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Abstract. It is shown that certain unital simple C*-algebras constructed by Villadsen in [31]

are classified by the K0-group together with the radius of comparison.

1. Introduction

Villadsen algebras (of the first type) were constructed in [31] as examples of simple unital C*-

algebras which have perforation in their ordered K0-group. This class of C*-algebras lies outside

the scope of the current classification theorem ([16], [17], [11], [8], [9], [28], [4]), as Villadsen

algebras do not absorb the Jiang-Su algebra Z tensorially. Indeed, a Villadsen-type algebra was

constructed in [30] which has the same value of the Elliott invariant as an AI algebra, but is not

itself isomorphic to that AI algebra.

Each Villadsen algebra is an inductive limit of homogeneous C*-algebras with connecting maps

induced by coordinate projections together with a small portion of point evaluations (see Section

2). In this note, we shall first show that, with different point-evaluation sets, the resulting alge-

bras are classified by the K0-multiplicity and the radius of comparison of Toms ([29]; Definition

3.1 below):

Theorem 1.1 (Theorem 6.1). Let X be a connected finite-dimensional solid space (see Definition

3.3). Let AE and AF be Villadsen algebras (see Section 2) with point-evaluation sets E and F

respectively (but with the same connected space X and the same numbers and multiplicities of

the coordinate projections (ci), (si1 , ..., si,ci)). Then AE
∼= AF if, and only if,

ρ(K0(AE)) = ρ(K0(AF )) and rc(AE) = rc(AF ),

where ρAE
and ρAF

are the unique states of the order-unit groups K0(AE) and K0(AF ), respec-

tively, and rc(·) denotes the radius of comparison.

Moreover, if the fixed seed spaceX is further assumed to be K-contractible (i.e., K0(C(X)) = Z
and K1(C(X)) = {0}), then the algebras can be classified by the K0-group together with the

radius of comparison even if the numbers and the multiplicities of the coordinate projections and

the numbers of point evaluations are arbitrary:

Theorem 1.2 (Corollary 7.8). Let X be a connected finite-dimensional solid space which is

K-contractible. Let

A := A(Xp, (n
(A)
i ), (k

(A)
i ), E(A)) and B := B(Xq, (n

(B)
i ), (k

(B)
i ), F (B))

be Villadsen algebras with non-zero radius of comparison, where p, q = 1, 2, .... Then

A ∼= B
1
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if, and only if,

K0(A) ∼= K0(B) and rc(A) = rc(B).

Note that this theorem covers the example constructed in [30].

One might compare the Villadsen algebras with the UHF algebras of [14] and [6], and the

present classification results with the classification of the unital UHF algebras, or, for that

matter, of their non-unital hereditary subalgebras in [6]. The non-unital version of the Villadsen

algebras and their classification is also an interesting question.

We hope that our result might shed some light on the possibility of classifying more general

non-Z-stable C*-algebras, for instance, general simple A(S)H algebras with diagonal maps ([10]

and [1]), or general simple transformation group C*-algebras.
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2. The Villadsen algebra A(X, (ni), (ki), E)

Let X be a metrizable compact space (usually we assume X to be connected), let (ci) and (ki)

be two sequences of non-zero natural numbers, and let
E1 := {x1,1, ..., x1,k1} ⊆ X,

E2 := {x2,1, ..., x2,k2} ⊆ Xc1 ,

...

Ei := {xi,1, ..., xi,ki} ⊆ Xc1···ci−1 ,

...

be a sequence of finite subsets such that for each i = 1, 2, ..., the set

∞⋃
j=1

ci···ci+j−1⋃
s=1

πs(Ei+j)

is dense in Xc0c1···ci−1 , where πs are the coordinate projections and c0 = 1.

Construct the (generalized) Villadsen algebra (in [31], X was the two-sphere) as the inductive

limit of the sequence

(2.1) Mn0(C(X
c0)) // Mn0(n1+k1)(C(X

c0c1)) // Mn0(n1+k1)(n2+k2)(C(X
c0c1c2)) // · · · ,

where the seed for the ith-stage map (recall c0 = 1),

ϕi : C(X
c0c1···ci−1) → Mni+ki(C(X

c0c1···ci−1ci)),
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is defined by

f 7→ diag{f ◦ π1, ..., f ◦ π1︸ ︷︷ ︸
si,1

, ..., f ◦ πci , ..., f ◦ πci︸ ︷︷ ︸
si,ci︸ ︷︷ ︸

ni

, f(xi,1), ..., f(xi,ki)︸ ︷︷ ︸
ki

}

= diag{f ◦ π1, ..., f ◦ π1︸ ︷︷ ︸
si,1

, ..., f ◦ πci , ..., f ◦ πci︸ ︷︷ ︸
si,ci︸ ︷︷ ︸

ni

, f(Ei)},

where si,1, ..., si,ci ≥ 1 are natural numbers, and ni =
∑ci

j=1 si,j.

A direct calculation shows that the composed map

ϕi,i+j : C(X
c0c1···ci−1) → M(ni+ki)···(ni+j−1+ki+j−1)(C(X

c0c1···ci−1···ci+j−1))

is equal (up to a permutation) to

f 7→ diag{f ◦ π1, ..., f ◦ πci···ci+j−1︸ ︷︷ ︸
ni···ni+j−1

, f(xi,1), ..., f(xi,ki),︸ ︷︷ ︸
ki[(ni+1+ki+1)···(ni+j−1+ki+j−1)]

f(·), ..., f(·)︸ ︷︷ ︸
···

, ..., },

i.e.,

f 7→ diag{f ◦ π1, ..., f ◦ πci···ci+j−1︸ ︷︷ ︸
ni···ni+j−1

, f(Ei)1(ni+1+ki+1)···(ni+j−1+ki+j−1),

(f(π1(Ei+1)), ..., f(πci(Ei+1)))1(ni+2+ki+2)···(ni+j−1+ki+j−1), ..., }.

So, it can be described as

diag{f ◦ π1, ..., f ◦ πci···ci+j−1︸ ︷︷ ︸
ni···ni+j−1

, point evaluations}.

We shall choose ci, si,1, ..., si,ci (and hence the sum ni), and ki in such a way that

lim
j→∞

ni · · ·ni+j

(ni + ki) · · · (ni+j + ki+j)
= lim

j→∞
(

ni

ni + ki
) · · · ( ni+j

ni+j + ki+j

) ̸= 0.

Equivalently, we require

(2.2) lim
i→∞

lim
j→∞

ni · · ·ni+j

(ni + ki) · · · (ni+j + ki+j)
= lim

i→∞
lim
j→∞

(
ni

ni + ki
) · · · ( ni+j

ni+j + ki+j

) = 1.

(In other words, the numbers of point evaluations are small compared with the numbers of

coordinate projections including multiplicity—the ratio is summable.) Denote the inductive

limit algebra by

A(X, (ni), (ki), E),

or, more specifically,

A(X, (ni), (ci), (si), (ki), E).

In what follows, we shall show, with a mild assumption on X (see Definition 3.3), that this

algebra, which is always simple, is independent of the choice of points in the point-evaluation

set E if the number of them at each stage is kept the same; otherwise, allowing only the number
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of points to vary, as we shall show, it is classified by the K0-group together with the radius of

comparison.

In the case that X is contractible, we shall show that this C*-algebra is classified by the K0-

group and the radius of comparison, and also, if the latter is zero, the trace simplex (Theorem

7.1). (Even allowing different numbers of coordinate projections and (non-zero) multiplicities,

and different numbers of point evaluations.)

Remark 2.1. If ci = 1, i = 1, 2, ..., then A(X, (ni), (ki), E) is the C*-algebra constructed by

Goodearl in [18] with real rank not equal to zero. On the other hand, if si,j = 1, i = 1, 2, ...,

j = 1, ..., ci, then A(X, (ni), (ki), E) is the C*-algebra constructed by Villadsen in [31].

3. Mean dimension and radius of comparison

In this section, let us calculate the mean dimension (as formulated in [23]) and radius of

comparison (as formulated in [29]) of the Goodearl–Villadsen algebras A(X, (ni), (ki), E).

First, recall

Definition 3.1 (Definition 6.1 of [29]). Let A be a C*-algebra. Denote by Mn(A) the C*-algebra

of n× n matrices over A. Regard Mn(A) as the upper-left corner of Mn+1(A), and consider the

union,

M∞(A) =
∞⋃
n=1

Mn(A),

the algebra of all finite matrices over A.

The radius of comparison of a unital C*-algebra A, denoted by rc(A), is the infimum of the

set of real numbers r > 0 such that if a, b ∈ (M∞(A))+ satisfy

dτ (a) + r < dτ (b), τ ∈ T(A),

then a ≾ b, where T(A) is the simplex of tracial states. (In [29], the radius of comparison

is defined in terms of quasitraces instead of traces; but since all the algebras considered in this

paper are nuclear, by [19] (see also [3] in the locally finite nuclear dimension case), any quasitrace

is actually a trace.)

We shall use the following remark on vector bundles:

Remark 3.2. Assume a (complex) vector bundle E over a compact metrizable space X has

non-zero Chern class cn(E) ∈ Hn(X). Then the trivial sub-bundles of E have rank at most

rank(E)− n/2, as, if there is a trivial sub-bundle F of rank r > rank(E)− n/2, then

c(E) = c(F c ⊕ F ) = c(F c)c(F ) = c(F c),

but, since rank(F c) = rank(E) − rank(F ) < n/2, we have cn(F
c) = 0 (as cd(F

c) = 0 for all

d > rank(F c)), and hence cn(E) = cn(F
c) = 0, which contradicts the assumption.

Definition 3.3. Let us call a metrizable compact space X solid if it contains a Euclidean ball of

dimension dim(X) when dim(X) is finite; when dim(X) = ∞, X solid will mean that X contains

a Euclidean ball of arbitrarily large dimension.
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Note that all finite CW-complexes are solid. The Hawaiian earring and the Hilbert cube are

also solid. Not all compact metrizable spaces are solid, as there are such X with dim(X ×X) <

2 · dim(X) which implies that X cannot be solid (see [2]).

Theorem 3.4. Let X be a metrizable compact space. With A = A(X, (ni), (ki), E), one has

(3.1) mdim(A) ≤ dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

,

where ∞ · 0 = 0 and mdim(·) is the mean dimension of an AH system introduced in [23].

Moreover, if the metrizable compact space X is solid, then equality holds in (3.1), and the

radius of comparison of A, rc(A), is equal to 1
2
mdim(A).

Proof. Let us first prove (3.1). Consider the jth stage, Mmj
(C(Xdj)), where mj = n0(n1 +

k1) · · · (nj−1 + kj−1) and dj = c1 · · · cj−1 (note that all coordinate projections appear, i.e.,

sj,1, ..., sj,cj ≥ 1, j = 1, 2, ...), and let α be a finite open cover of Xdj . Since the pull-back

of α by any constant map has degree zero and D(α) ≤ dim(Xdj) ≤ c1 · · · cj−1 · dim(X), we have

that, for each pair j < i,

D(ϕj,i(α)) ≤ cj · · · ci−1·D(α) ≤ c1 · · · ci−1 · dim(X),

where D(·) denotes the degree of an open cover, and then

lim
i→∞

D(ϕj,i(α))

mi

≤ lim
i→∞

cj · · · ci−1·D(α)

n0(n1 + k1) · · · (ni−1 + ki−1)

≤ dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

,

where ∞ · 0 = 0 in the case that dim(X) = ∞. Taking the supremum over all finite open covers

α of Ddj and passing to the limit as j → ∞, we obtain (3.1). In particular, by [23], we have

(3.2) rc(A) ≤ 1

2
mdim(A) ≤ 1

2
· dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

.

Now, assume that X is solid (i.e., it contains a Euclidean ball of dimension dim(X), if

dim(X) <∞, and of arbitrary dimension otherwise), and let us show that

(3.3) rc(A) ≥ 1

2
· dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

.

Together with (3.2), we will then have

rc(A) =
1

2
mdim(A) =

1

2
· dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

.

Set

γ = lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

.

Since (3.3) holds trivially if γ = 0 (as ∞ · 0 = 0), let us assume that γ ̸= 0 in the rest of the

proof.
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Suppose that dim(X) < ∞. Let ε > 0 be arbitrary for the time being. Choose i sufficiently

large that

c1 · · · ci−1 · dim(X)− 2

2n0(n1 + k1) · · · (ni−1 + ki−1)
>
γ

2
· dim(X)

n0

− ε

and

dim(X)

2n0

(
c1 · · · ci−1

(n1 + k1) · · · (ni−1 + ki−1)
− c1 · · · cj−1

(n1 + k1) · · · (nj−1 + kj−1)

)
< ε, j > i.

Since X contains a Euclidean ball of dimension dim(X), the space Xc1···ci−1 contains a Eu-

clidean ball of dimension c1 · · · ci−1 · dim(X), and hence, if i is large enough, it contains a d-

dimensional sphere S, where

c1 · · · ci−1 · dim(X)− 2 ≤ d ≤ c1 · · · ci−1 · dim(X)− 1

and d is non-zero and even.

Pick a (complex) vector bundle E over S such that rank(E) = d/2 and e := cd(E) ∈ Hd(S) is

non-zero, where cd is the dth Chern class. (Recall that the total Chern class of E is 1+e.) (Such

a vector bundle exists, as, otherwise, if the d-th Chern class of every vector bundle were trivial,

then the Chern character would not induce a rational isomorphism between the K-group and the

cohomology group of the sphere S.) Denote by p the corresponding projection in M∞(C(S)),

and extend p to a positive element of M∞(C(Xdi)) such that rank(p(x)) ≥ d/2, x ∈ Xdi . Denote

this element still by p.

Note that, for each tracial state τ of Mmi
(C(Xdi)),

dτ (p) ≥
d

2n0(n1 + k1) · · · (ni−1 + ki−1)
≥ c1 · · · ci−1 · dim(X)− 2

2n0(n1 + k1) · · · (ni−1 + ki−1)
>
γ

2
· dim(X)

n0

− ε.

Consider the element ϕi,∞(p) ∈ A. For each j > i, the restriction of ϕi,j(p) ∈ Mmj
(C(Xdj)) to

S × · · · × S ⊆ Xdj is a projection which corresponds to the vector bundle

Ej := (
⊕
s1

π∗
1(E))⊕ · · · ⊕ (

⊕
sci···cj−1

π∗
ci···cj−1

(E))⊕ θj,

where θj is a trivial bundle. Then the total Chern class of Ej is

π∗
1(1 + cd)

s1π∗
2(1 + cd)

s2 · · · π∗
ci···cj−1

(1 + cd)
sci···cj−1

= π∗
1(1 + s1e)π

∗
2(1 + s2e) · · · π∗

ci···cj−1
(1 + sci···cj−1

e),
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and, by the Künneth Theorem, it is non-zero at degree dci · · · cj−1. Hence (see Remark 3.2), any

trivial sub-bundle of Ej has rank at most

rank(Ej)−
1

2
dci · · · cj−1

= rank(E)(ni + ki) · · · (nj−1 + kj−1)−
1

2
dci · · · cj−1

=
d

2
((ni + ki) · · · (nj−1 + kj−1)− ci · · · cj−1)

≤ dim(X)

2
(c1 · · · ci−1(ni + ki) · · · (nj−1 + kj−1)− c1 · · · cj−1)

=
dim(X)

2n0

(
c1 · · · ci−1

(n1 + k1) · · · (ni−1 + ki−1)
− c1 · · · cj−1

(n1 + k1) · · · (nj−1 + kj−1)
)n0(n1 + k1) · · · (nj−1 + kj−1)

≤ εn0(n1 + k1) · · · (nj−1 + kj−1).

Let r ∈ A be a trivial projection with 2ε < dτ (r) < 3ε, τ ∈ T(A). Then

dτ (r) + (
γ

2
· dim(X)

n0

− 4ε) < dτ (p), τ ∈ T(A).

But the rank of the (trivial) vector bundle of r at the stage j is at least

2εn0(n1 + k1) · · · (nj−1 + kj−1) > εn0(n1 + k1) · · · (nj−1 + kj−1),

which implies that r is not Cuntz subequivalent to p, and therefore,

rc(A) ≥ γ

2
· dim(X)

n0

− 4ε.

Since ε is arbitrary, this implies rc(A) ≥ γ
2
· dim(X)

n0
.

If X is infinite-dimensional (recall still limi→∞
c1···ci

(n1+k1)···(ni+ki)
= γ ̸= 0), then the argument

above (choose d arbitrarily large) shows that rc(A) is arbitrarily large, and hence rc(A) = ∞.

So, (3.3) always holds, as asserted. □

Corollary 3.5 (Theorem 5.1 of [29]). For any r ∈ [0,+∞], there is a Villadsen algebra A such

that rc(A) = r.

Proof. Let us assume that r ∈ (0,+∞). Pick a natural number d such that 2r < d, and consider

s := 2r/d ∈ (0, 1). Then pick a sequence of rational numbers pi/qi ∈ (0, 1), i = 1, 2, ..., such that

p1
q1

· p2
q2

· · · = s.

Writing

ni = pi and ki = qi − pi, i = 1, 2, ...,

we have

(
n1

n1 + k1
)(

n2

n2 + k2
) · · · = s.
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Let A be a Villadsen algebra associated with (ni) and (ki) (and ci = ni, i = 1, 2, ..., n0 = 1) with

the seed space X = [0, 1]d, which is solid. Then it follows from Theorem 3.4 that

rc =
1

2
d(

n1

n1 + k1
)(

n2

n2 + k2
) · · · = 1

2
ds = r.

If r = +∞, then one can construct a Villadsen algebra with seed space X = [0, 1]∞ and with

the sequences (ni), (ki) as above. Then the resulting algebra has rc(A) = +∞.

If r = 0, then one can construct a Villadsen algebra with seed space X of dimension zero

(e.g., a single point) and with sequences (ni), (ki) as above. Then the resulting AF algebra has

rc(A) = 0. □

Remark 3.6. Although the statement of Theorem 5.1 of [29] is on the range of the dimension rank

ratio of a simple AH algebra, its proof actually shows that the range of the radius of comparison

of a Villadsen algebra is [0,+∞] (Corollary 3.5).

Theorem 3.7. If rc(A) > 0, then

(3.4) lim
i→∞

lim
j→∞

(
ci
ni

) · · · ( ci+j

ni+j

) = 1

and

(3.5) lim
i→∞

lim
j→∞

|{sk : sk = 1, k = 1, ..., ci · · · ci+j}|
ni · · ·ni+j

= 1,

where

ϕi,j+1 = diag{π∗
1, ..., π

∗
1︸ ︷︷ ︸

s1

, ..., π∗
ci···ci+j

, ..., π∗
ci···ci+j︸ ︷︷ ︸

sci···ci+j︸ ︷︷ ︸
ni···ni+j

, point evaluations}.

Proof. Since rc(A) > 0, we have

lim
i→∞

c1 · · · ci
(n1 + k1) · · · (ni + ki)

> 0,

and hence

lim
i→∞

lim
j→∞

ci · · · ci+j

(ni + ki) · · · (ni+j + ki+j)
= 1.

Comparing this with (2.2) (and since both limits are non-zero), we have (3.4):

1 = lim
i→∞

lim
j→∞

ci · · · ci+j

(ni + ki) · · · (ni+j + ki+j)

lim
j→∞

ni · · ·ni+j

(ni + ki) · · · (ni+j + ki+j)

= lim
i→∞

lim
j→∞

ci · · · ci+j

(ni + ki) · · · (ni+j + ki+j)
ni · · ·ni+j

(ni + ki) · · · (ni+j + ki+j)

= lim
i→∞

lim
j→∞

(
ci
ni

) · · · ( ci+j

ni+j

).

As for (3.5), note that ni · · ·ni+j = s1 + · · ·+ sci···ci+j
, and hence

ci · · · ci+j

ni · · ·ni+j

=
ci · · · ci+j

s1 + · · ·+ sci···ci+j

≤ ci · · · ci+j

(ci · · · ci+j − bi,j) + 2bi,j
=

ci · · · ci+j

ci · · · ci+j + bi,j
≤ 1,
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where

bi,j := |{sk : sk > 1, k = 1, ..., ci · · · ci+j}|.

Together with (3.4), this yields

1 = lim
i→∞

lim
j→∞

ci · · · ci+j

ci · · · ci+j + bi,j
= lim

i→∞
lim
j→∞

1

1 +
bi,j

ci···ci+j

;

therefore (note that sk, k = 1, ..., ci · · · ci+j, are non-zero),

1 = lim
i→∞

lim
j→∞

ci · · · ci+j − bi,j
ci · · · ci+j

= lim
i→∞

lim
j→∞

|{sk : sk = 1, k = 1, ..., ci · · · ci+j}|
ci · · · ci+j

.

Using (3.4) again, one obtains (3.5). □

4. Intertwinings of trace simplexes

4.1. Trace simplex of the Villadsen algebra. Let us first observe that, under Condition

(2.2), the trace simplex of the Villadsen algebra is independent of (the number and the location

of) the point evaluations.

Denote by A the (non-simple) limit of the inductive sequence

Mn0(C(X)) // Mn0n1(C(X
c1)) // Mn0n1n2(C(X

c1c2)) // · · · ,

where the ith-stage map,

ϕi : C(X
c1···ci−1) → Mni+ki(C(X

c1···ci−1ci)),

is defined by

f 7→ diag{f ◦ π1, ..., f ◦ π1︸ ︷︷ ︸
si,1

, ..., f ◦ πci , ..., f ◦ πci︸ ︷︷ ︸
si,ci︸ ︷︷ ︸

ni

}.

Lemma 4.1. Let AE be a Villadsen algebra with point-evaluation set E which satisfies Condition

(2.2). Then T(AE) ∼= T(A).

Proof. Choose a decreasing sequence δ1, δ2, ... of strictly positive numbers with
∑∞

n=1 δn < 1.

Identifying AffR(T(Ms(C(Y )))) with CR(Y ) for any compact metrizable space Y , note that the

map

(ϕi,i+j)
∗ : Aff(Mn0···ni−1

(C(Xc1···ci−1))) → Aff(Mn0···ni+j−1
C(Xc1···ci+j−1)),

which is induced by ϕi,i+j := ϕi+j−1 ◦ · · · ◦ ϕi (where ϕi,i+1 := ϕi), is given by

CR(X
c1···ci−1) ∋ h 7→ 1

ni · · ·ni+j−1

(h ◦ π1 + · · ·+ h ◦ πci···ci+j−1︸ ︷︷ ︸
ni···ni+j−1

) ∈ CR(X
c1···ci+j−1).
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Then a straightforward calculation shows that, for any h ∈ CR(X
c1···ci−1) with ∥h∥∞ ≤ 1,

∥(ϕi,i+j)
∗(h)− (ϕ

(E)
i,i+j)

∗(h)∥∞

= ∥ 1

ni · · ·ni+j−1

(h ◦ π1 + · · ·+ h ◦ πci···ci+j−1︸ ︷︷ ︸
ni···ni+j−1

)

− 1

(ni + ki) · · · (ni+j−1 + ki+j−1)
(h ◦ π1 + · · ·+ h ◦ πci···ci+j−1︸ ︷︷ ︸

ni···ni+j−1

+point evaluations)∥∞

≤ (
1

ni · · ·ni+j−1

− 1

(ni + ki) · · · (ni+j−1 + ki+j−1)
)(ni · · ·ni+j−1)

+1− ni · · ·ni+j−1

(ni + ki) · · · (ni+j−1 + ki+j−1)

= 2(1− ni · · ·ni+j−1

(ni + ki) · · · (ni+j−1 + ki+j−1)
),

which, by Condition (2.2), is arbitrarily small if i is sufficiently large. Therefore, there is a

diagram

CR(X)
(ϕ

(E)
1,i1

)∗

//

(ϕ1,i1
)∗

%%

CR(X
di1 )

(ϕ
(E)
i1,i2

)∗

// CR(X
di2 ) // · · · // (AffR(T(AE)), ∥ · ∥∞)

CR(X)
(ϕ1,i1

)∗
// CR(X

di1 )
(ϕi1,i2

)∗
//

(ϕi1,i2
)∗

88

CR(X
di2 ) // · · · // (AffR(T(A)), ∥ · ∥∞)

with

∥(ϕis+1,is+2)
∗ ◦ (ϕis,is+1)

∗(h)− ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

(h)∥∞ < δs

for any s = 0, 2, ..., any h ∈ CR(X
dis ) with ∥h∥∞ ≤ 1. This implies in particular (by Theorems

2.1 and 2.2 of [7]) that T(AE) ∼= T(A). □

Let us calculate the trace simplex of A. Note that T(A) is homeomorphic to the limit of the

following affine projective system:

M1(X) M1(X
c1)oo M1(X

c1c2)oo · · ·oo

where M1(·) denotes the simplex of Borel probability measures and the connecting map θi :

M1(X
c1···ci) → M1(X

c1···ci−1) is given by

θi(δ(x1,...,xci )
) =

1

ni

(δx1 + · · ·+ δx1︸ ︷︷ ︸
si,1

+ · · ·+ δxci
+ · · ·+ δxci︸ ︷︷ ︸

si,ci

), x1, ..., xci ∈ Xc1···ci−1 ,

where δx denotes the Dirac measure concentrated at x and Xc1···ci−1 = X if i = 1.

The following lemma is a simple observation:

Lemma 4.2. Let τ = (µi) be a tracial state on A, where µi, i = 1, 2, ..., is a probability measure

on Xc1···ci−1. If µi are Dirac measures for sufficiently large i, then τ is extreme.
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Proof. Assume

(µi) = α(ν
(1)
i ) + (1− α)(ν

(2)
i )

for some α ∈ (0, 1), where ν
(1)
i and ν

(2)
i are probability measures on Xc1···ci−1 . Since µi is extreme

for sufficiently large i, we have that

ν
(1)
i = ν

(2)
i = µi

for sufficiently large i, and hence (ν
(1)
i ) = (ν

(2)
i ) = (µi), as desired. □

Remark 4.3. Note that, since the multiplicities of the coordinate projections are non-zero (si,j ̸=
0), if θi(µ) is a Dirac measure, then µ must be a Dirac measure.

Pick a point x = (x1, ..., xc1···ci) ∈ Xc1···ci (where Xc1···ci = X if i = 0), and then consider the

trace τx of A defined by

(4.1) τx = (..., δx, δ(x,...,x), ..., δ(x,...,x), ...),

where, at the stage i + k + 1 (with the product space Xc1···ci+k), the Dirac measure δ(x,...,x)
concentates at the point (x, ..., x) ∈ (Xc1···ci)ci+1···ci+k . It is straightforward to verify that τx is a

trace of A as (x, ..., x) is a constant sequence of points in Xc1···ci

By the lemma above, τx is an extreme trace. Also note that if x ̸= y, then τx ̸= τy. Hence if

the seed space X is not a singleton, the trace simplex is not a singleton.

The following lemma is a direct consequence of the Krein-Milman Theorem.

Lemma 4.4. Let F ⊆ C(X) be a finite set, let µ ∈ M1(X), and let ε > 0. Then, there is N ∈ N
such that for any n > N , there are x1, ..., xn ∈ X such that

|µ(f)− 1

n
(f(x1) + · · ·+ f(xn))| < ε, f ∈ F .

Theorem 4.5. Assume

(4.2) lim
i→∞

lim
j→∞

(
ci
ni

) · · · ( ci+j

ni+j

) = 1.

Then the extreme points of T(A) are dense, i.e., T(A) is the Poulsen simplex (of [25]—see also

[22]) if X is not a singleton.

The trace simplex of the simple Villadsen algebra AE with non-zero radius of comparison is

the Poulsen simplex.

Proof. Let us show that the extreme traces τx ∈ T(A) (see above) are dense. Let µ be a tracial

state of A, and represent it as

µ = (µ1, µ2, ...),

where µi is a probability measure of Xc1···ci−1 , and θi(µi+1) = µi, i = 1, 2, ....

Let N(F ; ε) be the fundamental neighborhood of µ

{τ ∈ T(A) : |µ(f)− τ(f)| < ε, f ∈ F},

where F ∈ A is a finite set and ε > 0, and let us show that τx ∈ N for some x ∈ Xc1···ci−1 , i ∈ N.
This will show the first statement of the theorem (as a consequence of Lemma 4.2).
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By (4.2) and the proof of Theorem 3.7, there is i0 > 0 such that for all j > 0,

(4.3) 1− ci0 · · · ci0+j

ni0 · · ·ni0+j

<
ε

3

and
|{sk : sk = 1, k = 1, ..., ci0 · · · ci0+j}|

ni0 · · ·ni0+j

> 1− ε

3
,

where

ϕi0,j+1 = diag{π∗
1, ..., π

∗
1︸ ︷︷ ︸

s1

, ..., π∗
ci0 ···ci0+j

, ..., π∗
ci0 ···ci0+j︸ ︷︷ ︸

sci0 ···ci0+j︸ ︷︷ ︸
ni0

···ni0+j

}.

Therefore

(4.4)

∑
sk≥2 sk

ni0 · · ·ni0+j

<
ε

3
.

Without loss of generality, we may assume that F is in the unit ball of Mn0···ni0−1
(C(Xc1···ci0−1)).

Then consider the measure µi0 . By Lemma 4.4, there is a large enough j0 that ci0 · · · ci0+j0 is

large enough that there are

x1, ..., xci0 ···ci0+j0
∈ Xc1···ci0−1

satisfying

|µi0(f)−
1

ci0 · · · ci0+j0

(f(x1) + f(x2) + · · ·+ f(xci0 ···ci0+j0
))| < ε

3
, f ∈ F .

Consider the point

xµ := (x1, x2, ..., xci0 ···ci0+j0
) ∈ (Xc1···ci0−1)ci0 ···ci0+j0 = Xc1···ci0+j0 ,

and consider the trace τxµ ∈ T(A) (see (4.1)). Then, for each f ∈ F ,

|µ(f)− τxµ(f)|

= |µi0(f)−
1

ni0 · · ·ni0+j0

(δx1 + · · ·+ δx1︸ ︷︷ ︸
s1

+ · · ·+ δxci0
···ci0+j0

+ · · ·+ δxci0
···ci0+j0︸ ︷︷ ︸

sci0 ···ci0+j0

)(f)|

< |µi0(f)−
1

ni0 · · ·ni0+j0

(δx1 + · · ·+ δxci0
···ci0+j0

)(f)|+
∑

sk≥2(sk − 1)

ni0 · · ·ni0+j0

< |µi0(f)−
1

ni0 · · ·ni0+j0

(δx1 + · · ·+ δxci0
···ci0+j0

)(f)|+
∑

sk≥2 sk

ni0 · · ·ni0+j0

< |µi0(f)−
1

ni0 · · ·ni0+j0

(δx1 + · · ·+ δxci0
···ci0+j0

)(f)|+ ε

3
(by (4.4))

< |µi0(f)−
1

ci0 · · · ci0+j0

(δx1 + · · ·+ δxci0
···ci0+j0

)(f)|+ ε

3
+
ε

3
(by(4.3))

< ε,

and this shows the first statement of the theorem.
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Now, let AE be a simple Villadsen algebra with non-zero radius of comparison. By Theorem

3.7, Equation (4.2) holds (and X is not a singleton), and therefore, as shown above, T(A) is

the Poulsen simplex. By Lemma 4.1, T(AE) ∼= T(A), and so T(AE) is the Poulsen simplex as

well. □

Remark 4.6. N.C. Phillips also notes that the trace simplex of a Villadsen algebra is Poulsen

(private communication).

Remark 4.7. Note that T(AE) is always the Poulsen simplex whenever (4.2) holds and X is not

a singleton. This includes the case that dim(X) = 0 (and so by Theorem 3.4, or since AE is AF,

rc(AE) = 0).

Remark 4.8. Note that the Giol-Kerr system, a dynamical analog of the Villadsen algebra, is

constructed as a small perturbation of the non-trivial two-sided shift ([13]). It is worth comparing

Theorem 4.5 to the well-known fact that the simplex of invariant Borel probability measures on

the non-trivial two-sided shift is isomorphic to the Poulsen simplex ([24]). Is the Giol-Kerr trace

simplex also Poulsen (this seems likely), or (a stronger property) is the orbit-cutting subalgebra

of the Giol-Kerr system a Villadsen algebra?

4.2. An intertwining. In what follows, we shall show (further to Lemma 4.1) that for two

suitably close point-evaluation sets, the intertwining maps between the trace simplices actually

can be chosen to be induced by C*-algebra homomorphisms between building blocks, and in such

a way that the resulting diagram of building blocks commutes exactly up to point evaluations

and therefore approximately at the level of traces.

Let there be given two different evaluation sets

E1, E2, ..., Ei, ... and F1, F2, ..., Fi, ...,

with sizes (kEi ) and (kFi ) respectively, and both satisfying Condition (2.2) (with respect to the

same (ni)), and assume that, as supernatural numbers,

(4.5)
∞∏
i=1

(ni + k
(E)
i ) =

∞∏
i=1

(ni + k
(F )
i ),

and as real numbers,

(4.6) lim
i→∞

(n1 + k
(E)
1 ) · · · (ni + k

(E)
i )

(n1 + k
(F )
1 ) · · · (ni + k

(F )
i )

= 1.

Lemma 4.9. With the assumptions (4.5) and (4.6) above, let AE and AF denote the C*-algebras

A(X, (ni), (k
(E)
i ), E) and A(X, (ni), (k

(F )
i ), F ), respectively. Let δ1, δ2, ... be a decreasing sequence

of strictly positive numbers with
∞∑
n=1

δn < 1.
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There is a diagram

(4.7) Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ϕ
(E)
i1,i2 // M

m
(E)
i2

(C(Xdi2 )) //

ϕ
(E,F )
i2,i3

%%

· · · // AE

Mn0(C(X))
ϕ
(F )
1,i1 // M

m
(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1,i2 //

ϕ
(F,E)
i1,i2

66

M
m

(F )
i2

(C(Xdi2 )) // · · · // AF

with

|τ(ϕ(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

(h)− ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

(h))| < δs

for any s = 0, 2, ..., any h ∈ M
m

(E)
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(E)
is+2

(C(Xdis+2 ))),

and, symmetrically,

|τ(ϕ(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

(h)− ϕ
(F )
is+1,is+2

◦ ϕ(F )
is,is+1

(h))| < δs

for any s = 1, 3, ..., any h ∈ M
m

(F )
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(F )
is+2

(C(Xdis+2 ))),

and, moreover, for each s = 0, 2, ...,

ϕ
(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

= diag{π∗
1, ..., π

∗
nis ···nis+1

, point evaluations},

and for each s = 1, 3, ...,

ϕ
(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

= diag{π∗
1, ..., π

∗
nis ···nis+1

, point evaluations}.

Definition 4.10. The sequences (k
(E)
i ) and (k

(F )
i ) will be said to be sufficiently close if for any

δ > 0, there is an arbitrarily large pair i1 > i′1 such that

1−
∞∏
j=0

ni′1+j

ni′1+j + k
(E)

i′1+j

< δ,

i1−1∏
i=1

(ni + k
(F )
i ) is divisible by

i′1−1∏
i=1

(ni + k
(E)
i ),

and

(4.8)
(n1 + k

(F )
1 ) · · · (ni′1−1 + k

(F )

i′1−1)

(n1 + k
(E)
1 ) · · · (ni′1−1 + k

(E)

i′1−1)
·
(ni′1

+ k
(F )

i′1
) · · · (ni1−1 + k

(F )
i1−1)

ni′1
· · ·ni1−1

> 1,

and, furthermore, there are arbitrarily large i2 > i′2 such that

1−
∞∏
j=0

ni′2+j

ni′2+j + k
(F )

i′2+j

< δ,

i2−1∏
i=1

(ni + k
(E)
i ) is divisible by

i′2−1∏
i=1

(ni + k
(F )
i ),
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and

(4.9)
(n1 + k

(E)
1 ) · · · (ni′2−1 + k

(E)

i′2−1)

(n1 + k
(F )
1 ) · · · (ni′2−1 + k

(F )

i′2−1)
·
(ni′2

+ k
(E)

i′2
) · · · (ni2−1 + k

(E)
i2−1)

ni′2
· · ·ni2−1

> 1.

Lemma 4.11. Under the assumptions (2.2), (4.5), and (4.6), the sequences (k
(E)
i ) and (k

(F )
i )

are sufficiently close.

Proof. We only have to show (4.8) and (4.9). For the given δ > 0, choose i′1 sufficiently large

that

1−
∞∏
j=0

ni′1+j

ni′1+j + k
(E)

i′1+j

< δ.

Then, with sufficiently large i1, by (4.6), we have

(n1 + k
(F )
1 ) · · · (ni′1−1 + k

(F )

i′1−1)

(n1 + k
(E)
1 ) · · · (ni′1−1 + k

(E)

i′1−1)
·
(ni′1

+ k
(F )

i′1
) · · · (ni1−1 + k

(F )
i1−1)

ni′1
· · ·ni1−1

=
(n1 + k

(F )
1 ) · · · (ni1−1 + k

(F )
i1−1)

(n1 + k
(E)
1 ) · · · (ni′1−1 + k

(E)

i′1−1)
· 1

ni′1
· · ·ni1−1

=
(n1 + k

(F )
1 ) · · · (ni1−1 + k

(F )
i1−1)

(n1 + k
(E)
1 ) · · · (ni′1−1 + k

(E)

i′1−1)
·
(ni′1

+ k
(E)

i′1
) · · · (ni1−1 + k

(E)
i1−1)

(ni′1
+ k

(E)

i′1
) · · · (ni1−1 + k

(E)
i1−1)

· 1

ni′1
· · ·ni1−1

=
(n1 + k

(F )
1 ) · · · (ni1−1 + k

(F )
i1−1)

(n1 + k
(E)
1 ) · · · (ni1−1 + k

(E)
i1−1)

·
(ni′1

+ k
(E)

i′1
) · · · (ni1−1 + k

(E)
i1−1)

ni′1
· · ·ni1−1

>
(n1 + k

(F )
1 ) · · · (ni1−1 + k

(F )
i1−1)

(n1 + k
(E)
1 ) · · · (ni1−1 + k

(E)
i1−1)

·
ni′1

+ k
(E)

i′1

ni′1

> 1.

So (4.8) holds. A similar argument shows that (4.9) holds. □

Proof of Lemma 4.9. Consider the inductive limit decompositions

Mn0(C(X))
ϕ
(E)
1 // M

n0(n1+k
(E)
1 )

(C(Xc1))
ϕ
(E)
2 // M

n0(n1+k
(E)
1 )(n2+k

(E)
2 )

(C(Xc1c2)) // · · · // AE,

Mn0(C(X))
ϕ
(F )
1 // M

n0(n1+k
(F )
1 )

(C(Xc1))
ϕ
(F )
2 // M

n0(n1+k
(F )
1 )(n2+k

(F )
2 )

(C(Xc1c2)) // · · · // AF .

Since the sequences (k
(E)
i ) and (k

(F )
i ) are sufficiently close (Lemma 4.11), there is a pair i′1 < i1

sufficiently large that

(4.10) 1−
∞∏
j=0

ni′1+j

ni′1+j + k
(E)

i′1+j

< δ1,
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(4.11)

i1−1∏
i=1

(ni + k
(F )
i ) is divisible by

i′1−1∏
i=1

(ni + k
(E)
i ),

and (a slight reformulation of (4.8))

(4.12)
n0(n1 + k

(F )
1 ) · · · (ni′1−1 + k

(F )

i′1−1)

n0(n1 + k
(E)
1 ) · · · (ni′1−1 + k

(E)

i′1−1)
·
(ni′1

+ k
(F )

i′1
) · · · (ni1−1 + k

(F )
i1−1)

ni′1
· · ·ni1−1

> 1.

Then consider the diagram

Mn0(C(X))
ϕ
(E)

1,i′1 // M
m

(E)

i′1

(C(X
di′1 ))

ϕ
(E)

i′1,i1 //

ϕ̃
(E,F )

i′1,i1

''

M
m

(E)
i1

(C(Xdi1 )) // · · · // AE

Mn0(C(X))
ϕ
(F )

1,i′1 // M
m

(F )

i′1

(C(X
di′1 ))

ϕ
(F )

i′1,i1 // M
m

(F )
i1

(C(Xdi1 )) // · · · // AF ,

where

(4.13) mi := n0(n1 + k1) · · · (ni−1 + ki−1), di := c1 · · · ci−1,

and ϕ̃
(E,F )

i′1,i1
: M

m
(E)

i′1

(C(X
di′1 )) → M

m
(F )
i1

(C(Xdi1 )) is the map

f 7→ diag{f ◦ π1, ..., f ◦ πci′1 ···ci1−1︸ ︷︷ ︸
ni′1

···ni1−1

, certain point evaluations},

where the coordinate projections are exactly the same as for ϕ
(E)

i′1,i1
and the point evaluations are

arbitrarily chosen to fill out the space (by (4.11) and (4.12), there is enough room for the map

ϕ̃
(E,F )

i′1,i1
to exist). ((4.12) just says that the desired number of coordinate projections is strictly

less than the ratio of the orders of the codomain and domain matrix algebras.)

Write

ϕ
(E,F )
1,i1

= ϕ̃
(E,F )

i′1,i1
◦ ϕ(E)

1,i′1
,

and compress the diagram above as

Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ϕ
(E)
i1 // M

m
(E)
i1+1

(C(Xdi1+1)) // · · · // AE

Mn0(C(X))
ϕ
(F )
1,i1 // M

m
(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1 // M

m
(F )
i1+1

(C(Xdi1+1)) // · · · // AF .

There are i′2 < i2 sufficiently large that

1−
∞∏
j=0

ni′2+j

ni′2+j + k
(F )

i′2+j

< δ2,
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i2−1∏
i=1

(ni + k
(E)
i ) is divisible by

i′2−1∏
i=1

(ni + k
(F )
i ),

and (a slight reformulation of (4.9))

(4.14)
n0(n1 + k

(E)
1 ) · · · (ni′2−1 + k

(E)

i′2−1)

n0(n1 + k
(F )
1 ) · · · (ni′2−1 + k

(F )

i′2−1)
·
(ni′2

+ k
(E)

i′2
) · · · (ni2−1 + k

(E)
i2−1)

ni′2
· · ·ni2−1

> 1.

In the same way as above, one obtains a unital homomorphism

ϕ̃
(F,E)

i′2,i2
: M

m
(F )

i′2

(C(X
di′2 )) → M

m
(E)
i2

(C(Xdi2 ))

f 7→ diag{f ◦ π1, ..., f ◦ πci′2 ···ci2−1︸ ︷︷ ︸
ni′2

···ni2−1

, point evaluations},

such that, with

ϕ
(F,E)
i1,i2

= ϕ̃
(F,E)

i′2,i2
◦ ϕ(F )

i1,i′2
,

and compressing, we have the augmented diagram

Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ϕ
(E)
i1,i2 // M

m
(E)
i2

(C(Xdi2 )) // · · · // AE

Mn0(C(X))
ϕ
(F )
1,i1 // M

m
(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1,i2 //

ϕ
(F,E)
i1,i2

66

M
m

(F )
i2

(C(Xdi2 )) // · · · // AF .

Note that, by (4.10) (which says that the point evaluations do not multiplicatively change the

order of the the matrix algebra very much),

|τ(ϕ(F,E)
i1,i2

◦ ϕ(E,F )
1,i1

(h)− ϕ
(E)
i1,i2

◦ ϕ(E)
1,i1

(h))| < δ1, τ ∈ T(A), h ∈ Mn0(C(X)), ∥h∥ ≤ 1,

and, trivially, the composition ϕ
(F,E)
i1,i2

◦ ϕ(E,F )
1,i1

is the map

f 7→ diag(f ◦ π1, ..., f ◦ πci1 ···ci2−1︸ ︷︷ ︸
ni1

···ni2−1

, certain point evaluations).

Repeating this process, we have i1 < i2 < · · · with

(4.15) 1−
∞∏
j=0

nis+j

nis+j + k
(E)
is+j

< δs and 1−
∞∏
j=0

nis+j

nis+j + k
(F )
is+j

< δs, s = 1, 2, ...,

and the infinite intertwining diagram

Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ϕ
(E)
i1,i2 // M

m
(E)
i2

(C(Xdi2 )) //

ϕ
(E,F )
i2,i3

%%

· · · // AE

Mn0(C(X))
ϕ
(F )
1,i1 // M

m
(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1,i2 //

ϕ
(F,E)
i1,i2

66

M
m

(F )
i2

(C(Xdi2 )) // · · · // AF .
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The diagram (4.7) is not commutative. But, by (4.15), we have

|τ(ϕ(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

(h)− ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

(h))| < δs

for any s = 0, 2, ..., any h ∈ M
m

(E)
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(E)
is+2

(C(Xdis+2 )));

and similarly

|τ(ϕ(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

(h)− ϕ
(F )
is+1,is+2

◦ ϕ(F )
is,is+1

(h))| < δs

for any s = 1, 3, ..., any h ∈ M
m

(F )
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(F )
is+2

(C(Xdis+2 ))).

That is, the diagram (4.7) is approximately commutative at the level of traces. Note incidentally

that (by Theorem 2.1 and 2.2 of [7]) this implies that the simplices T(AE) and T(AF ) are

isomorphic. Moreover, as observed, the maps ϕ
(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

and ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

share

the same coordinate projection part, and so also do the maps ϕ
(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

and ϕ
(F )
is+1,is+2

◦
ϕ
(F )
is,is+1

. □

Remark 4.12. As pointed out, a direct consequence of (4.7) is that the trace simplex of AE is

isomorphic to that of AF . In the case of a Goodearl algebra (i.e., ci = 1, i = 1, 2, ...), the trace

simplex is isomorphic to the Bauer simplex with extreme boundary X ([18]), while, as we have

shown, in the case of the Villadsen algebra (i.e., si,j = 1, i = 1, 2, ..., j = 1, ..., ci), the trace

simplex is the Poulsen simplex.

5. A uniqueness theorem

Theorem 5.1. Let X be a connected metrizable compact space, and let ∆ : C+
1 (X) → (0,+∞)

be an order-preserving map. Then, for any finite set F ⊆ C(X) and any ε > 0, there exist

finite sets H0,H1 ⊆ C+(X) and δ > 0 such that for any unital homomorphisms ϕ0, ϕ1 : C(X) →
Mn+k(C(X

d)) with

ϕ0(f) = diag{f ◦ π1, ..., f ◦ πn, f(x1), ..., f(xk)}
and

ϕ1(f) = diag{f ◦ π1, ..., f ◦ πn, f(y1), ..., f(yk)},
where x1, ..., xk and y1, ..., yk are points of X and π1, ..., πn are coordinate projections (possibly

with multiplicity), if

τ(ϕ0(h)), τ(ϕ1(h)) > ∆(h), h ∈ H0,

and

|τ(ϕ0(h)− ϕ1(h))| < δ, h ∈ H1, τ ∈ T(Mn+k(C(X
d))),

then there is a unitary u ∈ Mn+k(C(X
d)) such that

∥ϕ0(f)− u∗ϕ1(f)u∥ < ε, f ∈ F .

Proof. Fix a metric for X. Since X is compact, there is η > 0 such that for any x, y ∈ X with

dist(x, y) < 3η, one has

|f(x)− f(y)| < ε, f ∈ F .
Choose an open cover

U = {U1, U2, ..., U|U|}



REMARKS ON VILLADSEN ALGEBRAS 19

with each Ui of diameter at most η. Let

O = {O1, O2, ..., OS}

denote the set of all finite unions of the sets U1, U2, ..., U|U|. For each O ∈ O, define

hO(x) = max{1− dist(x,O)/η, 0}, x ∈ X.

Also, for each O ∈ O with Oη ̸= X, where Oη denotes the η-neighborhood of O (hence O2η \Oη ̸=
Ø, as otherwise Oη is a clopen set and X is assumed to be connected), choose a non-zero positive

function gO ∈ C(X) such that gO ≤ 1 and

supp(gO) ⊆ O2η \Oη.

Then

H0 := {gO : O ∈ O, Oη ̸= X}, H1 := {hO : O ∈ O}, and δ := min{∆(gO) : O ∈ O}

have the properties asserted in the statement of Theorem 5.1.

Let ϕ0 and ϕ1 be given as in the statement of the lemma. Let X̃ ⊆ {x1, x2, ..., xk} be an

arbitrary (non-empty) subset. Let Ui1 , Ui2 , ..., Uil denote the elements of U such that Uij∩X̃ ̸= Ø,

and consider the union

O = Ui1 ∪ · · · ∪ Uil ∈ O.
Assume O2η ̸= X (so that Oη ̸= X), and choose

x′O ∈ X \O2η,

and then choose xO ∈ Xd (e.g., pick xO = (x′O, ..., x
′
O)) such that

π1(xO), ..., πn(xO) ∈ X \O2η.

Then

|X̃| ≤ (n+ k)trxO
(ϕ0(hO))

≤ (n+ k)trxO
(ϕ1(hO)) + (n+ k)δ

≤ |Oη ∩ {y1, y2, ..., yk}|+ (n+ k)δ

≤ |Oη ∩ {y1, y2, ..., yk}|+ (n+ k)∆(gO)

≤ |Oη ∩ {y1, y2, ..., yk}|+ (n+ k)trxO
(ϕ1(gO))

≤ |Oη ∩ {y1, y2, ..., yk}|+ |(O2η \Oη) ∩ {y1, y2, ..., yk}|
≤ |O2η ∩ {y1, y2, ..., yk}|
≤ |X̃3η ∩ {y1, y2, ..., yk}| (O2η ⊆ X̃3η),

where trxO
denotes the tracial state of Mn+k(C(X

d)) which is induced by the Dirac measure

concentrated on xO.

If O2η = X, then X̃3η = X. In particular, we still have

|X̃| ≤ k = |X̃3η ∩ {y1, y2, ..., yk}|.
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That is, we always have

(5.1) |X̃| ≤ |X̃3η ∩ {y1, y2, ..., yk}|.

The same calculation shows that, for any subset Ỹ ⊆ {y1, y2, ..., yk},

(5.2) |Ỹ | ≤ |Ỹ3η ∩ {x1, x2, ..., xk}|.

Thus, by the Marriage Lemma ([20]), there is a one-to-one correspondence

σ : {x1, x2, ..., xk} → {y1, y2, ..., yk}

such that

dist(xi, σ(xi)) < 3η, i = 1, 2, ..., k.

Denote by w ∈ Mk(C) the permutation unitary that induces σ. Then

u = diag{1n, w}

is the desired unitary. □

6. An isomorphism theorem

Theorem 6.1. Assume X is a solid connected metrizable compact space which is finite dimen-

sional. Let AE and AF be two Villadsen algebras with point-evaluation sets E and F respectively

(possibly with different numbers of points, but with the same space X and the same (ci) and

(si,1, ..., si,ci)). (Recall we are assuming (2.2).) Then AE
∼= AF if, and only if,

ρ(K0(AE)) = ρ(K0(AF )) and rc(AE) = rc(AF ),

where ρAE
and ρAF

are the unique states of the order-unit groups K0(AE) and K0(AF ), respec-

tively. (The solidness condition and finite-dimensionality condition on X are not necessary when

the radius of comparison is 0.)

Proof. Since a Villadsen algebra is an AH algebra with stable rank one, if rc(AE) = rc(AF ) =

0, then AE and AF are Z-stable ([27]). Since AE and AF are built with the same (ci) and

(si,1, ..., si,ci), it follows that K1(AE) ∼= K1(AF ), and by (2.2) and Lemma 4.1 that T(AE) ∼=
T(AF ). For each d ∈ N, since X is connected, we have K0(C(X

d)) = Z ⊕ Hd, where Hd

consists of the K0-elements vanishing on traces of C(Xd). Since the connecting maps are direct

sums of coordinate projections and point-evaluation maps, the induced map K0(C(Mn1(X
c1))) =

Z ⊕ Hd → Z ⊕ Hc1c2 = K0(Mm(C(X
c1c2))) has the form (a, b) 7→ (ϕ1(a), ϕ2(b)), where ϕ2 is

independent of the point evaluation maps (hence only depends on (ci) and (si,1, ..., si,ci)). Then,

denoting by H the limit of (Hc1···ci) (which depends only on (ci) and (si,1, ..., si,ci)), one has

K0(AE) ∼= ρ(K0(AE))⊕H and K0(AF ) ∼= ρ(K0(AF ))⊕H

as abelian groups. Since ρ(K0(AE)) = ρ(K0(AF )) and AE and AF are Z-stable (so that the strict

order on the K0-group is determined by the traces), one has K0(AE) ∼= K0(AF ) as order-unit

groups. Also note that, since X is connected, the restrictions of all traces to the K0-group are
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zero on H and induce the unique state. So, any isomorphism of the trace simplices is compatible

with K0. Therefore,

((K0(AE),K
+
0 (AE), [1]0),K1(AE),T(A), ρA) ∼= ((K0(AF ),K

+
0 (AF ), [1]0),K1(AF ),T(B), ρB),

and hence AE
∼= AF (see [12] and [9]).

Now, assume rc(AE) = rc(AF ) ̸= 0. Since X is solid, by Theorem 3.4, we have

dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k

(E)
1 ) · · · (ni + k

(E)
i )

=
dim(X)

n0

· lim
i→∞

c1 · · · ci
(n1 + k

(F )
1 ) · · · (ni + k

(F )
i )

.

Since dim(X) <∞, both sides are finite non-zero numbers, and

lim
i→∞

c1 · · · ci
(n1 + k

(E)
1 ) · · · (ni + k

(E)
i )

= lim
i→∞

c1 · · · ci
(n1 + k

(F )
1 ) · · · (ni + k

(F )
i )

.

Since the limits are not 0 (otherwise, the radius of comparison is 0), the ratio of the two sequences

above converges to 1, i.e.,

(6.1) lim
i→∞

(n1 + k
(E)
1 ) · · · (ni + k

(E)
i )

(n1 + k
(F )
1 ) · · · (ni + k

(F )
i )

= 1.

Also note that, since ρ(K0(AE)) = ρ(K0(AF )),

(6.2)
∞∏
i=1

(ni + k
(E)
i ) =

∞∏
i=1

(ni + k
(F )
i ).

Consider the inductive limit constructions

Mn0(C(X))
ϕ
(E)
1 // M

n0(n1+k
(E)
1 )

(C(Xc1))
ϕ
(E)
2 // M

n0(n1+k
(E)
1 )(n2+k

(E)
2 )

(C(Xc1c2)) // · · · // AE,

Mn0(C(X))
ϕ
(F )
1 // M

n0(n1+k
(F )
1 )

(C(Xc1))
ϕ
(F )
2 // M

n0(n1+k
(F )
1 )(n2+k

(F )
2 )

(C(Xc1c2)) // · · · // AF .

Choose finite subsets

F (E)
1 ⊆ Mn0(C(X)), F (E)

2 ⊆ M
n0(n1+k

(E)
1 )

(C(Xc1)), ...

and

F (F )
1 ⊆ Mn0(C(X)), F (F )

2 ⊆ M
n0(n1+k

(F )
1 )

(C(Xc1)), ...

such that
∞⋃
i=1

F (E)
i = AE and

∞⋃
i=1

F (F )
i = AF .

Also, choose ε1 > ε2 > · · · > 0 such that
∞∑
i=1

εi ≤ 1.

Since AE and AF are simple, we have

∆E(h) := inf{τ(h) : τ ∈ T(AE)} > 0, h ∈ A+
E \ {0},
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and

∆F (h) := inf{τ(h) : τ ∈ T(AF )} > 0, h ∈ A+
F \ {0}.

Applying Theorem 5.1 to (F (E)
i , εi), we obtain finite sets H(E)

i,0 ,H
(E)
i,1 ⊆ M

m
(E)
i

(C(Xdi)) and

δ
(E)
i > 0. Applying Theorem 5.1 to (F (F )

i , εi), we obtain finite sets H(F )
i,0 ,H

(F )
i,1 ⊆ M

m
(F )
i

(C(Xdi))

and δ
(F )
i > 0. Set δi = min{δ(E)

i , δ
(F )
i }.

By (6.1) and 6.2, applying Lemma 4.9, we have a diagram

(6.3) Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ϕ
(E)
i1,i2 // M

m
(E)
i2

(C(Xdi2 )) //

ϕ
(E,F )
i2,i3

%%

· · · // AE

Mn0(C(X))
ϕ
(F )
1,i1 // M

m
(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1,i2 //

ϕ
(F,E)
i1,i2

66

M
m

(F )
i2

(C(Xdi2 )) // · · · // AF

that is approximately commutative at the level of traces: that is,

|τ(ϕ(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

(h)− ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

(h))| < δs,

for any s = 0, 2, ..., any h ∈ M
m

(E)
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(E)
is+2

(C(Xdis+2 )));

furthermore,

|τ(ϕ(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

(h)− ϕ
(F )
is+1,is+2

◦ ϕ(F )
is,is+1

(h))| < δs,

for any s = 1, 3, ..., any h ∈ M
m

(F )
is

(C(Xdis )) with ∥h∥ ≤ 1, and any τ ∈ T(M
m

(F )
is+2

(C(Xdis+2 )));

moreover, the maps ϕ
(F,E)
is+1,is+2

◦ϕ(E,F )
is,is+1

and ϕ
(E)
is+1,is+2

◦ϕ(E)
is,is+1

share the same coordinate projection

part—more precisely, these maps satisfy the requirements of Theorem 5.1 for ϕ0 and ϕ1—, and

so also do the maps ϕ
(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

and ϕ
(F )
is+1,is+2

◦ ϕ(F )
is,is+1

.

Therefore, by Theorem 5.1, there are unitaries

u
(E)
2 ∈ M

m
(E)
i2

(C(Xdi2 )), u
(E)
4 ∈ M

m
(E)
i4

(C(Xdi4 )), ...

and

u
(F )
3 ∈ M

m
(F )
i3

(C(Xdi3 )), u
(F )
5 ∈ M

m
(F )
i5

(C(Xdi5 )), ...

such that

∥ϕ(F,E)
is+1,is+2

◦ ϕ(E,F )
is,is+1

(f)− (u
(E)
s+2)

∗(ϕ
(E)
is+1,is+2

◦ ϕ(E)
is,is+1

(f))u
(E)
s+2∥ < εs

for any s = 0, 2, 4..., any f ∈ F (E)
is

⊆ M
m

(E)
is

(C(Xdis )); and, furthermore,

∥ϕ(E,F )
is+1,is+2

◦ ϕ(F,E)
is,is+1

(f)− (u
(F )
s+2)

∗ϕ
(F )
is+1,is+2

◦ ϕ(F )
is,is+1

(f)u
(F )
s+2∥ < εs

for any s = 1, 3, ..., any f ∈ F (F )
is

⊆ M
m

(F )
is

(C(Xdis )).
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In other words, the ith triangle of the diagram

(6.4) Mn0(C(X))
ϕ
(E)
1,i1 //

ϕ
(E,F )
1,i1

''

M
m

(E)
i1

(C(Xdi1 ))
ad(u

(E)
2 )◦ϕ(E)

i1,i2// M
m

(E)
i2

(C(Xdi2 )) //

ϕ
(E,F )
i2,i3

%%

· · · // AE

Mn0(C(X))
ϕ
(F )
1,i1

// M
m

(F )
i1

(C(Xdi1 ))
ϕ
(F )
i1,i2

//

ϕ
(F,E)
i1,i2

66

M
m

(F )
i2

(C(Xdi2 ))
ad(u

(F )
3 )◦ϕ(F )

i1,i2

// · · · // AF

is approximately commutative (pointwise) in norm, to within tolerance (F (E)
s , εs) or (F (F )

s , εs).

Then, by the approximate intertwining argument (Theorems 2.1 and 2.2 of [7]), we have

AE
∼= AF ,

as desired. □

Note that the assumptions on X to be solid and to be finite dimensional are only used to get

Equation (6.1). Thus, if k
(E)
i = k

(F )
i , i = 1, 2, ..., then Equation 6.1 automatically holds, and

then the same argument shows that AE
∼= AF for an arbitrary compact metrizable seed space X.

That is, the Villadsen algebra in this case is independent of the location of the point evaluations:

Corollary 6.2. Let X be a connected metrizable compact space. Let AE and AF be two Villadsen

algebras with point-evaluation sets E and F of the same size (with the same space X and the

same (ci) and (si,1, ..., si,ci), and same (ki)). (Recall we are assuming (2.2).) Then AE
∼= AF .

Proof. Since E and F have the same size, Equation (6.1) holds, and then the same argument as

in the proof of Theorem 6.1 shows that AE
∼= AF . □

Remark 6.3. In the case of Villadsen algebras in the strict sense of [31], i.e., with coordi-

nate projections of multiplicity one (and rapid dimension growth), both the trace simplex of

A(X, (ni), (ki)) and the trace simplex of A(X2, (ni), (ki)) are isomorphic to the Poulsen sim-

plex (Theorem 4.5). However, the algebras A(X, (ni), (ki)) and A(X2, (ni), (ki)) are not iso-

morphic in general as their radii of comparison (see [29]) are different (since by assumption

dim(X) ̸= dim(X2)). In the case that X is contractible, we will show below (Corollary 7.8)

that the slightly expanded class of C*-algebras based on either a given seed space X or a finite

Cartesian power ofX is in fact classified by the order-unit K0-group and the radius of comparison.

Remark 6.4. In the case of a Goodearl algebra ([18]), i.e., with only one coordinate projection,

Z-stability always holds, as the mean dimension in the sense of [23] is always zero (Theorem

3.4). In this case, (2.2) may or may not hold. If it holds, then Theorem 6.1 and Corollary 6.2

are applicable. If not—by [18], this is the case for real rank zero—then in any case the trace

simplex is determined as the state space of the K0-group and the conclusions of Theorem 6.1 and

Corollary 6.2 still hold. In fact, in general, the failure of (2.2) is equivalent to real rank zero,

and so the hypothesis of (2.2) in Theorem 6.1 and Corollary 6.2 is unnecessary.
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7. Let (ni) vary

We shall show the following theorem in this section:

Theorem 7.1. Let X be a K-contractible (i.e., K0(C(X)) = Z and K1(C(X)) = {0}) solid

metrizable compact space which is finite-dimensional. Let

A := A(X, (n
(A)
i ), (k

(A)
i ), E(A)) and B := B(X, (n

(B)
i ), (k

(B)
i ), F (B))

be Villadsen algebras (with coordinate projections of arbitrary (non-zero) multiplicity). Then

A ∼= B if, and only if,

K0(A) ∼= K0(B), T(A) ∼= T(B), and rc(A) = rc(B).

Moreover, if rc(A) ̸= 0 (or rc(B) ̸= 0), then T(A) (or T(B)) is redundant in the invariant, that

is, A ∼= B if, and only if,

K0(A) ∼= K0(B) and rc(A) = rc(B).

Remark 7.2. Since X is assumed to be K-contractible, we have

K0(A) ∼= Z[
1

n
(A)
0

,
1

n
(A)
1 + k

(A)
1

, ...] ⊆ Q

and

K0(B) ∼= Z[
1

n
(B)
0

,
1

n
(B)
1 + k

(B)
1

, ...] ⊆ Q,

with the class of the unit being of course 1 ∈ Z.

Remark 7.3. All contractible spaces are K-contractible, but not all K-contractible spaces are

contractible. Instances of this are the 2-skeleton of the Poincaré homology 3-sphere (or the

Poincaré homology 3-sphere with a small open ball removed), and the join of two infinite brooms:

!

!

!

"
!

7.1. An intertwining diagram.

Lemma 7.4. With X a metrizable compact space, let

A := A(X, (n
(A)
i ), (k

(A)
i ), E(A)) and B := B(X, (n

(B)
i ), (k

(B)
i ), F (B))

be Villadsen algebras. Assume that

(7.1) n
(A)
0

∞∏
i=1

(n
(A)
i + k

(A)
i ) = n

(B)
0

∞∏
i=1

(n
(B)
i + k

(B)
i ),
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as supernatural numbers, and

(7.2)
1

n
(A)
0

∞∏
i=1

c
(A)
i

n
(A)
i + k

(A)
i

=
1

n
(B)
0

∞∏
i=1

c
(B)
i

n
(B)
i + k

(B)
i

̸= 0,

as real numbers. Let δ1, δ2, ... be a decreasing sequence of strictly positive numbers with

∞∑
n=1

δn < 1.

Then there is a diagram

(7.3) M
n
(A)
0

(C(X))
ϕ
(A)
1,i1 //

ϕ
(A,B)
1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 ))

ϕ
(A)
i1,i2 // M

m
(A)
i2

(C(Xd
(A)
i2 )) //

ϕ
(A,B)
i2,i3

$$

· · · // A

M
n
(B)
0

(C(X))
ϕ
(B)
1,i1 // M

m
(B)
i1

(C(Xd
(B)
i1 ))

ϕ
(B)
i1,i2 //

ϕ
(B,A)
i1,i2
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M
m

(B)
i2

(C(Xd
(B)
i2 )) // · · · // B,

where

mi := n0(n1 + k1) · · · (ni−1 + ki−1), di := c1 · · · ci−1,

such that

|τ(ϕ(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

(h)− ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

(h))| < δis

for any s = 0, 2, ..., any h ∈ M
m

(A)
is

(C(Xd
(A)
is )) with ∥h∥ ≤ 1, and any τ ∈ T(M

m
(A)
is+2

(C(X
d
(A)
is+2 )));

and, symmetrically,

|τ(ϕ(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

(h)− ϕ
(B)
is+1,is+2

◦ ϕ(B)
is,is+1

(h))| < δis

for any s = 1, 3, ..., any h ∈ M
m

(B)
is

(C(Xd
(B)
is )) with ∥h∥ ≤ 1, and any τ ∈ T(M

m
(B)
is+2

(C(X
d
(B)
is+2 )));

and moreover, for each s = 0, 2, ...,

ϕ
(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

= diag{Ps, R
′
s,Θ

′
s}

and

ϕ
(A)
is,is+2

= ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

= diag{Ps, R
′′
s ,Θ

′′
s},

where Ps is a (common) coordinate projection map, and Θ′
s and Θ′′

s are point-evaluation maps

with

rank(Θ′
s) = rank(Θ′′

s) and
rank(R′

s)

rank(Θ′
s)

=
rank(R′′

s)

rank(Θ′′
s)
< δis ,

and, symmetrically, for each s = 1, 3, ...,

ϕ
(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

= diag{Ps, R
′
s,Θ

′
s}

and

ϕ
(B)
is,is+2

= ϕ
(B)
is+1,is+2

◦ ϕ(A)
is,is+1

= diag{Ps, R
′′
s ,Θ

′′
s},
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where Ps (with s now odd) is a (common) coordinate projection map, and Θ′
s and Θ′′

s are point

evaluations with

rank(Θ′
s) = rank(Θ′′

s) and
rank(R′

s)

rank(Θ′
s)

=
rank(R′′

s)

rank(Θ′′
s)
< δis .

Proof. Consider the inductive constructions

M
n
(A)
0

(C(X))
ϕ
(A)
1 // M

m
(A)
2

(C(Xd
(A)
2 ))

ϕ
(A)
2 // M

m
(A)
3

(C(Xd
(A)
3 )) // · · · // A,

M
n
(B)
0

(C(X))
ϕ
(B)
1 // M

m
(B)
2

(C(Xd
(B)
2 ))

ϕ
(B)
2 // M

m
(B)
3

(C(Xd
(B)
3 )) // · · · // B,

where

mi := n0(n1 + k1) · · · (ni−1 + ki−1), di := c1 · · · ci−1.

Set (see (7.2))

γ := lim
i→∞

c
(A)
1 · · · c(A)

i

n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i + k
(A)
i )

= lim
i→∞

c
(B)
1 · · · c(B)

i

n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i + k
(B)
i )

∈ (0, 1).

Without loss of generality, since k
(A)
i > 0, i = 1, 2, ..., we may assume

(7.4) δ1 <
k
(A)
1

n
(A)
1 + k

(A)
1

and
3
4
δ1

1− 3
4
δ1
< δ1 < 1.

There is i′1 > 0 such that

(7.5) 1−
∞∏
j=0

n
(A)

i′1+j

n
(A)

i′1+j + k
(A)

i′1+j

< δ1,

and, by Theorem 3.7, i′1 can be chosen sufficiently large that for all j = 1, 2, ..., the ratio

c
(A)

i′1
· · · c(A)

i′1+j

n
(A)

i′1
· · ·n(A)

i′1+j

is sufficiently close to 1 that

(7.6)
c
(A)

i′1
· · · c(A)

i′1+j

n
(A)

i′1
· · ·n(A)

i′1+j

((
n
(A)

i′1
· · ·n(A)

i′1+j

c
(A)

i′1
· · · c(A)

i′1+j

− 1) +
δ21
6
) <

δ21
3

and

(7.7)
|{sk : sk = 1, k = 1, ..., c

(A)

i′1
· · · c(A)

i′1+j}|

n
(A)

i′1
· · ·n(A)

i′1+j

> 1− δ21
12
,
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where

ϕ
(A)

i′1,i
′
1+j = diag{π∗

1, ..., π
∗
1︸ ︷︷ ︸

s1

, ..., π∗
c
(A)

i′1
···c(A)

i′1+j−1

, ..., π∗
c
(A)

i′1
···c(A)

i′1+j−1︸ ︷︷ ︸
s
c
(A)

i′1
···c(A)

i′1+j−1︸ ︷︷ ︸
n
(A)

i′1
···n(A)

i′1+j−1

, point evaluations}.

Then, pick ε′ > 0 such that

(7.8)
n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i′1−1 + k
(A)

i′1−1)

c
(A)
1 · · · c(A)

i′1−1

<
1

γ
− ε′,

and pick ε′′ > 0 such that

(7.9) (
1

γ
− ε′)(γ + ε′′) < 1.

By (7.1) and (7.2), there is i1 > i′1 such that

(7.10) n
(B)
0

i1−1∏
i=1

(n
(B)
i + k

(B)
i ) is divisible by n

(A)
0

i′1−1∏
i=1

(n
(A)
i + k

(A)
i ),

(7.11)
c
(B)
1 · · · c(B)

i1−1

n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i1−1 + k
(B)
i1−1)

< γ + ε′′,

and (since
∏∞

i=1 c
(B)
i = ∞)

(7.12)
c
(A)
1 · · · c(A)

i′1−1

c
(B)
1 · · · c(B)

i1−1

<
δ21
12
.

By Theorem 3.7, one may also assume that for all j = 1, 2, ...,

(7.13)
n
(B)
i1

· · ·n(B)
i1+j

c
(B)
i1

· · · c(B)
i1+j

< 2

and

(7.14)
|{sk : sk = 1, k = 1, ..., c

(B)
i1

· · · c(B)
i1+j}|

n
(B)
i1

· · ·n(B)
i1+j

> 1− δ21
12
,

where

ϕ
(B)
i1,i1+j = diag{π∗

1, ..., π
∗
1︸ ︷︷ ︸

s1

, ..., π∗
c
(B)
i1

···c(B)
i1+j−1

, ..., π∗
c
(B)
i1

···c(B)
i1+j−1︸ ︷︷ ︸

s
c
(B)
i1

···c(B)
i1+j−1︸ ︷︷ ︸

n
(B)
i1

···n(B)
i1+j−1

, point evaluations}.
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Pick li′1,i1 ∈ N such that

(7.15) 0 ≤ c
(B)
1 · · · c(B)

i1−1 − (c
(A)
1 · · · c(A)

i′1−1)li′1,i1 < c
(A)
1 · · · c(A)

i′1−1

(so li′1,i1 is the integer part of c
(B)
1 · · · c(B)

i1−1/c
(A)
1 · · · c(A)

i′1−1 and it will be used to construct the map

(7.17) below).

Then

n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i′1−1 + k
(A)

i′1−1)

n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i′1−1 + k
(B)

i′1−1)
·

li′1,i1

(n
(B)

i′1
+ k

(B)

i′1
) · · · (n(B)

i1−1 + k
(B)
i1−1)

(7.16)

≤
n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i′1−1 + k
(A)

i′1−1)

n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i1−1 + k
(B)
i1−1)

·
c
(B)
1 · · · c(B)

i1−1

c
(A)
1 · · · c(A)

i′1−1

(by (7.15))

=
n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i′1−1 + k
(A)

i′1−1)

c
(A)
1 · · · c(A)

i′1−1

·
c
(B)
1 · · · c(B)

i1−1

n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i1−1 + k
(B)
i1−1)

< (
1

γ
− ε′)(γ + ε′′) < 1 (by (7.8), (7.11), and (7.9)).

Then consider the diagram

M
n
(A)
0

(C(X))
ϕ
(A)

1,i′1 // M
m

(A)

i′1

(C(X
d
(A)

i′1 ))
ϕ
(A)

i′1,i1 //

ϕ̃
(A,B)

i′1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 )) // · · · // A

M
n
(B)
0

(C(X))
ϕ
(B)

1,i′1 // M
m

(B)

i′1

(C(X
d
(B)

i′1 ))
ϕ
(B)

i′1,i1 // M
m

(B)
i1

(C(Xd
(B)
i1 )) // · · · // B,

where

mi := n0(n1 + k1) · · · (ni−1 + ki−1), di := c1 · · · ci−1,

and ϕ̃
(A,B)

i′1,i1
: M

m
(A)

i′1

(C(X
d
(A)

i′1 )) → M
m

(B)
i1

(C(Xd
(B)
i1 )) is the map

(7.17) f 7→ diag{f ◦ π1, ..., f ◦ πli′1,i1︸ ︷︷ ︸
li′1,i1

, point evaluations},

where the point evaluations are arbitrarily chosen (the map ϕ̃
(A,B)

i′1,i1
, with coordinate projections

as specified, exists by (7.10) and (7.16)) (the evaluation points chosen for the map ϕ̃
(A,B)

i′1,i1
might

not be suitably dense in X
d
(A)

i′1 , but the set of evaluation points of the map ϕ̃
(A,B)

i′1,i1
◦ ϕ(A)

1,i′1
, which

contains the set of evaluation points of the map ϕ
(A)

1,i′1
, is suitably dense).

Write

ϕ
(A,B)
1,i1

= ϕ̃
(A,B)

i′1,i1
◦ ϕ(A)

1,i′1
,
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and compress the diagram above as

M
n
(A)
0

(C(X))
ϕ
(A)
1,i1 //

ϕ
(A,B)
1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 ))

ϕ
(A)
i1 // M

m
(A)
i1+1

(C(Xd
(A)
i1+1)) // · · · // A

M
n
(B)
0

(C(X))
ϕ
(B)
1,i1 // M

m
(B)
i1

(C(Xd
(B)
i1 ))

ϕ
(B)
i1 // M

m
(B)
i1+1

(C(Xd
(B)
i1+1)) // · · · // B.

Note that the map ϕ
(A,B)
1,i1

is given by

f 7→ diag{f ◦ π1, ..., f ◦ π
(n

(A)
1 ···n(A)

i′1−1
)li′1,i1︸ ︷︷ ︸

(n
(A)
1 ···n(A)

i′1−1
)li′1,i1

, certain point evaluations}.

Without loss of generality, we may assume that

δ2 <
k
(B)
i1

n
(B)
i1

+ k
(B)
i1

and
3
4
δ2

1− 3
4
δ2
< δ2 < 1.

The same argument as above shows that there are i2 > i′2 such that:

(7.18) 1−
∞∏
j=0

n
(B)

i′2+j

n
(B)

i′2+j + k
(B)

i′2+j

< δ2,

(7.19)
c
(B)

i′2
· · · c(B)

i′2+j

n
(B)

i′2
· · ·n(B)

i′2+j

((
n
(B)

i′2
· · ·n(B)

i′2+j

c
(B)

i′2
· · · c(B)

i′2+j

− 1) +
δ22
6
) <

δ22
3
, j = 1, 2, ...,

and

(7.20)
|{sk : sk = 1, k = 1, ..., c

(B)

i′2
· · · c(B)

i′2+j}|

n
(B)

i′2
· · ·n(B)

i′2+j

> 1− δ22
12
, j = 1, 2, ...,

where

ϕ
(B)

i′2,i
′
2+j = diag{π∗

1, ..., π
∗
1︸ ︷︷ ︸

s1

, ..., π∗
c
(B)

i′2
···c(B)

i′2+j−1

, ..., π∗
c
(B)

i′2
···c(B)

i′2+j−1︸ ︷︷ ︸
s
c
(B)

i′2
···c(B)

i′2+j−1︸ ︷︷ ︸
n
(B)

i′2
···n(B)

i′2+j−1

, point evaluations};

(7.21)
|{sk : sk = 1, k = 1, ..., c

(A)
i2

· · · c(A)
i2+j}|

n
(A)
i2

· · ·n(A)
i2+j

> 1− δ22
12
, j = 1, 2, ...,
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where

ϕ
(A)
i2,i2+j = diag{π∗

1, ..., π
∗
1︸ ︷︷ ︸

s1

, ..., π∗
c
(A)
i2

···c(A)
i2+j−1

, ..., π∗
c
(A)
i2

···c(A)
i2+j−1︸ ︷︷ ︸

s
c
(A)
i2

···c(A)
i2+j−1︸ ︷︷ ︸

n
(A)
i2

···n(A)
i2+j−1

, point evaluations};

and

(7.22) n
(A)
0

i2−1∏
i=1

(n
(A)
i + k

(A)
i ) is divisible by n

(B)
0

i′2−1∏
i=1

(n
(B)
i + k

(B)
i ),

(7.23)
c
(B)
1 · · · c(B)

i′2−1

c
(A)
1 · · · c(A)

i2−1

<
δ22
12
,

and

(7.24)
n
(B)
0 (n

(B)
1 + k

(B)
1 ) · · · (n(B)

i′2−1 + k
(B)

i′2−1)

n
(A)
0 (n

(A)
1 + k

(A)
1 ) · · · (n(A)

i′2−1 + k
(A)

i′2−1)
·

li′2,i2

(n
(A)

i′1
+ k

(A)

i′2
) · · · (n(A)

i2−1 + k
(A)
i2−1)

< 1,

where

(7.25) 0 ≤ c
(A)
1 · · · c(A)

i2−1 − (c
(B)
1 · · · c(B)

i′2−1)li′2,i2 < c
(B)
1 · · · c(B)

i′2−1.

Consider the map ϕ̃
(B,A)

i′2,i2
: M

m
(B)

i′2

(C(X
d
(B)

i′2 )) → M
m

(A)
i2

(C(Xd
(A)
i1 )),

f 7→ diag{f ◦ π1, ..., f ◦ πli′2,i2︸ ︷︷ ︸
li′2,i2

, point evaluations},

where the point evaluations are arbitrarily chosen (the map ϕ̃
(B,A)

i′2,i2
exists by (7.22) and (7.24);

cf. above). Define

ϕ
(B,A)
i1,i2

= ϕ̃
(B,A)

i′2,i2
◦ ϕ(B)

i1,i′2

and consider the augmented diagram

M
n
(A)
0

(C(X))
ϕ
(A)
1,i1 //

ϕ
(A,B)
1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 ))

ϕ
(A)
i1,i2 // M

m
(A)
i2

(C(Xd
(A)
i2 )) // · · · // A

M
n
(B)
0

(C(X))
ϕ
(B)
1,i1 // M

m
(B)
i1

(C(Xd
(B)
i1 ))

ϕ
(B)
i1,i2 //

ϕ
(B,A)
i1,i2

77

M
m

(B)
i2

(C(Xd
(B)
i2 )) // · · · // B.

It follows from (7.5) that

|τ(ϕ(B,A)
i1,i2

◦ ϕ(A,B)
1,i1

(h)− ϕ
(A)
i1,i2

◦ ϕ(A)
1,i1

(h))| < δ1, h ∈ M
n
(A)
0

(C(X)), ∥h∥ ≤ 1.

Note that

ϕ
(B,A)
i1,i2

◦ ϕ(A,B)
1,i1

= (ϕ̃
(B,A)

i′2,i2
◦ ϕ(B)

i1,i′2
◦ ϕ̃(A,B)

i′1,i1
) ◦ ϕ(A)

1,i′1
.
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By (7.14), we have

ϕ
(B)

i1,i′2
= diag{π∗

1, ..., π
∗
c
(B)
i1

···c(B)

i′2−1︸ ︷︷ ︸
c
(B)
i1

···c(B)

i′2−1

, Q′
0, point evaluations},

where Q′
0 is a coordinate projection map (possibly with multiplicity) with (in view of (7.13))

rank(Q′
0) ≤

δ21
12

(n
(B)
i1

· · ·n(B)

i′2−1) <
δ21
6
(c

(B)
i1

· · · c(B)

i′2−1).

Hence,

ϕ̃
(B,A)

i′2,i2
◦ ϕ(B)

i1,i′2
◦ ϕ̃(A,B)

i′1,i1
= diag{π∗

1, ..., π
∗
li′1,i1

(c
(B)
i1

···c(B)

i′2−1
)li′2,i2︸ ︷︷ ︸

li′1,i1
(c

(B)
i1

···c(B)

i′2−1
)li′2,i2

, Q0, point evaluations},

where Q0 is a coordinate projection map (possibly with multiplicity) with

(7.26) rank(Q0) ≤
δ21
6
li′1,i1(c

(B)
i1

· · · c(B)

i′2−1)li′2,i2 ,

and hence,

(7.27) ϕ
(B,A)
i1,i2

◦ ϕ(A,B)
1,i1

= diag{π∗
1 ◦ P

(A)

1,i′1
, ..., π∗

li′1,i1
(c

(B)
i1

···c(B)

i′2−1
)li′2,i2

◦ P (A)

1,i′1︸ ︷︷ ︸
(n

(A)
1 ···n(A)

i′1−1
)li′1,i1

(c
(B)
i1

···c(B)

i′2−1
)li′2,i2

, Q0 ◦ P (A)

1,i′1
, Θ̃′

1},

where P
(A)

1,i′1
is the coordinate projection part of the map ϕ

(A)

1,i′1
and Θ̃′

1 is a point-evaluation map.

Also note that, by (7.7) (and note that the multiplicities of coordinate projections are non-zero),

ϕ
(A)

i′1,i2
= diag{π∗

1, ..., π
∗
c
(A)

i′1
···c(A)

i2−1

, Q1, point evaluations},

where Q1 is a coordinate projection map (possibly with multiplicity) with

(7.28) rank(Q1) ≤
δ21
12

(n
(A)

i′1
· · ·n(A)

i2−1).

We then have

(7.29) ϕ
(A)
1,i2

= diag{π∗
1 ◦ P

(A)

1,i′1
, ..., π∗

c
(A)

i′1
···c(A)

i2−1

◦ P (A)

1,i′1︸ ︷︷ ︸
(n

(A)
1 ···n(A)

i′1−1
)(c

(A)

i′1
···c(A)

i2−1)

, Q1 ◦ P (A)

1,i′1
, Θ̃′′

1},

where Θ̃′′
1 is a point-evaluation map.

Let us compare ϕ
(B,A)
i1,i2

◦ ϕ(A,B)
1,i1

((7.27)) with ϕ
(A)
1,i2

((7.29)). Note that
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(n
(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2(7.30)

≤ (n
(A)
1 · · ·n(A)

i′1−1)
c
(B)
1 · · · c(B)

i1−1

c
(A)
1 · · · c(A)

i′1−1

(c
(B)
i1

· · · c(B)

i′2−1)
c
(A)
1 · · · c(A)

i2−1

c
(B)
1 · · · c(B)

i′2−1

(by (7.15) and (7.25))

= n
(A)
1 · · ·n(A)

i′1−1c
(A)

i′1
· · · c(A)

i2−1

≤ n
(A)
1 · · ·n(A)

i′1−1n
(A)

i′1
· · ·n(A)

i2−1 = n
(A)
1 · · ·n(A)

i2−1.

Also note that

c
(A)
1 · · · c(A)

i2−1 − (c
(A)
1 · · · c(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2(7.31)

= c
(A)
1 · · · c(A)

i2−1 − ((c
(A)
1 · · · c(A)

i′1−1)li′1,i1)(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

≤ c
(A)
1 · · · c(A)

i2−1 − (c
(B)
1 · · · c(B)

i1−1)(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

+(c
(A)
1 · · · c(A)

i′1−1)(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2 (by (7.15))

= c
(A)
1 · · · c(A)

i2−1 − (c
(B)
1 · · · c(B)

i′2−1)li′2,i2 + (c
(A)
1 · · · c(A)

i′1−1)(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

≤ c
(B)
1 · · · c(B)

i′2−1 + (c
(A)
1 · · · c(A)

i′1−1)(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2 (by (7.25))

≤ c
(B)
1 · · · c(B)

i′2−1 + (c
(A)
1 · · · c(A)

i′1−1)(c
(B)
i1

· · · c(B)

i′2−1)
c
(A)
1 · · · c(A)

i2−1

c
(B)
1 · · · c(B)

i′2−1

(by (7.25))

= c
(B)
1 · · · c(B)

i′2−1 + (c
(A)
1 · · · c(A)

i′1−1)
c
(A)
1 · · · c(A)

i2−1

c
(B)
1 · · · c(B)

i1−1

= c
(B)
1 · · · c(B)

i′2−1 +
c
(A)
1 · · · c(A)

i′1−1

c
(B)
1 · · · c(B)

i1−1

(c
(A)
1 · · · c(A)

i2−1)

≤ δ21
6
(c

(A)
1 · · · c(A)

i2−1) (by (7.23), (7.12)),
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and hence,

1

n
(A)
1 · · ·n(A)

i2−1

(n
(A)
1 · · ·n(A)

i2−1 − (n
(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2)(7.32)

= 1−
n
(A)
1 · · ·n(A)

i′1−1

n
(A)
1 · · ·n(A)

i2−1

· li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

= 1− (
n
(A)
1 · · ·n(A)

i′1−1

n
(A)
1 · · ·n(A)

i2−1

·
c
(A)
1 · · · c(A)

i2−1

c
(A)
1 · · · c(A)

i′1−1

) ·
c
(A)
1 · · · c(A)

i′1−1

c
(A)
1 · · · c(A)

i2−1

li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

= 1− (
c
(A)

i′1
· · · c(A)

i2−1

n
(A)

i′1
· · ·n(A)

i2−1

) ·
c
(A)
1 · · · c(A)

i′1−1

c
(A)
1 · · · c(A)

i2−1

li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

=
c
(A)

i′1
· · · c(A)

i2−1

n
(A)

i′1
· · ·n(A)

i2−1

((
n
(A)

i′1
· · ·n(A)

i2−1

c
(A)

i′1
· · · c(A)

i2−1

− 1) + (1−
c
(A)
1 · · · c(A)

i′1−1

c
(A)
1 · · · c(A)

i2−1

li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2))

≤
c
(A)

i′1
· · · c(A)

i2−1

n
(A)

i′1
· · ·n(A)

i2−1

((
n
(A)

i′1
· · ·n(A)

i2−1

c
(A)

i′1
· · · c(A)

i2−1

− 1) +
δ21
6
) (by (7.31))

<
δ21
3

(by (7.6)).

Then,

(n
(A)
1 · · ·n(A)

i′1−1)(c
(A)

i′1
· · · c(A)

i2−1)− (n
(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

≤ (n
(A)
1 · · ·n(A)

i′1−1)(n
(A)

i′1
· · ·n(A)

i2−1)− (n
(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

≤ δ21
3
(n

(A)
1 · · ·n(A)

i2−1),

and hence,

(7.33) (c
(A)

i′1
· · · c(A)

i2−1)− li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2 ≤
δ21
3

·
n
(A)
1 · · ·n(A)

i2−1

n
(A)
1 · · ·n(A)

i′1−1

.

Write

P1 = diag{π∗
1 ◦ P

(A)

1,i′1
, ..., π∗

li′1,i1
(c

(B)
i1

···c(B)

i′2−1
)li′2,i2

◦ P (A)

1,i′1︸ ︷︷ ︸
(n

(A)
1 ···n(A)

i′1−1
)li′1,i1

(c
(B)
i1

···c(B)

i′2−1
)li′2,i2

}.
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Note that (by (7.26) and (7.28) in the second step)

|rank(Θ̃′
1)− rank(Θ̃′′

1)|
≤ (n

(A)
1 · · ·n(A)

i′1−1)((c
(A)

i′1
· · · c(A)

i2−1)− li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2 + rank(Q0) + rank(Q1))

≤ (n
(A)
1 · · ·n(A)

i′1−1)(
δ21
3

·
n
(A)
1 · · ·n(A)

i2−1

n
(A)
1 · · ·n(A)

i′1−1

+
δ21
6
li′1,i1(c

(B)
i1

· · · c(B)

i′2−1)li′2,i2 +
δ21
12

(n
(A)

i′1
· · ·n(A)

i2−1))

=
5

12
δ21(n

(A)
1 · · ·n(A)

i2−1) +
δ21
6
(n

(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2

<
5

12
δ21(n

(A)
1 · · ·n(A)

i2−1) +
δ21
6
(n

(A)
1 · · ·n(A)

i2−1) by (7.30)

=
7

12
δ21(n

(A)
1 · · ·n(A)

i2−1).

Then, Θ̃′
1 and Θ̃′′

1 can be decomposed as

Θ̃′
1 = R̃′

1 ⊕Θ′
1 and Θ̃′′

1 = R̃′′
1 ⊕Θ′′

1,

with

(7.34) rank(Θ′
1) = rank(Θ′′

1) and max{rank(R̃′
1), rank(R̃

′′
1)} ≤ 7

12
δ21(n

(A)
1 · · ·n(A)

i2−1).

Define

R′
1 = diag{Q0 ◦ P (A)

1,i′1
, R̃′

1}

and

R′′
1 = diag{π∗

li′1,i1
(c

(B)
i1

···c(B)

i′2−1
)li′2,i2

+1
◦ P (A)

1,i′1
, ..., π∗

c
(A)

i′1
···c(A)

i2−1

◦ P (A)

1,i′1
, Q1 ◦ P (A)

1,i′1
, R̃′′

1}.

Then we have

ϕ
(B,A)
i1,i2

◦ ϕ(A,B)
1,i1

= diag{P1, R
′
1,Θ

′
1}

and

ϕ
(A)
i1,i2

◦ ϕ(A)
1,i1

= diag{P1, R
′′
1,Θ

′′
1},

with (by (7.26), (7.34), and (7.30))

rank(R′′
1) = rank(R′

1) ≤ δ21
6
(n

(A)
1 · · ·n(A)

i′1−1)li′1,i1(c
(B)
i1

· · · c(B)

i′2−1)li′2,i2 +
7

12
δ21(n

(A)
1 · · ·n(A)

i2−1)

≤ 3δ21
4

(n
(A)
1 · · ·n(A)

i2−1).(7.35)

Note that rank(Θ̃′′
1)—the number of the point evaluations appearing in ϕ

(A)
i1,i2

◦ϕ(A)
1,i1

—is at least

k
(A)
1

n
(A)
1 + k

(A)
1

((n
(A)
1 + k

(A)
1 ) · · · (n(A)

i2−1 + k
(A)
i2−1)),

and hence, by (7.4), is at least

δ1(n
(A)
1 · · ·n(A)

i2−1).
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It then follows from (7.35) that

rank(Θ′
1) = rank(Θ′′

1) ≥ (δ1 −
3δ21
4

)(n
(A)
1 · · ·n(A)

i2−1),

and hence (by (7.35) again), that

rank(R′
1)

rank(Θ′
1)

=
rank(R′′

1)

rank(Θ′′
1)

≤
3
4
δ21

δ1 − 3
4
δ21
< δ1.

Repeating this process, we have an intertwining diagram which is approximately commutative

in the sense desired. □

7.2. The isomorphism theorem. First, we need the following stable uniqueness theorem,

which certainly is well known to experts (see, for instance, [5], [21], and [15]). For the reader’s

convenience, we provide a proof.

Theorem 7.5. Let X be a K-contractible metrizable compact space (i.e., K0(C(X)) = Z and

K1(C(X)) = {0}), and let ∆ : C(X)+ → (0,+∞) be a map. For any finite set F ⊆ C(X) and

any ε > 0, there exists a finite set H ⊆ C(X)+ with supp(h) ̸= X for each h ∈ H and there

exists M ∈ N such that the following property holds: for any unital homomorphisms

ϕ, ψ : C(X) → Mn(C(Y )) and θ : C(X) → Mm(C) ⊆ Mm(C(Y )),

where θ is a unital point-evaluation map with nM < m, and such that

tr(θ(h)) > ∆(h), h ∈ H,

there is a unitary u ∈ Mn+m(C(Y )) such that

∥diag{ϕ(a), θ(a)} − u∗diag{ψ(a), θ(a)}u∥ < ε, a ∈ F .

The theorem follows from the following two lemmas.

Lemma 7.6. Let X be a K-contractible metrizable compact space, and let ∆ : C(X)+ → (0,+∞)

be a map. For any finite set F ⊆ C(X) and any ε > 0, there exists a finite set H ⊆ C(X)+

with supp(h) ̸= X and ∥h∥ ≤ 1 for each h ∈ H and there exists M ∈ N such that the following

property holds: for any unital homomorphisms

ϕ, ψ : C(X) → Mn(C(Y )) and θ : C(X) → Mn(C) ⊆ Mn(C(Y ))

where θ is a unital point-evaluation map with

tr(θ(h)) > ∆(h), h ∈ H,

there is a unitary u ∈ M(1+M)n(C(Y )) such that

∥diag{ϕ(a), θ(a), ..., θ(a)︸ ︷︷ ︸
M

} − u∗diag{ψ(a), θ(a), ..., θ(a)︸ ︷︷ ︸
M

}u∥ < ε, a ∈ F .
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Proof. Assume the statement were not true. Then there would be (F0, ε0) such that for any finite

set H ⊆ C(X)+ with supp(h) ̸= X and ∥h∥ ≤ 1 for each h ∈ H and any M , there are unital

homomorphisms ϕ, ψ, θ : C(X) → Mn(C(Y )) for some Y and n with θ a unital point-evaluation

map with

tr(θ(h)) > ∆(h), h ∈ H,

but

∥diag{ϕ(a), θ(a), ..., θ(a)︸ ︷︷ ︸
M

} − u∗diag{ψ(a), θ(a), ..., θ(a)︸ ︷︷ ︸
M

}u∥ ≥ ε0, a ∈ F0,

for all unitary u ∈ M(1+M)n(C(Y )).

In particular, let Hi, i = 1, 2, ..., be an increasing sequence of finite sets such that the union of

Hi is dense in the set of positive contractions of C(X)+ which do not have full supports, and such

that supp(h) ̸= X for each h ∈ Hi, i = 1, 2, .... There are sequences of unital homomorphisms

ϕi, ψi, θi : C(X) → Mni
(C(Yi)) =: Bi for some Yi and ni with θi a unital point-evaluation map

with

(7.36) tr(θi(h)) > ∆(h), h ∈ Hi,

but

(7.37) ∥diag{ϕi(a), θi(a), ..., θi(a)︸ ︷︷ ︸
i

} − u∗diag{ψi(a), θi(a), ..., θi(a)︸ ︷︷ ︸
i

}u∥ ≥ ε0, a ∈ F0,

for all unitary u ∈ M1+i(Bi) ∼= M(1+i)ni
(C(Yi)).

Consider the three maps Φ := (ϕi),Ψ := (ψi),Θ := (θi) : C(X) →
∏
Bi/

⊕
Bi. Since X is

K-contractible, by the UCT ([26]), the C*-algebra C(X) is KK-equivalent to C, and hence we

have

(7.38) [Φ] = [Ψ] in KK(C(X),
∏

Bi/
⊕

Bi).

By (7.36), the map Θ is a unital full embedding (see Definition 2.8 of [5]; we leave the verifi-

cation to the reader), and then, by Theorem 2.22 together with Theorem 4.5 of [5], there exist

l ∈ N and a unitary u ∈ M1+l(
∏
Bi/

⊕
Bi) such that

∥diag{Φ(a),Θ(a), ...,Θ(a)︸ ︷︷ ︸
l

} − u∗diag{Ψ(a),Θ(a), ...,Θ(a)︸ ︷︷ ︸
l

}u∥ < ε0, a ∈ F0.

Lifting u to a unitary of
∏
Bi (the relations for a unitary are stable), one has a contradiction

with (7.37). □

Lemma 7.7. Let X be a compact metric space, and let ∆ : C(X)+ → (0,+∞) be a map (density

function). For any finite set F ⊆ C(X), any ε > 0, and any M ∈ N, there exist a finite set of

positive contractions H ⊆ C(X)+ and L ∈ N, with supp(h) ̸= X for each h ∈ H, such that if

θ : C(X) → Mn(C), where n > L, is a point-evaluation map with

tr(θ(h)) > ∆(h), h ∈ H,
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then there are unital homomorphisms θ0 : C(X) → Mn0(C) and θ1 : C(X) → Mn1(C) for some

n0, n1 with n0 +Mn1 = n and a (permutation) unitary u such that

∥θ(a)− u∗(θ0(a)⊕ θ1(a)⊕ · · · θ1(a)︸ ︷︷ ︸
M

)u∥ < ε, a ∈ F ,

and

n0 ≤ n1.

Proof. Pick δ > 0 such that dist(x, y) < δ implies |a(x) − a(y)| < ε for all a ∈ F . Pick a finite

set {y1, ..., ys} ⊆ X which is δ-dense in X. Define

δ0 := min{dist(yi, yj) : i ̸= j, i, j = 1, ..., s},

and pick non-zero continuous functions hi : X → [0, 1], i = 1, ..., s, such that

hi(x) = 0, if dist(x, yi) > δ0/2.

Set H = {h1, ..., hs}, and pick an integer

L >
M2 +M

min{∆(hi) : i = 1, ..., s}
.

Then H and L have the property of the lemma.

Indeed, let θ : C(X) → Mn, where n > L, be a point-evaluation map satisfying

(7.39) tr(θ(h)) > ∆(h), h ∈ H.

Write {x1, ..., xn} for the evaluation points of θ. Then, choose a map σ : {x1, ..., xn} → {y1, ..., ys}
such that

(7.40) dist(xi, σ(xi)) < δ, i = 1, ..., n,

and for each j = 1, ..., s,

σ(xi) = yj if dist(xi, yj) < δ0/2.

Let θ′ : C(X) → Mn(C) denote the point-evaluation map at the points σ(x1), ..., σ(xn). Then, it

follows from (7.40) and the choice of δ that

(7.41) ∥θ(f)− θ′(f)∥ < ε, f ∈ F .

Up to a permutation, we have

θ′ = diag{evy1 , ..., evy1︸ ︷︷ ︸
m1

, ..., evys , ..., evys︸ ︷︷ ︸
ms

}.

Note that

tr(θ)(hi) ≤
mi

n
, i = 1, ..., s.

By (7.39), we have

mi ≥ n∆(hi) ≥ L∆(hi) > M2 +M.
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Then, write mi =Mdi + ri with 0 ≤ ri ≤M − 1, so that, in particular, di > ri. Write

θ0 = diag{
r1︷ ︸︸ ︷

evy1 , ..., evy1 , 0, ..., 0︸ ︷︷ ︸
m1

, ...,

rs︷ ︸︸ ︷
evys , ..., evys , 0, ..., 0︸ ︷︷ ︸

ms

}

and

θ1 = diag{
r1︷ ︸︸ ︷

0, ..., 0,

d1︷ ︸︸ ︷
evy1 , ..., evy1 , 0, ..., 0︸ ︷︷ ︸

m1

, ...,

rs︷ ︸︸ ︷
0, ..., 0,

ds︷ ︸︸ ︷
evys , ..., evys , 0, ..., 0︸ ︷︷ ︸

ms

}.

Regard θ0 as unital homomorphism C(X) → Mn0(C) and regard θ1 as unital homomorphism

C(X) → Mn1(C), where n0 = r1 + · · · + rs and n1 = d1 + · · · + ds. Then a straightforward

calculation shows that

θ′ = θ0 ⊕ θ1 ⊕ · · · θ1︸ ︷︷ ︸
M

,

and the desired inequality is then just (7.41). □

Proof of Theorem 7.5. Applying Lemma 7.6 to (F , ε/2) with respect to the density function ∆/4,

we obtain a finite set of positive contractions H1 ⊆ C(X)+ with the property that supp(h) ̸= X

for all h ∈ H1 and a natural number M1. Without loss of generality, we may assume that

(7.42) M1 ≥
1

min{∆(h) : h ∈ H}
.

Applying Lemma 7.7 to (F ∪ H1, min{ε/4,∆(h)/4 : h ∈ H1}) and 2M1 with respect to the

density function ∆, we obtain a finite set of positive contractions H2 and L(≥ 2) . Moreover,

supp(h) ̸= X for all h ∈ H2. Then H := H1 ∪ H2 and M := 2LM1 satisfy the condition of the

theorem.

Indeed, let ϕ, ψ : C(X) → Mn(C(Y )) and θ : C(X) → Mm(C(Y )) be unital homomorphisms

such that θ is a unital point-evaluation map with n(2LM1) < m (in particular, L < m and

n < m/2M1), and

(7.43) tr(θ(h)) > ∆(h), h ∈ H = H1 ∪H2.

By Lemma 7.7, there are unital homomorphisms θ0 : C(X) → Mn0(C) and θ1 : C(X) → Mn1(C)
for some n0, n1 with n0 + 2M1n1 = m and a permutation unitary u ∈ Mm(C) such that

(7.44) ∥θ(a)− u∗(θ0(a)⊕ θ1(a)⊕ · · · θ1(a)︸ ︷︷ ︸
2M1

)u∥ < min{ε/4,∆(h)/4 : h ∈ H1}, a ∈ F ∪H1,

and

n0 ≤ n1.

In particular,

(7.45) ∥(1n ⊕ u)(ϕ(f)⊕ θ(f))(1n ⊕ u∗)− ϕ(f)⊕ θ0(f)⊕ θ1(f)⊕ · · · ⊕ θ1(f)︸ ︷︷ ︸
2M1

∥ < ε

4
, f ∈ F
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and

(7.46) ∥(1n ⊕ u)(ψ(f)⊕ θ(f))(1n ⊕ u∗)− ψ(f)⊕ θ0(f)⊕ θ1(f)⊕ · · · ⊕ θ1(f)︸ ︷︷ ︸
2M1

∥ < ε

4
, f ∈ F .

Note that, also by (7.44), we have

|Tr(θ(h))− Tr(θ0(h))− 2M1Tr(θ1(h))| < m∆(h)/4, h ∈ H1,

Hence, by (7.43) (and note that h is a positive contraction),

2M1Tr(θ1(h)) > Tr(θ(h))− Tr(θ0(h))−m∆(h)/4 > m∆(h)− n0 −m∆(h)/4 =
3

4
m∆(h)− n0,

and then, by (7.42) (and note that n0 ≤ n1 and m > 2M1n1),

1

n1

Tr(θ1(h)) >
3m

8M1n1

∆(h)− n0

2M1n1

>
3

4
(

m

2M1n1

)∆(h)− 1

2
∆(h) >

3

4
∆(h)− 1

2
∆(h) =

1

4
∆(h).

That is,

tr(θ1(h)) >
1

4
∆(h), h ∈ H1.

Now, consider the maps

(ϕ⊕ θ0)⊕ (θ1 ⊕ · · · ⊕ θ1︸ ︷︷ ︸
2M1

) and (ψ ⊕ θ0)⊕ (θ1 ⊕ · · · ⊕ θ1︸ ︷︷ ︸
2M1

).

Since

n+ n0 ≤
m

2LM1

+ n0 =
n0 + 2M1n1

2LM1

+ n0 ≤
1 + 2M1

4M1

n1 + n1 < 2n1,

it follows from (the conclusion of) Lemma 7.6 that there is a unitary v ∈ Mn+m(C(Y )) such that

∥(ϕ(f)⊕θ0(f))⊕(θ1(f)⊕ · · · ⊕ θ1(f)︸ ︷︷ ︸
2M1

)−v∗((ψ(f)⊕θ0(f))⊕(θ1(f)⊕ · · · ⊕ θ1(f)︸ ︷︷ ︸
2M1

))v∥ < ε

2
, f ∈ F .

Therefore, together with (7.45) and (7.46),

∥ϕ(f)⊕ θ(f)− (1n ⊕ u∗)v∗(1n ⊕ u)(ψ(f)⊕ θ(f))(1n ⊕ u)v(1n ⊕ u)∥ < ε, f ∈ F ,

as desired. □

Proof of Theorem 7.1. If rc(A) = rc(B) = 0, then A and B are Z-stable, and hence A ∼= B if,

and only if, (K0(A),T(A)) ∼= (K0(B),T(B)) (note that K0(A) and K0(B) have a unique state,

and hence the pairing maps are automatically isomorphic if T(A) ∼= T(B)).

Now, let us assume rc(A) = rc(B) ̸= 0. Since X is solid, by Theorem 3.4,

dim(X)

n
(A)
0

∞∏
i=1

c
(A)
i

n
(A)
i + k

(A)
i

=
dim(X)

n
(B)
0

∞∏
i=1

c
(B)
i

n
(B)
i + k

(B)
i

.

Since dim(X) <∞, both sides are finite non-zero numbers, and hence

1

n
(A)
0

∞∏
i=1

c
(A)
i

n
(A)
i + k

(A)
i

=
1

n
(B)
0

∞∏
i=1

c
(B)
i

n
(B)
i + k

(B)
i

̸= 0;
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that is, (7.2) of Lemma 7.4 is satisfied. Note that (7.1) of Lemma 7.4 follows from the assumption

K0(A) ∼= K0(B).

Consider the inductive limit constructions

M
n
(A)
0

(C(X))
ϕ
(A)
1 // M

m
(A)
2

(C(Xd
(A)
2 ))

ϕ
(A)
2 // M

m
(A)
3

(C(Xd
(A)
3 )) // · · · // A,

M
n
(B)
0

(C(X))
ϕ
(B)
1 // M

m
(B)
2

(C(Xd
(B)
2 ))

ϕ
(B)
2 // M

m
(B)
3

(C(Xd
(B)
3 )) // · · · // B,

where

mi := n0(n1 + k1) · · · (ni−1 + ki−1), di := c1 · · · ci−1.

Choose finite subsets

F (A)
1 ⊆ M

n
(A)
0

(C(X)),F (A)
2 ⊆ M

n
(A)
0 (n

(A)
1 +k

(A)
1 )

(C(Xn
(A)
1 )), ...

and

F (B)
1 ⊆ M

n
(B)
0

(C(X)),F (B)
2 ⊆ M

n
(B)
0 (n

(B)
1 +k

(B)
1 )

(C(Xn
(B)
1 )), ...

such that
∞⋃
i=1

F (A)
i = A and

∞⋃
i=1

F (B)
i = B.

Also choose ε1 > ε2 > · · · > 0 such that
∞∑
i=1

εi ≤ 1.

Since A and B are simple, we have the non-zero density functions

∆A(h) = inf{τ(h) : τ ∈ T(A)}, h ∈ A+,

and

∆B(h) = inf{τ(h) : τ ∈ T(B)}, h ∈ B+.

For i = 0, 2, ..., applying Theorem 5.1 to (F (A)
i , εi/2) with respect to ∆A/4, we obtain finite

sets H(A)
i,0 ,H

(A)
i,1 ⊆ M

m
(A)
i

(C(Xd
(A)
i )) and δ

(A)
i > 0. Applying Theorem 7.5 to (F (A)

i , εi/2) with

respect to ∆A/4, we obtainM
(A)
i > 0 and a finite set H(A)

i,2 ⊆ M
m

(A)
i

(C(Xd
(A)
i )) with supp(h) ̸= X

for each h ∈ H(A)
i,2

For i = 1, 3, ..., applying Theorem 5.1 to (F (B)
i , εi/2) with respect to ∆B/4, we obtain finite sets

H(B)
i,0 ,H

(B)
i,1 ⊆ M

m
(B)
i

(C(Xd
(B)
i )) and δ

(B)
i > 0. Applying Theorem 7.5 to (F (B)

i , εi/2) with respect

to ∆B/4, we obtain M
(B)
i > 0 and a finite set H(B)

i,2 ⊆ M
m

(B)
i

(C(Xd
(B)
i )) with supp(h) ̸= X for

each h ∈ H(B)
i,2

For each i = 1, 2, ..., set

H(A)
i = H(A)

i,0 ∪H(A)
i,1 ∪H(A)

i,2 , H(B)
i = H(B)

i,0 ∪H(B)
i,1 ∪H(B)

i,2 ,
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and

δi = min{1
2
,
δ
(A)
i

4
,
δ
(B)
i

4
,

1

M
(A)
i

,
1

M
(B)
i

,
1

20
∆A(hA),

1

20
∆B(hB) : hA ∈ H(A)

i , hB ∈ H(B)
i }.

After telescoping, we may assume that

(7.47) τ(ϕ
(A)
i,i+1(h)) > ∆A(h)/2, h ∈ H(A)

i , τ ∈ T(M
m

(A)
i+1

(C(Xd
(A)
i+1))), i = 0, 1, ...,

and

(7.48) τ(ϕ
(B)
i,i+1(h)) > ∆B(h)/2, h ∈ H(B)

i , τ ∈ T(M
m

(B)
i+1

(C(Xd
(B)
i+1))), i = 0, 1, ....

By Lemma 7.4, there is a diagram

(7.49) M
n
(A)
0

(C(X))
ϕ
(A)
1,i1 //

ϕ
(A,B)
1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 ))

ϕ
(A)
i1,i2 // M

m
(A)
i2

(C(Xd
(A)
i2 )) //

ϕ
(A,B)
i2,i3

$$

· · · // A

M
n
(B)
0

(C(X))
ϕ
(B)
1,i1 // M

m
(B)
i1

(C(Xd
(B)
i1 ))

ϕ
(B)
i1,i2 //

ϕ
(B,A)
i1,i2

77

M
m

(B)
i2

(C(Xd
(B)
i2 )) // · · · // B

such that

(7.50) |τ(ϕ(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

(h)− ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

(h))| < δis

for any s = 0, 2, ..., any h ∈ M
m

(A)
is

(C(Xd
(A)
is )) with ∥h∥ ≤ 1, and any τ ∈ T(M

m
(A)
is+2

(C(X
d
(A)
is+2 ))),

and, symmetrically,

|τ(ϕ(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

(h)− ϕ
(B)
is+1,is+2

◦ ϕ(B)
is,is+1

(h))| < δis

for any s = 1, 3, ..., any h ∈ M
m

(B)
is

(C(Xd
(B)
is )) with ∥h∥ ≤ 1, and any τ ∈ T(M

m
(B)
is+2

(C(X
d
(B)
is+2 ))),

and such that, for each s = 0, 2, ...,

ϕ
(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

= diag{Ps, R
′
s,Θ

′
s}

and

ϕ
(A)
is,is+2

= ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

= diag{Ps, R
′′
s ,Θ

′′
s},

where Ps is a coordinate projection map, and Θ′
s and Θ′′

s are point-evaluation maps with

(7.51) rank(Θ′
s) = rank(Θ′′

s) and
rank(R′

s)

rank(Θ′
s)

=
rank(R′′

s)

rank(Θ′′
s)
< δis ,

and, furthermore, for each s = 1, 3, ...,

ϕ
(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

= diag{Ps, R
′
s,Θ

′
s}

and

ϕ
(B)
is,is+2

= ϕ
(B)
is+1,is+2

◦ ϕ(B)
is,is+1

= diag{Ps, R
′′
s ,Θ

′′
s},
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where Ps is a coordinate projection map, and Θ′
s and Θ′′

s are point-evaluation maps with

rank(Θ′
s) = rank(Θ′′

s) and
rank(R′

s)

rank(Θ′
s)

=
rank(R′′

s)

rank(Θ′′
s)
< δis .

Also note that, by (7.47) and (7.48),

(7.52) τ(ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

(h)) > ∆A(h)/2, h ∈ H(A)
is
, τ ∈ T(M

m
(A)
is+2

(C(X
d
(A)
is+2 ))), s = 0, 2, ...

and

(7.53) τ(ϕ
(B)
is+1,is+2

◦ ϕ(B)
is,is+1

(h)) > ∆B(h)/2, h ∈ H(B)
is
, τ ∈ T(M

m
(B)
is+2

(C(X
d
(B)
is+2 ))), s = 1, 3, ....

For s = 0, 2, ..., let us show the maps diag{Ps, R
′
s,Θ

′
s} (which is ϕ

(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

) and

diag{Ps, R
′′
s ,Θ

′′
s} (which is ϕ

(A)
is+1,is+2

◦ ϕ(A)
is,is+1

) are approximately unitarily equivalent. For this

purpose, by (7.51), we may assume that the Θ′
s(1) = Θ′′

s(1) (and hence R′
s(1) = R′′

s(1)). Then

denote 1P = Ps(1), 1Θ = Θ′
s(1), and 1R = R′

s(1).

Consider diag{Ps,Θ
′
s} and diag{Ps,Θ

′′
s} which are maps

M
m

(A)
is

(C(Xd
(A)
is )) → (1P + 1Θ)Mm

(A)
is+2

(C(X
d
(A)
is+2 ))(1P + 1Θ).

Then the conditions of Theorem 5.1 are satisfied for diag{Ps,Θ
′
s} and diag{Ps,Θ

′′
s}. Indeed, for

each h ∈ H(A)
is

and each x ∈ X
d
(A)
is+2 , by (7.50) and (7.51),

|Tr(diag{Ps(h)(x),Θ
′
s(h)(x)})− Tr(diag{Ps(h)(x),Θ

′′
s(h)(x)})|

≤ |Tr(ϕ(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

)(h)(x)− Tr(ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

(h)(x))|+ |Tr(R′′
s(h)(x))− Tr(R′

s(h)(x))|

< m
(A)
is+2

δis +m
(A)
is+2

δis = 2m
(A)
is+2

δis .

Therefore (use (7.51) again and recall that δis < 1/2),

|tr(diag{Ps(h)(x),Θ
′
s(h)(x)})− tr(diag{Ps(h)(x),Θ

′′
s(h)(x)})| < (

1

1− δis
)2δis < 4δis < δ

(A)
is
,

which implies

(7.54) |τ(diag{Ps(h),Θ
′
s(h)})− τ(diag{Ps(h),Θ

′′
s(h)})| < 4δis < δ

(A)
is
, h ∈ H(A)

is
,

where τ is a tracial state of (1P + 1Θ)Mm
(A)
is+2

(C(X
d
(A)
is+2 ))(1P + 1Θ).
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Also note that for any h ∈ H(A)
is

, by (7.51) and (7.52),

tr(diag{Ps(h)(x),Θ
′′
s(h)(x)})

≥ 1

m
(A)
is+2

Tr(diag{Ps(h)(x),Θ
′′
s(h)(x)})

=
1

m
(A)
is+2

Tr(diag{Ps(h)(x),Θ
′′
s(h)(x), R

′′
s(h)(x)})−

1

m
(A)
is+2

Tr(R′′
s(h)(x))

>
1

m
(A)
is+2

Tr((ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

)(h)(x))− δis

> ∆A(h)/2− δis .

Hence

(7.55) τ(diag{Ps(h),Θ
′′
s(h)}) > ∆A(h)/2− δis > ∆A(h)/4, h ∈ H(A)

is
,

where τ is a tracial state of (1P + 1Θ)Mm
(A)
is+2

(C(X
d
(A)
is+2 ))(1P + 1Θ).

Together with (7.54), we also have that, for all h ∈ H(A)
is

,

(7.56) τ(diag{Ps(h),Θ
′
s(h)}) > τ(diag{Ps(h),Θ

′′
s(h)})− 4δis > ∆A(h)/2− 5δis > ∆A(h)/4,

where τ is a tracial state of (1P + 1Θ)Mm
(A)
is+2

(C(X
d
(A)
is+2 ))(1P + 1Θ).

Thus, by (7.54), (7.55), and (7.56), we apply Theorem 5.1 to obtain a unitary

us+2 ∈ (1P + 1Θ)Mm
(A)
is+2

(C(X
d
(A)
is+2 ))(1P + 1Θ)

such that

(7.57) ∥u∗s+2diag{Ps,Θ
′
s}us+2 − diag{Ps,Θ

′′
s}∥ <

εis
2

on F (A)
is
.

Now, consider the maps

diag{R′
s,Θ

′
s}, diag{R′′

s ,Θ
′′
s} : M

m
(A)
is

(C(Xd
(A)
is )) → (1R + 1Θ)Mm

(A)
is+2

(C(X
d
(A)
is+2 ))(1R + 1Θ).

For each h ∈ H(A)
is,2

(⊆ H(A)
is

), since supp(h) ̸= Xd
(A)
is , there is a point x ∈ Xd

(A)
is such that

h(x) = 0. Set x̃ = (x, ..., x) ∈ X
d
(A)
is+2 . Since Ps consists of coordinate projections, we have that
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Ps(h)(x̃) = 0. Then

tr(Θ′
s(h)) =

1

rank(1Θ)
Tr(Θ′

s(h)(x̃))

=
1

rank(1Θ)
Tr(diag{Ps(h)(x̃), R

′
s(x̃),Θ

′
s(h)(x̃)})−

1

rank(1Θ)
Tr(R′

s(x̃))

>
1

rank(1Θ)
Tr(diag{Ps(h)(x̃), R

′
s(x̃),Θ

′
s(h)(x̃)})− δis

>
1

m
(A)
ii+2

Tr(diag{Ps(h)(x̃), R
′
s(x̃),Θ

′
s(h)(x̃)})− δis

=
1

m
(A)
ii+2

Tr(ϕ
(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

(h)(x̃))− δis

≥ ∆(h)/2− 2δis > ∆(h)/4.

The same argument also shows that

tr(Θ′′
s(h)) > ∆(h)/4, h ∈ H(A)

is,2
.

Also recall that, by (7.51),

rank(R′
s)

rank(Θ′
s)
< δis <

1

M
(A)
is

and
rank(R′′

s)

rank(Θ′′
s)
< δis <

1

M
(A)
is

.

Then, the conditions of Theorem 7.5 are satisfied, and there is a unitary

ws+2 ∈ (1R + 1Θ)Mm
(A)
is+2

(C(X
d
(A)
is+2 ))(1R + 1Θ)

such that

(7.58) ∥w∗
s+2diag{R′

s,Θ
′′
s}ws+2 − diag{R′′

s ,Θ
′′
s}∥ <

εis
2

on F (A)
is
.

Regarding us+2 and ws+2 as unitaries in M
m

(A)
is+2

(C(X
d
(A)
is+2 )), and setting vs+2 = us+2ws+2, we

have

∥v∗s+2diag{Ps, R
′
s,Θ

′
s}vs+2 − diag{Ps, R

′′
s ,Θ

′′
s}∥ < εis on F (A)

is
.

That is,

∥v∗s+2(ϕ
(B,A)
is+1,is+2

◦ ϕ(A,B)
is,is+1

)vs+2 − ϕ
(A)
is+1,is+2

◦ ϕ(A)
is,is+1

∥ < εis on F (A)
is
.

A similar argument shows that for s = 1, 3, ..., there are unitaries vs+2 such that

∥v∗s+2(ϕ
(A,B)
is+1,is+2

◦ ϕ(B,A)
is,is+1

)vs+2 − ϕ
(B)
is+1,is+2

◦ ϕ(B)
is,is+1

∥ < εis on F (B)
is
.
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Therefore, in the diagram

(7.59) M
n
(A)
0

(C(X))
ϕ
(A)
1,i1 //

ϕ
(A,B)
1,i1

''

M
m

(A)
i1

(C(Xd
(A)
i1 ))

ad(v
(A)
2 )◦ϕ(A)

i1,i2// M
m

(A)
i2

(C(Xd
(A)
i2 )) //

ϕ
(A,B)
i2,i3

$$

· · · // A

M
n
(B)
0

(C(X))
ϕ
(B)
1,i1

// M
m

(B)
i1

(C(Xd
(B)
i1 ))

ϕ
(B)
i1,i2

//

ϕ
(B,A)
i1,i2

77

M
m

(B)
i2

(C(Xd
(B)
i2 ))

ad(v
(B)
3 )◦ϕ(B)

i1,i2

// · · · // B,

the sth triangle is approximately commutative to within (F (A)
is
, εis) or (F (B)

is
, εis). By the ap-

proximate intertwining argument ([7]), we have

A ∼= B,

as desired. □

Corollary 7.8. Let X be a K-contractible solid metrizable compact space which is finite dimen-

sional. Let

A := A(Xp, (n
(A)
i ), (k

(A)
i ), E(A)) and B := B(Xq, (n

(B)
i ), (k

(B)
i ), F (B))

be Villadsen algebras (with coordinate projections of arbitrary (non-zero) multiplicity). Then

A ∼= B if, and only if,

K0(A) ∼= K0(B), T(A) ∼= T(B) and rc(A) = rc(B).

Moreover, if rc(A) ̸= 0 (or rc(B) ̸= 0), then T(A) (or T(B)) is redundant in the invariant; that

is, A ∼= B if, and only if,

K0(A) ∼= K0(B) and rc(A) = rc(B).

Proof. Consider the inductive limit construction

M
n
(A)
0

(C(Xp)) // M
m

(A)
1

(C(Xpd
(A)
1 )) // M

m
(A)
2

(C(Xpd
(A)
2 )) // · · · // A.

Tensor it with Mpq(C) and add a new first map, which is induced by coordinate projections with

multiplicity one (but no point evaluation yet), to obtain the new construction

M
qn

(A)
0

(C(X)) // Mpq(Mn
(A)
0

(C(Xp))) // Mpq(Mm
(A)
1

(C(Xpd
(A)
1 ))) // · · · // Mpq(A).

Similarly, also consider B, and consider the new inductive limit construction

M
pn

(B)
0

(C(X)) // Mpq(Mn
(B)
0

(C(Xq)) // Mpq(Mm
(B)
1

(C(Xqd
(B)
1 ))) // · · · // Mpq(B).

Then collapse the first two maps so that there are point evaluations in all connecting maps of

the new sequences.

Since rc(A) = rc(B), we have rc(Mpq(A)) = rc(Mpq(B)), and by Theorem 7.1, Mpq(A) ∼=
Mpq(B); denote this algebra by C. Note that [eA]0 = [eB]0 in K0(C), where eA and eB are the

images of 1A and 1B in the upper left corner of the matrix algebras respectively. Since A and B

have stable rank one ([10]), C has stable rank one, and hence cancellation of projections. This
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implies that eA is Murray-von Neumann equivalent to eB inside C, and therefore A ∼= B, as

asserted. □

Remark 7.9. Let A and B be two Villadsen algebras with seed spaces X and Y respectively.

Is X∞ ∼= Y ∞ sufficient for our classification to apply? Is it possible that the seed space X is

completely irrelevant (when rc ̸= 0)?
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