ., |1 < j <K;; 1 <k <N;;, 1<t <M;y,;,} exhausts the

integers in the interval [1,N;;; ;]. Hence, we can rewrite U1 ; as
Ui-&-l,j = {fj;lijj/,j,k,t | 1< j, < Kia 1<k< NZJ'? l<t< Ml‘f‘lij'vj}'

Finally, since fj;jj,Lj,ijjhtej,;Jj,’k = fj;Ij,Lj/,j,k,t for 1 <j <K;,1<k<N;y,and1 <t <

Mit1,5,, the result follows. O]

Let {di,ds,...} be a subset of self-adjoint generators for D. Then, for each i € N, by
Lemma 3.2.2, there exists a subset G; = {¢;;}1<j<k; € B such that

(G1) gi5 € win jaBwia i,

(G2) 0 ¢ a(giy),

(G3) d; € C*(U;a, ..., Uik, Gy);
moreover, we may assume (using the functional calculus)

(G4) 0(gi5) No(gw ) = O for i # 1" or j # 7',

(G5) llgigll < 277772
Also, let A = { N | 7€ N1 <5 <Ki1,1 <j<K;,1<Fk<M,;;;} beaset of
mutually different positive real numbers such that A N (U;cy Ui<j<k, @(9i5)) = @ and

1]]

iz > Nk <2770 WieN

7'=1 =1 k=1
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With the necessary ingredients now defined, we claim that a generator for B(A, D) is given
by & =3,y &, where

;

K; M;1,5—1 Mi;1,5
Yol gt 20 MengkGiagkt D0 AinjkWingk | Ki-i =1
j=1 k=2 k=2
i Mi;1,; M1, 5
Yol Gt 20 NingkGiigk Do N jkWi ik
e, — i1 =2 =2
! Ki1—1 M0
+ 2 > (Ngrgkligik + Nigr kWi k)
=2 k=1
Mi;Ki_Lj_l Mi;Ki—la]'
+ 2 Nk gkGiKe gk T D Az’;KH,j,kwi;K“,j,k)v Ki-1 # 1
k=1 k=1
\

It is plain to see

Ki-1 K; My

(3.7) 18 <2772 4+8) > > Aggr <27

j'=1j=1 k=1
so that & is well-defined.

Before proving that & generates B(A, D), we perform some straightforward calculations
which will be needed in the proof. In what follows, we drop the indices on the elements
of A to make our equations more readable. It is immaterial which specific member of A is
attached to which partial isometry; what is important is that for distinct partial isometries,
there are distinct members of A attached to each. Nevertheless, for the sake of rigor, we
make the following rule. Whenever an expression of the form alu;.j ;b appears below, for
a,be B and u;j ik € Qiyr; UWij; (forany i € N, 1 < j <K;_q, and 1 < j <K;), it is to
be interpreted as al;j ;i jixb for Aijrjx € A.

Define

Ki1 K;

s=UJ U U@

ieN j'=1 j=1
and let ¢k, @rs.s¢ € S. We calculate the product ¢ xGrs s for i +1 <r, i 4+1 =1,
and ¢ = r. Indeed, for 1 + 1 < r,

qr;s' st j/ = Ki—17 ] = Kia k= Mi;Kifl,Ki

(38) qi:j' .5,kQr;s' st = . ’
0, otherwise



(3.10)
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-/ - /
Qit1;s' sty ] = Kici, j =58 k= Mi;Ki—l,j
Qisg g,k Qi+ 158" 5,6 = . ’
0, otherwise

A B _
Qiss' sty ] —8,]—S,l€—t
qi;j,’j’kqi;sl’s)t - . °
0, otherwise

Taking adjoints and relabeling indices yields the products for: — 1 =r and i —1 > r.

Now consider the subset of S given by R = S\ {¢:k

let gy, s+ € 1.

|Z€N71SJSK1}7and

i—1:0MisK; 1,5

Then

(K,
o\ Grist50901.5.1 90
j=1

Mi1,;—1 Mi;1,;
+ Z qT;S’ﬁsvt)‘Qi;Lj,k"‘ Z QT;S’,s,tQi;Lj,l)\wi;l,j,k ) Kioi=1
k=2 k=2
Ki Mi;1, M1,
Ui 508i = § 20 | G5t @131 905 T D2 Qrist s i Mgt g T D2 rssts,tdist g1 AWist ok
j=1 k=2 k=2
Kim1—1 M
+ 2 2 (Gt Mg gk T Qs 0t g MW k)
=2 k=1
Misk;_1,5—1 Misk;_1,5
+ Z QT;SCS,t/\Qi;KFl,j,k_i' Z Qr;s/,s,tQi;l,j,l)\wi;Kl—,l,j,k: ) Ki—1 7"é 1
\ k=1 k=1

so that, using Equations (3.8)—(3.10), we find ¢,.¢ s+®; = 0 when ¢ # r and

(3.11)

qT;SI,S7t® = dr

;

\

;s/,s,t®r

Mr;l,s
Jr.s + Z )\wr;l,s,k

k=2

Kr_1—1 Mr;]‘/,s MT;K7-71,S
/ .
+ )\wr;j’,s,k + (1 - 51,KT71> Z AwT;Kr71,87k7 s=11=1
i'=2 k=1 k=1

Arist st otherwise
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It follows that

(3.12)
( M'r;l,s
gr,sQi;l,s,lQr;s’,s,t+ Z )\wr;l,s,kQT;I,s,kQT;s’,s,t
k=2
Kr—lfl Mr;j/,s
+ > X AWyijr s k7,5, krss” 5.t
QT;S’,s,tejqr;s’,s,t = Jj'=2 k=1
Mr;Kril,s
r_ _
+(1 - 51,KT71) Z AwT§Kr71757kq7’§K7‘71757kq7";5l757t’ s=1t=1
k=1
L )\QT;S/,s,th;S’,s,ta otherwise
r_ _
) Grss s=1,t=1
Aqr.s' st, Otherwise
Moreover,
( KZ
9i,549i:1,5,14r; st
Jj=1
Mi;l,j_l Mi;l,j
D MnkGesst t D0 AWit ki1 ks st ) Kioi=1
J J J
k=2 k=2
Ki M1, M1,
®iQT§3/vSvt = gi:jqﬁl,j,qu;$’7$7t+ Z )‘Qi;l,j,kQT;s’,s,t+ Z /\wi;l,j,in;l,j,kQT;s’,s,t
j=1 k=2 k=2
Kic1=1Mi;r
2 Y (Mg kst st + ANWigr ki j kst st)
=2 k=1
Misk;_q,5—1 Misk,; 1.4
T2 Ak gkl st D AWik, gk GiK kst | Kot # 1
\ k=1 k=1

so that, using Equations (3.8)—(3.10) again, we find &,¢,.¢ s; = 0 when i > r, &;¢.¢ 5 =
Awi;"i—lyKi,Mi;Ki,l,Ki Qr;s’ s, when i +1 <r, and

Q5r—1QT;s’,s,t = )\w’r—l;Kr_g,s’,MT_l;K 1Ar;s! sty

r—2,8

/
Gr,s s=1t=1
®TQT;S/,s,t = . .
Ay 54+ AWyg 51, Otherwise
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Hence,

(3.13) SGrasi = Gihriy s
=1

r—2

- § )‘wi;Kz’—l,KpMi;Ki,l,Ki Qris’ st + /\wr—l;Kr,g,s’,Mril;KT_w/QT;S’,s,t + erqhs’,s,t
=1
(r—2
Z )\wi§Ki—17Ki7Mi;Ki_1,Ki Qri1,s,1
=1
! __ —
+<1 - 5T71))‘wal;Kr—z,Lqu;Kr_QJqﬂl,s,l + grs, S = 17 t=1
. r—2
o Z )\wi§Ki—laKi7Mi;Ki_1,K7; Qr;s’ st
=1
+<1 - 57‘,1))\wrfl;Kr_Q,s’,MT_I;KT72’S/ Qr;s st
. +/\QT;5’,s,t + AU}’/‘;s’,s,t; otherwise

Theorem 3.1. A C*-algebra with an AF-action is singly generated.

Proof. We will prove that C*(®) = B(A, D). For this, our goal is to show that R C C*(&).
Once this is done, we will be able to use the elements of R to extract the finite-dimensional
algebras €, ;x, Mn, ; (and hence the AF algebra A) from C*(&) along with the self-adjoint
generators dy, ds, ... of D. Since B = C*(A, D), the result will then follow.

Let < denote the lexicographic order on R; to be precise, g;,jr jx = @rs st if i <rorifi=r
and j' < dorifi=r,j/=5,andj<sorifi=r,j =¢,j=sandk <t. Let p1 = q1.111,
and for every i € N, define p; ;1 € R such that p;;; = ¢ for every ¢ € R\ {p1,...,p;} (roughly
speaking, p; ;1 is the smallest element in R greater than p;). To show that R C C*(®), it is
sufficient to show that & and the sequence (p;);en of nonzero mutually orthogonal projections
satisfy the hypotheses of Lemma 3.1.1. That & and (p;);en satisfy Conditions 3 and 4 of
Lemma 3.1.1 is clear from the spectral properties of the members of | J, . G, (in particular,
from Conditions G2 and G4), the definition of A, and Equation (3.12).

We now show that Condition 1 of Lemma 3.1.1 holds; defining P, := >, ., pi, we wish
to show (1 — P,)®P, = 0 for every n € N. Appealing to Equations (3.12)_a_nd (3.13), we
have (1 — P1)®P, = Gq1.111 — 11.119¢11.11 = 11 — 911 = 0 so that the desired equality is

IR ) 3Lyt

true for the case n = 1. Fix n € N, and suppose (1 — P,)® P, = 0. Notice

(1 - PnJrl)@PnJrl = (1 - (pn +pn+1))®(Pn +pn+1)
= (1 - Pn)®Pn + 6anrl - Pn®pn+1 - anrl@Pn - anrl@anrl;

thus, to ensure (1 — P,41)®B P, = 0, we need

(3.14) Opnt1 — POpui1 — pnp16 L, — ppy1Gppi = 0.
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To that end, assume p,,+1 = @5 s+, and notice from the definition of P, that

) i S n
0, 1>n

Hence, appealing to Equation (3.13),

(r—2
Z ani§17Kiyl)\w@Kifviini;Ki_l,Ki Qr;1,s,1
=1

+(1— 51",1)PnQrfl;l,l,lAwrfl;Kr,g,l,Mr,l;Kr_%lCIr;l,s,l

+P’nq7‘;1,8,1g7‘787 S/ = 1, t=1
(3.16) P®pni1i =<, ,

Z PnQi§1,Ki;1)\w7:§Ki—1’Ki:Mi;K,L,I,Ki Qr;s' st
=1

+(1 - 5’/‘,1)PTLq’/‘—l;1,5,71Awr—l;KT‘fQ,S,,MTilAK 14r;s st
p—2,8
+Pn)\QT';s’,s,t + PnQr;l,sJ)\wr;s’,s,t, otherwise
(r—2
Z )‘wi;KFLKi,Mi;Ki_I,Ki dr;1,s,1
1=1
[ _

) A = ) AW ko M, s 1 s=1,t=1
- r—2 >

Z )\wi§Ki—17KiaMi;Ki_l,Ki Qris’ st

i=1

L +(1 - 57”,1))‘wT*1§Kr—275/7MT_1;KT727S/QT;S/,s,t + )\wr;s’,s,ta otherwise

and appealing to Equation (3.11),

( Mr;l,s
gr,sQr;l,s,lpn + Z Awr;l,s,k‘]r;l,s,kpn
k=2
Kr—lfl Mr;j’,s
+ 2 Y My kGrirs kb
(3.17)  pp1®F, = =2 k=1
MT;KT.il,s
/
+(1 - 517K7‘71) Z )‘wr;qu,Syqu;Kr—l,S,kPm s=1t=1
k=1
(AGrs,5,6Pns otherwise

=0.

Thus, we see from Equations (3.13), (3.16), (3.17), and (3.12) that in fact Equation (3.14)
holds; that is, ® and (p;);en satisfy Condition 1 of Lemma 3.1.1.
Finally, to see Condition 2 of Lemma 3.1.1 holds for & and (p;);en, we wish to show

n—00 n—o00 n—00
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where the second equality follows from what we just proved in the previous paragraph. Fix
n € N, and assume p,, 11 = ¢,.s s+ again. Notice

(

<

K Mi;1,;—1 Mis1,j
Yo\ Patingagig+ 0 Padgingrt Yo Pagingidwiage ), Ko =1
j k=2 k=2

K

sy

J

<

; Mi;1,5 M1, 5
> <anz';1,j,19z‘,j+ > Pidiage + 20 PuGiaji ik
= k=2 k=2

P&, =7

—_

Ki—1—1 My
+ > (PuAgisyr gk + Pagion ja Mgt j i)
j=2 k=1
Mi;Kl‘_Lj_l Mi;Ki_l,j

+ Y P ikt D PnQi;l,j,l)\wi;K,-_l,j,k)y Kic1 # 1
k=1 k=1

\
That is, P,®; is a sum of terms of the form P,¢b for ¢ € (U, <<, , Ui<j<k, @izy,j) N 12 and
b € B; in particular, by Equation (3.15), P,qb = 0 for p,;+1 = ¢ and P,.gb = ¢b otherwise. It
follows that

@Z’, 1<i<r

ansz = ’
0, 2>r
and subsequently, that
|6 — P& = H Y 6 +6, PG| <Y 277 46, - PG, < > 27 42
i=r+1 i=r+1 i=r+1

Noticing that as n goes to infinity so does r, Condition 2 of Lemma 3.1.1 follows. We
conclude that R C C*(®).

Now, notice W,y s € C*(®) for every r € N, 1 < &' < K,_; and 1 < s < K,. Indeed,
for any r € Nand 1 < s < K,, w11 € C*(B) since w1 51 = ¢r1,51 € R; moreover, from
Equation (3.11)

1
)\—(QT;l,s,IQj - gr,s)QT’;l,s,k - wr;l,s,k € C*(QS)7 2 S k S Mr;l,sa
r;1,s,k
1
\ (QT;Ls,lQS - gr,s)th’7s,k = wr;j’,s,k S C*(@), 1< j/ < Kr—la 1 S ki S Mr;j’,sa
r;3’ .8,k

1

(qr;l,s,l05 - gr,s)qr;Kr_l,s,k = WriK,_1,s,k € C*(@), 1 S k< MT;K,«_l,s;
AriK, 1,5,k
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also,
Mr;l,s Kr—1—1 MTJ s

! (qr;l,s,lq5 _gr,s - Z )\wr;l,s,k‘ Z Z )\wr,] 1 s,k
’ k=2 j'=2 k=1

)\T;KT‘—lvszM'r‘;K,,.,l s

Mrik,._q,s—1
—(1=01kr) D Mk _ysk) = Wk, raMe . € CH(B).
k=1
Since U; j = Wy, for each 1 < j < Ky, we see @1<j<K1 My, ; € C*(&) (see the discussion
following Lemma 3.2.2); hence, by Lemma 3.3.1, @, <<k, Mn,; € C*(8) for each i € N, and
we see A C C*(®). Furthermore, it is clear from Equation (3.12) that G; C C*(®) for each
i € N; but d; € C*(€D, <<k, M, ;» Gi) by Condition G3 so that {di,ds, ...} and hence D is
contained in C*(®). O

The following corollaries now follow from the discussion at the end of Section 2.
Corollary 3.1. A simple AH algebra with diagonal maps is singly generated.
Corollary 3.2. A Villadsen algebra is singly generated.

Corollary 3.3. Let B = B(A, D) have an AF-action, and let C' be a separable unital simple
C*-algebrabe. Then B @ C' is singly generated. In particular, if B is a Villadsen algebra,
then B ® C' is singly generated.
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