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Abstract. Motivated by Huaxin Lin’s axiomatization of AH-algebras,

the class of TASI-algebras is introduced as the class of unital C*-algebras
which can be tracially approximated by splitting interval algebras—certain

sub-C*-algebras of interval algebras. It is shown that the class of sim-

ple separable nuclear TASI-algebras satisfying the UCT is classified by the
Elliott invariant. As a consequence, any such TASI-algebra is then isomor-

phic to an inductive limit of splitting interval algebras together with certain

homogeneous C*-algebras—so it is an ASH-algebra.

Résumé. Une classe de C*-algèbres qui généralisent la classe bien

connue TAI de Lin est considérée—basées sur, au lieu de l’intervalle, ce qui
pourrait s’appeler l’intervalle fendu (“splitting interval”), de sorte que l’on

les appelle la classe TASI. On montre que la classe de C*-algèbres TASI

qui sont simples, nucléaires, et à élément unité, qui vérifient le théorème
à coefficients universels (UCT), peuvent se classifier d’après l’invariant

d’Elliott.

1. Introduction This is the third part of the classification of tracially ap-
proximate splitting interval algebras (together with [12] and [13]).

The uniqueness theorems are studied, and then together with the existence
theorem of [13], one obtains the following classification theorem for the class of
tracially approximate splitting interval algebras:

Theorem. Let A and B be two simple separable nuclear TASI-algebra which
satisfies UCT. Then A ∼= B if and only if

((K0(A),K0(A)+, [1A]0),K1(A),T(A), rA)

∼= ((K0(B),K0(B)+, [1B ]0),K1(B),T(B), rB).

Moreover, the *-isomorphism between the C*-algebras can be chosen to induce
the given isomorphism between their invariants.
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The range of the Elliott invariant for TASI-algebras is then investigated in
Section 4. The class of TASI-algebras is strictly larger than the class of AH-
algebras. C*-algebras which are TASI but not AH have been constructed by
several authors in [8], [4] and [2]. All of these constructions provided a TASI-
algebra with the convex of the states on the K0-group not being a simplex. We
shall show further that even if the K0-group of a TASI-algebra has the Riesz
decomposition property (in particular, this implies that the convex of the states
is a simplex), this algebra still might not be an AH-algebra (even not being a
rationally AH-algebra). An example is constructed as a TASI-algebra with K0-
group a Riesz group, but with the canonical pairing map not preserving extreme
points (Theorem 4.9).

Finally, it is also shown in Section 4.1 that, although the class of rationalized
K0-groups of TASI-algebras is much larger than the class of rationalized Riesz
groups, its ordered K0-group still does not exhaust all weakly unperforated sim-
ple ordered groups, even after tensoring by Q (Theorem 4.5). For instance, if an
order-unit group has a pentagon as the convex of its states, then it cannot be
the K0-group of a TASI-algebra. Therefore, to obtain a classification theorem
which exhausts all possible values of the Elliott invariant, one has to consider the
class of C*-algebras which can be tracially approximated by arbitrary Elliott-
Thomsen algebras introduced in [4] and [2]. This direction of research will be
investigated in [7].

2. Uniqueness Theorem In this section, we shall establish a uniqueness
theorem for simple separable TASI-algebras. The strategy is to get a stable
uniqueness theorem for TASI-algebras first. Then, using an approximately di-
visibility property of TASI-algebras, one can decompose any map between two
TASI-algebras into a direct sum of two maps with the image of one map is in a
small corner and the other map has large multiplicity. Thus one can use the sta-
ble uniqueness to show the uniqueness of the original map. First, let us show the
uniqueness theorem for maps from a splitting interval algebra to a simple TASI-
algebra (assume that the splitting interval algebra is a unital sub-C*-algebra of
a simple C*-algebra.)

Proposition 2.1. Let S be a splitting interval algebra inside a unital simple
C*-algebra B, and let A be a simple TASI-algebra. Then, for any finite subset
F ⊆ S, any ε > 0, there is finite subsets G ⊆ B, G1 ⊆ S, and δ, σ > 0 such that
for any two G-σ-multiplicative maps φ and ψ from B to A, if

• [φ] = [ψ] on K0(S) and
• ‖τ ◦ φ(g)− τ ◦ ψ(g)‖ < δ for any g ∈ G1 and any τ ∈ T(A),

then there exists a unitary u ∈ A such that

‖φ(f)− uψ(f)u∗‖ < ε for all f ∈ F .

Proof. Denote by k the size of the matrix algebra at each regular point of S.
Without loss of generality, one may assume that F is a set of generators of S
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containing the central elements {t(1−t)eij ; i, j = 1, ..., k}. Let n = min{[1/δ0]+
1, ε/4}, where δ0 > 0 is the constant of Corollary 2.23 of [12] with respect to F
and ε/4.

Denote by G0 and G1 the finite subsets of Theorem 2.27 of [12] with respect
to F and ε. Since B is simple and S has stable relation, there is a finite subset
G ⊂ B and σ > 0 such that for any G-σ-multiplicative map L : B → A, the
restriction of L to S can be approximated by a homomorphism L′ : S → A
with tolerance ε/2 on any element of F . Moreover, there is δ > 0 such that
|τ(L′(g))| > δ for any g ∈ G0 and for any τ ∈ T(A), and δ is independent of L
(using the simplicity of B). By the argument above, with this choice of G, G1,
σ and δ, for any G-σ-multiplicative maps φ, ψ : B → A, one may assume that φ
and ψ are homomorphisms from S to A satisfying

|τ(φ(g))| > δ and |τ(ψ(g))| > δ

for any g ∈ G0.
As the first step, let us show that the *-homomorphisms φ and ψ can be

decomposed approximately (on F) as a direct sum of a homomorphism and a
large number of point evaluation maps. To construct one point evaluation map
of S, it is enough to find a system of k × k matrix units in A on which φ(S) (or
ψ(S)) acts as a point evaluation. For any n ∈ Z+, set ξi = i

n . Choose positive

elements {si,j}ni=0 in S which take value 0 outside the interval ( 2i−1
2n , 2i+1

2n ), take

value ejj on [ 4i−1
4n , 4i+1

4n ], and linear in between. Set si =
∑
j si,j . Since the

elements in {si,j} are mutually orthogonal, one has that the elements in {φ(si,j)}
are mutually orthogonal. Pick a non-zero projection pi,j inside each hereditary
sub-C*-algebra of A generated by φ(si,j). This can be done since A has the
(SP) property. Moreover, since A is simple, we can assume pi,j ’s are equivalent
to each others. Set pi =

∑
j pi,j . Note that fsi − f(ξi)si < (1/n)si for any

f ∈ F . One has that ‖φ(f)pi − f(ξi)pi‖ < 1/n. Setting e =
∑
pi, one then

has that ‖φ(f)e− f(ξi)e‖ < 1/n. Hence one has the following approximate
decomposition: we may write φ (on F) as

φ(f) =F,ε/4 (1− e)φ(f)(1− e) +
∑

f(ξi)pi.

By the same argument, we also get

ψ(f) =F,ε/4 (1− e′)ψ(f)(1− e′) +
∑

f(ξi)qi,

where e′ =
∑
qi. Since A is simple and has the (SP) property, for any pair

of projections, there are subprojections in each one of them which are Murray-
von Neumann equivalent. Thus, one may assume that pi = qi and the pi’s are
Murray-von Neumann equivalent to each other (by passing to the subprojections
and composing inner automorphisms)(see, for instance, Lemma 3.5.7 of [9]).
Moreover, since the positive cone of K0(S) is finite generated, we may assume
(1− e)φ(1− e) and (1− e)ψ(1− e) induce same map on K0(S).
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Consider the maps (1 − e)φ(1 − e) and (1 − e)ψ(1 − e). For any projections
p and q in S which are not Murray-von Neumann equivalent to each other, if
[(1 − e)φ(p)(1 − e)] = [(1 − e)ψ(q)(1 − e)], then there exists a partial isometry
v ∈ (1 − e)A(1 − e) which induces the equivalence relation. Pick one such
partial isometry v for each pair of non-equivalent minimal projections which
have equivalent images. Denote all such partial isometries v by V . Since there
are only finite minimal projections in S, the set V is a finite subset of A. Consider
F ′ = φ(F) ∪ ψ(F) ∪ V . Since (1 − e)A(1 − e) is a TASI-algebra, there exist a
projection p and a splitting interval algebra S′ ⊂ (1 − e)A(1 − e) with 1S′ = p
such that

• ‖px− xp‖ < ε0,
• pxp ∈ε0 S′ for all x ∈ F ′, and
• 1− p � p11.

Since ε0 can be arbitrarily small and splitting interval algebra are generated by
stable relations, one then may assume that the maps φ and ψ has the following
decomposition on F :

φ(f) = φ′(f) + (φ′′(f) +
∑

f(ξi)pi),

ψ(f) = ψ′(f) + (ψ′′(f) +
∑

f(ξi)pi),

where φ′, φ′′, ψ′, ψ′′ are the cut-down of φ and ψ by p and 1−p respectively such
that τ(1− p) < δ/4 for any τ ∈ T(A). Moreover, since the positive cone K0(S)
is finitely generated, one may assume further that [φ′]0 = [ψ′]0.

We assert that the sub-C*-algebra S′ can be chosen so that for any τ ∈ T(S′),
one has τ(φ′(g)) > δ, τ(ψ′(g)) > δ for any g ∈ G0, and

‖τ(φ′(f))− τ(ψ′(f))‖ < δ

for any f ∈ G1. If this were not true, for any integer m and any finite subset
H ⊂ A, there is a sub-C*-algebra S′ in the question above and τm,H ∈ T(S′)
such that H ⊂1/m S′, τm,H(φ′(g)) ≤ δ, τm,H(ψ′(g)) ≤ δ for any g ∈ G0 and

‖τm,H(φ′(f))− τm,H(ψ′(f))‖ ≥ δ

for any f ∈ G1. Extend τm,H to a positive linear functional on A, and still denote
it by τm,H. Pick an accumulation point τ of {τm,H}, and a direct calculation
shows that τ ∈ T(A) and τ(φ′(g)) ≤ δ, τ(ψ′(g)) ≤ δ for any g ∈ G0 and∥∥τ(φ′(f))− τ(ψ′(f))

∥∥ ≥ δ,
for any f ∈ G1, which is a contradiction. This proves the assertion.

Hence, one has that
[φ′]0 = [ψ′]0,
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τ(φ′(g)) > δ, τ(ψ′(g)) > δ

for any g ∈ G0, and
‖τ(φ′(f))− τ(ψ′(f))‖ < δ

for any f ∈ G1. It follows from Theorem 2.27 of [12] that there exists a unitary
u1 ∈ S′ ⊂ pAp such that

‖φ′(f)− u1φ
′(f)u∗1‖ < ε

for any f ∈ F .
Consider the map φ̃′′ : f 7→ φ′′(f) +

∑n
i=1 f(ξi)pi and ψ̃′′ : f 7→ ψ′′(f) +∑n

i=1 f(ξi)pi. Note that [φ̃′′]0 = [ψ̃′′]0 By Corollary 2.23 of [12], there exists a
unitary u2 ∈ (1− p)A(1− p) such that∥∥∥φ̃′′(f)− u2ψ̃′′(f)u∗2

∥∥∥ < ε, ∀f ∈ F .

Setting u = u1 + u2, one has

‖φ(f)− uψ(f)u∗‖ < ε ∀f ∈ F ,

as desired. �

The main ingredient of the uniqueness theorem for TASI-algebra is a version
of stable uniqueness theorem for approximate homomorphisms (Theorem 2.11)
(see [10] and [1]).

Definition 2.2. Let A be a unital C*-algebra and u ∈ U0(A), the connected
component of the unitary group of A containing the identity. Then the expo-
nential length of u, denoted by cel(u), is

inf{
n∑
k=1

||hk|| : n ∈ N, h1, · · · , hn ∈ As.a., u = exp(ih1) · · · exp(ihn)}.

Definition 2.3. Denote by C the class of unital C*-algebras A such that

• A has stable rank one,
• for any finite subset F ⊆ B, any ε > 0 and any N ∈ N, there exists a finite-
dimensional C*-algebra F ⊆ B with the size of each direct summand at least N
such that if p = 1F , then

– ‖[x, y]‖ < ε for any x ∈ F and any y in the unit ball of F ,
– N [1− p] ≤ [p].

Remark 2.4. By Theorem 4.13 of [12], any TASI-algebra belongs to C.

The following lemma is due to N.C. Phillips.
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Lemma 2.5. Let A be a unital C*-algebra and 2 > d > 0. Let u0, u1, ..., un be
n+ 1 unitaries in A such that

un = 1 and ‖ui − ui+1‖ ≤ d i = 0, 1., ..., n− 1.

Then there exists a unitary v ∈ M2n+1(A) with exponential lengh no more than
2π such that ∥∥(u0 ⊕ 1M2n(A))− v

∥∥ ≤ d.
Moreover, v ∈ CU(M2n+1(A)).

Let (Bn) be a sequence of C*-algebras. Define

θ1 : K1(
∏

Bn)→
∏

K1(Bn)

to be the map induced by coordinator projections.

Lemma 2.6. Let (Bn) be a sequence of C*-algebras in C. Then the kernel of θ1

is divisible.

Proof. Let u∞ = (u1, u2, ..., un, ...) be a unitary in a matrix algebra over∏
Bn with θ1(u∞) = 0, and let k ∈ N. Note that each un is connected

to the identity by a path, say, with length ln. Then, pick unitaries u
(1)
n =

un, u
(2)
n , ..., u

(kn−1)
n , u

(kn)
n = 1Bn such that∥∥∥u(i)

n − u(i+1)
n

∥∥∥ ≤ 1/2

for all i. Then chose a finite-dimensional C*-algebra Fn such that the size of
each direct summand is at least Nn(> max{2mn + 1, 2k}), and

•
∥∥∥[u

(i)
n , y]

∥∥∥ < 1/32 for any u
(i)
n and any y in the unit ball of Fn,

• Nn[1− pn] ≤ [pn], where pn = 1Fn
.

Without loss of generality, one may assume that Fn is a single matrix algebra
and the rank of Fn is divided by k.

Consider the cut-down of the unitaries u
(i)
n by pn. One then has that∥∥∥pu(i)

n p− pu(i+1)
n p

∥∥∥ ≤ 1

for all i. Since being a unitary is a stable relation, there is a sequence of unitaries
{vin; 1 ≤ i ≤ kn} in pnBnpn connecting (1− pn)un(1− pn) to 1− pn and∥∥∥v(i)

n − v(i+1)
n

∥∥∥ < 3/2

for all i.
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Then, by Lemma 2.5, there is a unitary v ∈ Bn in with exponential length at
most 3π such that

‖((1− pn)un(1− pn)⊕ pn)− v‖ < 1/16.

Hence, one has

‖un − vdiag{1− pn, w, ..., w︸ ︷︷ ︸
rank(F )

}‖ < 1/8

for some unitary w ∈ eBne, where e is a minimal projection of F .
For each 1 ≤ j ≤ k, consider

z(j)
n = diag{1− pn, e, ..., e︸ ︷︷ ︸

M(j−1)

, w, ..., w︸ ︷︷ ︸
M

, e, ..., e},

where M = rank(F )/k. Then

(2.1) cel(u∗n

k∏
j=1

z(j)
n ) < 4π

for all n. Denote by

z(j)
∞ = (z

(j)
1 , z

(j)
2 , ...., z(j)

n , ...)

for 1 ≤ j ≤ k. By (2.1), one has

[u∞]1 = [(z(1)
∞ )]1 + · · ·+ [z(k)

∞ ]1

in K1(
∏
Bn). On the other hand, it is a straightforward calculation that

[(z(1)
∞ )]1 = · · · = [z(k)

∞ ]1

in K1(
∏
Bn). Therefore, [u∞]1 is divided by k, and ker(θ1) is divisible, as desired.

�

Lemma 2.7. If (Bn) is a sequence of C*-algebras in C, the C*-algebra∏
Bn/

⊕
Bn is also in C.

Proof. It is clear that
∏
Bn/

⊕
Bn has stable rank one.

Let us verify the second condition of Definition 2.3. Let F ⊆
∏
Bn/

⊕
Bn be

a finite subset, ε > 0, and N ∈ N. Let F ′ ⊆
∏
Bn be a lifting of F in

∏
Bn,

and denote by F ′n the project of F ′ to Bn. Then there is a finite-dimensional
sub-C*-algebra Fn ⊆ Bn such that

1. ‖[x, y]‖ < ε for any x ∈ F ′n and any y in the unit ball of Fn,
2. N [1− pn] ≤ [pn], where pn = 1Fn

.
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Moreover, each Fn can be chosen to be a single matrix algebra with the same
rank.

For each n, chose an isomorphism φn : Fn → Fn+1. Consider the sub-C*-
algebra

F ′ := {(a1, a2, ...); an+1 = φn(an)} ⊆
∏

Fn ⊆
∏

Bn,

and denote F the image of F ′ in
∏
Bn/

⊕
Bn. Then F is isomorphic to each Fn,

and moreover, a direct calculation shows that F satisfies the second condition of
Definition 2.3. �

Recall that a group G is algebraically compact if Pext(·, G) vanishes ([5]).

Lemma 2.8. Let (Bi) be a sequence of C*-algebras in the class C. Then the
groups

K0(
∏

Bn/
⊕

Bn) and K1(
∏

Bn/
⊕

Bn)

are algebraically compact.

Proof. Since each Bi has stable rank one, one has that cco(Bi) = 0 (see 3.2
of [1] for the definition of cco). By the second condition of Definition 2.3 on the
class C, it is ready that pfo(Bi) ≤ 1 and ipo(Bi) ≤ 1 (again, we refer to 3.2 of
[1] for the definition of pfo and ipo). It then follows from Corollary 3.6 (II) of
[1] that K0(

∏
Bn/

⊕
Bn) is algebraically compact.

Consider the group K1(
∏
Bn/

⊕
Bn). Note that for any w ∈ K1(

⊕
Bn) ⊆

K1(
∏
Bn), its image θ1(w) ∈

∏
K1(Bn) is zero if and only if w = 0. Therefore,

the map θ1 : K1(
∏
Bn)→

∏
K1(Bn) induces a map

θ̃1 : K1(
∏

Bn)/
⊕

K1(Bn)→
∏

K1(Bn)/
⊕

K1(Bn),

and
ker θ̃1

∼= ker θ1.

By Lemma 2.6, the group ker θ1 is divisible, so is ker θ̃1. Therefore, one has

K1(
∏

Bn/
⊕

Bn) ∼= K1(
∏

Bn)/
⊕

K1(Bn)

∼= ker θ̃1 ⊕
∏

K1(Bn)/
⊕

K1(Bn).

By Lemma 3.5 of [1], the group
∏

K1(Bn)/
⊕

K1(Bn) is algebraically com-
pact. Since ker θ̃1 is divisible, in particular it is also algebraically compact.
Therefore, as their direct sum, the group K1(

∏
Bn/

⊕
Bn) is also algebraically

compact, as desired. �

Lemma 2.9. Let A be a C*-algebra, and let (Bn) be a sequence of C*-algebras
in C. Then the natural map

(2.2) Hom(K0(A),K0(
∏

Bn))→
∏

Hom(K0(A),K0(Bn))
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is injective. Moreover, let (φn) and (ψn) be homomorphisms from A to Bn with

[φn] = [ψn] ∈ HomΛ(K(A),K(Bn))

cel(φn(u)ψn(u∗)) ≤ L(u)

for some map L : U(M∞(A))→ R+. Then

[(φn)]1 = [(ψn)]1 ∈ Hom(K1(A),K1(
∏

Bn)).

Moreover, in this case,

[(φn)] = [(ψn)] ∈ HomΛ(K(A),K(
∏

Bn)).

If A satisfies the UCT and, then one has

(2.3) KK(A,
∏

Bn/
⊕

Bn) = HomΛ(K(A),K(
∏

Bn/
⊕

Bn)).

Proof. Since each Bn has stable rank one, by Proposition 2.1(1) of [6],

K0(
∏

Bn) =

b∏
K0(Bn),

and hence the map of (2.2) is injective. The statement on K1-groups follows
from the fact that for any unitary u, the images (φn(u)) and (ψn(u)) can be
connected by a path of unitary which is continuous uniformly for n. And then
the statement on the K-theory with coefficient follows from a diagram chase, as
that Theorem 4.10 of [1].

For (2.3), since A satisfies the UCT, one only has to show

Pext(K∗(A),K∗+1(
∏

Bn/
⊕

Bn)) = {0},

but this follows from Lemma 2.8. �

Theorem 2.10. Let A be a separable simple nuclear C*-algebra satisfying the
UCT, and let L : U(M∞(A)) → R+ be a map. Then, for any finite subset
F ⊆ A any ε > 0, there exists n such that for any C*-algebra B ∈ C, and any
homomorphisms φ, ψ : A→ B and unital homomorphism σ : A→ B with

[φ] = [ψ] ∈ HomΛ(K(A),K(B))

and

(2.4) cel(φ(u)ψ(u∗)) ≤ L(u)

for all u, then there is a unitary u ∈ Mn+1(B) such that

‖diag(φ(a), σ(a), ..., σ(a)︸ ︷︷ ︸
n

)− u∗diag(ψ(a), σ(a), ..., σ(a)︸ ︷︷ ︸
n

)u‖ < ε

for any a ∈ A.
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Proof. The proof is the same as that of Theorem 4.12 of [1]. Assume that the
conclusion were not true for a finite subset F ⊆ A and ε > 0. Then, for each n,
there are a C*-algebra Bn in C and homomorphisms φn, ψn, σn : A → Bn with
σn unital such that

[φn] = [ψn] ∈ HomΛ(K(A),K(B))

and
cel(φn(u)ψn(u∗)) ≤ L(u)

for all u, but

inf
u∈U(Mn+1(B))

max
a∈F
{‖diag(φn(a), σn(a), ..., σn(a))

−u∗diag(ψn(a), σn(a), ..., σn(a))u‖} ≥ ε.(2.5)

Denote by

Φ,Ψ,Σ : A→
∏

Bn

the maps induced by (φn), (ψn) and (σn), and consider

Φ̃, Ψ̃, Σ̃ : A→
∏

Bn/
⊕

Bn.

By Lemma 2.9, one has that

[Φ] = [Ψ] ∈ HomΛ(K(A),K(
∏

Bn)),

and therefore,

[Φ̃] = [Ψ̃] ∈ HomΛ(K(A),K(
∏

Bn/
⊕

Bn)).

By (2.3), one has

[Φ̃]KK = [Ψ̃]KK ∈ KK(A,
∏

Bn/
⊕

Bn).

Since Σ̃ : A→
∏
Bn/

⊕
Bn is a full embedding, it follows from Theorem 4.5 of

[1] that there is N and a unitary w ∈ MN+1(
∏
Bn/

⊕
Bn) such that

‖diag(Φ̃(a), Σ̃(a), ..., Σ̃(a)︸ ︷︷ ︸
N

)− w∗diag(Ψ̃(a), Σ̃(a), ..., Σ̃(a)︸ ︷︷ ︸
N

)w‖ < ε

for any a ∈ F , which implies that

lim sup
n

max
a∈F
‖diag(φn(a), σn(a), ..., σn(a)︸ ︷︷ ︸

N

)− w∗diag(ψn(a), σn(a), ..., σn(a)︸ ︷︷ ︸
N

)w‖

< ε.

If n is sufficiently large, it reaches a contradiction to (2.5). �
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Using Theorem 2.10 and Lemma 2.7, one then has the following stable unique-
ness theorem for approximate homomorphisms. The proof is a routine argument
as in [10] or [1]. But for the readers’ convenience, an argument is included below.

Theorem 2.11. Let A be a separable simple nuclear unital C*-algebra satisfying
the UCT, and let L : U(M∞(A)) → R+ be a map. Then, for any finite subset
F ⊆ A and any ε > 0, there exist finite subsets G ⊆ A, P ⊆ P(A), H ⊆
U(M∞(A)), a constant δ > 0, and n ∈ N such that for any C*-algebra B ∈ C,
any G-δ-multiplicative maps φ, ψ, σ : A→ B with σ unital, if

[φ(p)] = [ψ(p)] in K(B)

for all p ∈ P, and

(2.6) cel(φ(u)ψ(u∗)) ≤ L(u)

for any u ∈ H, then there is a unitary w ∈ Mn+1(B) such that

‖diag(φ(a), σ(a), ..., σ(a)︸ ︷︷ ︸
n

)− w∗diag(ψ(a), σ(a), ..., σ(a)︸ ︷︷ ︸
n

)w‖ < ε

for any a ∈ F .

Proof. The proof is similar to that of Theorem 4.15 of [1]. Assume that the
statement were not true, there would exist a finite subset F ⊆ A, ε > 0, and an
increasing family of finite subsets (Gi) of A with dense union, an increasing family
of finite subsets (Pi) of the projections with the union exhausts all equivalent
classes of projections, an increasing sequence (Hi) of finite subsets of unitaries
with dense union, a decreasing sequence (δi) with δi → 0, a sequence (Bi) of
C*-algebras in C, and Gi-δi-multiplicative maps φi, ψi, σi : A→ Bi with σi unital
such that

[φi(p)]∗ = [ψi(p)]∗ for all p ∈ Pi,

(2.7) cel(φ(u)ψ(u∗)) ≤ L(u) for all u ∈ Hi,

but

inf
u∈U(Mn+1(Bi))

max
a∈F
{‖diag(φi(a), σi(a), ..., σi(a)︸ ︷︷ ︸

n

)

−u∗diag(ψi(a), σi(a), ..., σi(a)︸ ︷︷ ︸
n

)u‖} ≥ ε,(2.8)

where n = n(A,F , ε) is the number specified in Theorem 2.10.
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Consider the maps Φ̃, Ψ̃, and Σ̃: A→
∏
Bi/

⊕
Bi induced by (φi), (ψi), and

(σi). Since δi → 0, these maps are *-homomorphisms. Then, by (2.2) of Lemma
2.9, one has [Φ̃]0 = [Ψ̃]0. Since

cel(Φ̃(u)Ψ̃(u∗)) < L(u)

for any unitary u in matrix algebras over A, it also follows from Lemma 2.9
[Φ̃]1 = [Ψ̃]1. By the same argument as that of Theorem 4.15 of [1], one has

[Φ̃] = [Ψ̃] ∈ HomΛ(K(A),K(
∏

Bn/
⊕

Bn)).

By Lemma 2.7, the C*-algebra
∏
Bi/

⊕
Bi ∈ C. Then, by Theorem 2.10,

there is a unitary w ∈ U(Mn+1(
∏
Bi/

⊕
Bi)) such that

‖w∗diag(Φ̃(a), Σ̃(a), ..., Σ̃(a)︸ ︷︷ ︸
n

)w − diag(Ψ̃(a), Σ̃(a), ..., Σ̃(a)︸ ︷︷ ︸
n

)‖ < ε

for any a ∈ F , but this contradicts to (2.8).

If K1(A) = 0, without assuming Condition 2.7, one always has that [Φ]1 =
[Ψ]1 = 0, and hence one still has

[Φ] = [Ψ] ∈ HomΛ(K(A),K(
∏

Bn/
⊕

Bn)).

Then the argument same as above shows that the statement holds. �

In the case A is a simple separable TASI-algebra, we get a natural number n
by applying the theorem above for a finite subset F and δ > 0. Since any simple
TASI-algebra is tracially approximately divisible (Theorem 4.13 of [12]), there
exist mutually orthogonal projections q, p1, ..., pn with q+p1+· · ·+pn = 1, q � p1

and pi ∼ p1, i = 1, ..., n, a splitting interval sub-C*-algebra S with 1S = p1 and
two F −ε multiplicative linear unital maps φ0 : A→ qAq, φ1 : A→ S, such that

‖x− φ0(x)⊕ (φ1(x)⊕ · · · ⊕ φ1(x)︸ ︷︷ ︸
n copies

)‖ ≤ ε

for any x in F . With this n and the splitting interval algebra S, one then can
use Theorem 2.1 and Theorem 2.11 to get an unitary in B rather than in the
matrix algebra over B.

Theorem 2.12. Let A be a simple separable nuclear TASI-algebra satisfying the
UCT, and let L : U(M∞(A)) → R+ be a map. Then for any finite subset F of
A, and ε > 0, there exist a finite subset P ⊂ P (A), a finite subset S ⊂ A, δ1 > 0
and a natural number n such that there exist mutually orthogonal projections
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q, p1, · · · , pn with q � p1 and p1, · · · , pn mutually unitary equivalent, a sub-C*-
algebra S which is a splitting interval algebra with 1S = p1 and unital S-δ1/2-
multiplicative completely positive contractions φ0 : A → qAq and φ1 : A → S
such that

‖x− φ0(x)⊕ (φ1(x)⊕ · · · ⊕ φ1(x)︸ ︷︷ ︸
n copies

)‖ ≤ δ1/2

for all x ∈ S.
Moreover, there exist a finite subset G ⊂ A, a finite subset P0 of projections

in M∞(S), a finite subset H ⊂ As.a., δ0 > 0 and σ > 0 such that for any simple
TASI-algebra B and two S ∪ G-δ-multiplicative completely positive contractions
L1, L2 : A→ B for which (δ = min{δ0, δ1})

• [L1]|P∪P0 = [L2]|P∪P0 ,
• ||τ ◦ L1(g)− τ ◦ L2(g)|| < δ, for all g ∈ H and τ ∈ T(A),
• e = L1 ◦ φ0(1A) = L2 ◦ φ0(1A) is a projection,
• cel((L1 ◦ φ0(u)∗)(L2 ◦ φ0(u))) ≤ L(u) (in U(eBe)) for any u ∈ U(A) ∩ P,

there is an unitary u ∈ B such that:

‖u∗L1(a)u− L2(a)‖ ≤ ε ∀a ∈ F .

Proof. This theorem follows from Theorem 2.1, Theorem 4.13 of [12] and
Theorem 2.11. �

3. Classification Theorem In previous chapters, we have shown the ex-
istence theorem and uniqueness theorem. In this chapter, using these results,
together with an approximate intertwining argument, we shall show that the
class of simple separable nuclear TASI-algebras satisfying the UCT is classified
by the Elliott invariant. The strategy of the argument is to construct a model
algebra for any given TASI-algebra, and then to show that this concrete model
is in fact *-isomorphic to the given TASI-algebra. Since the construction model
algebra is only based on the Elliott invariant, this gives a classification of TASI-
algebras.

3.1. Unitary groups of TASI-algebras However, in order to apply the unique-
ness theorem, the two approximate homomorphisms are required not only to
induce the same map on the level of the invariant, but also to satisfy the con-
dition of the boundedness of the exponential length. Note that for the concrete
TASI-algebras in the class SH introduced in Section 2.1 of [13] (recall that these
C*-algebra are inductive limits of splitting tree (interval) algebras together with
homogeneous C*-algebras), we use circle algebras to realize the torsion free part
of the K1-group. Moreover, the unitary groups of TAS-algebras share many of
the properties of TAI-algebras. So one can use the same method as in [11] to
control the exponential length. As in [11], we use the following notation.
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For a unital C*-algebra A, let CU(A) denote the closure of the commutator
subgroup of U(A). It is a normal subgroup of U(A), and U(A)/CU(A) is com-
mutative. If K1(A) = U(A)/U0(A) where U0(A) is the component of the unitary
group containing the identity, then the subgroup CU(A) is in fact inside U0(A).
For u ∈ U(A), we use ū to denote the image of u in U(A)/CU(A).

Lemma 3.1. Let u be a unitary in a splitting interval algebra S with generic
dimension n. For any ε > 0, there are continuous functions si : [0, 1] → T,
i=1,...,n, and unitaries W ∈ S such that

‖u−W ∗diag{s1, ..., sn}W‖ ≤ ε.

Proof. Denote by n the generic size of S, and denote by the partition of n at

the points 0 and 1 by (m
(1)
0 , ...,m

(l0)
0 ) and (m

(1)
1 , ...,m

(l0)
1 ) respectively.

Let
W0 = diag{W0,1, ...,W0,l0} and W1 = diag{W0,1, ...,W0,l0}

be two unitary matrices with the the same diagonal block size as that of S at the
endpoint 0 and 1 respectively, such that W ∗0 u(0)W0 and W ∗1 u(1)W1 are diagonal
matrices.

Let W ′ be a unitary in S with W ′(0) = W0 and W ′(1) = W1.
Consider the unitary v := (W ′)∗uW ′. It is clear that v(0) and v(1) are

diagonal. Without loss of generality, we may assume that there exists 0 < δ <
1/4 such that the restrictions of v to [0, δ] and [1− δ, 1] are constant.

Consider the restrictions of v to [δ, 1 − δ], it is well known that there is a
unitary V ∈ C([δ, 1− δ],Mn(C)) such that

‖V ∗(t)v(t)V (t)− diag{s1(t), ..., sn(t)}‖ < ε for any t ∈ [δ, 1− δ]

for some continuous functions si : [δ, 1 − δ] → T. Moreover, the unitary V can
be chosen such that

V ∗(δ)v(δ)V (δ) = v(δ) and V ∗(1− δ)v(1− δ)V (1− δ) = v(1− δ).

Let w0 and w1 be one branch of natural logarithm of V (δ) and V (1 − δ)
respectively such that they are well-defined. Extend the unitary V to [0, 1] by
V (t) = exp( tδw0) for any t ∈ [0, δ] and V (t) = exp( t−1+δ

δ w0) for any t ∈ [1−δ, 1].
Since V (δ) and V (1−δ) commute with v(δ) and v(1−δ) respectively, one has that
w0 and w1 commute with v(δ) and v(1−δ) respectively, and hence V (t), t ∈ [0, δ]
and V (t), t ∈ [1− δ, 1] commute with v(δ) and v(1− δ) respectively.

Extend each function si(t) to the interval [0, 1] such that the restrictions of si
to [0, δ] and [δ, 1] are constant. Since that V (0) and V (1) are diagonal, one has
that V ∈ S. Then, a direct calculation shows that

‖V ∗(t)v(t)V (t)− diag{s1(t), ..., sn(t)}‖ ≤ ε for any t ∈ [0, 1].

Therefore, set W := W ′V , one has that

‖W ∗uW − diag{s1, ..., sn}‖ ≤ ε,

as desired. �
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Corollary 3.2. Let u be a unitary in a splitting interval algebra S. For any
ε > 0, there is an self-adjoint element h ∈ S such that

‖u− exp(ih)‖ ≤ ε.

Proof. Since for any continuous function s : [0, 1] → T, there is a function
h : [0, 1]→ R such that s = exp(ih), the corollary follows from Lemma 3.1. �

Lemma 3.3. Let u be a unitary in a splitting interval algebra S. If dett(u) = 1
for any t ∈ Sp(S), then u ∈ CU(S).

Proof. Denote by n the generic size of S, and denote by the partition of n at

the points 0 and 1 by (m
(1)
0 , ...,m

(l0)
0 ) and (m

(1)
1 , ...,m

(l0)
1 ) respectively.

By Lemma 3.1, we may assume that u = diag{s1(t), ..., sn(t)} ∈ S. Since
dett(u) = 1 for any t ∈ Sp(S), one has that

(3.1)
∏

i∈m(k)
0

si(0) = 1 and
∏

i∈m(k)
1

si(1) = 1

for each k.
Since CU(S) is closed, without loss of generality, let us assume that each

function si(t) is constant if t ∈ [0, δ] and t ∈ [1− δ, 1] for some δ > 0. Denote by

u1 = diag(1, s1, s2s1, ..., sn−1sn−2 · · · s1) ∈ S,

and consider
uu1 = diag(s1, s2s1, s3s2s1, ..., snsn−1 · · · s1).

Using (3.1), one can find a unitaries W0 = diag(W1,0, ...,Wl0,0) and W1 =

diag(W1,1, ...,Wl1,1) such that each Wi,j is an |m(i)
j | × |m

(i)
j | matrix, and

uu1(0) = W ∗0 u1(0)W0 and uu1(1) = W ∗1 u1(1)W1.

Moreover, there is a n× n matrix V such that

uu1(t) = V ∗u1(t)V for any t ∈ [δ, 1− δ].

Consider the path of unitaries

W0(t) = W0 exp(t ln(W ∗0 V )) and W1(t) = V exp(t ln(V ∗W1)).

Then, W0(0) = W0 and W0(1) = V . Note that

V ∗W0uu1(0)W ∗0 V = V ∗u1(0)V = V ∗u1(δ)V = uu1(0).

We have that for any t ∈ [0, 1],

exp(t ln(V ∗W0))uu1(0) exp(t ln(W ∗0 V )) = uu1(0),
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and hence

W ∗0 (t)u1(0)W0(t) = exp(t ln(V ∗W0))W ∗0 u1(0)W0 exp(t ln(W ∗0 V ))

= exp(t ln(V ∗W0))uu1(0) exp(t ln(W ∗0 V ))

= uu1(0).

With the same argument, we have a path of unitariesW1(t) such thatW1(0) = V ,
W1(1) = W1, and

W ∗1 (t)u1(1)W1(t) = uu1(1).

Denote by

W (t) =


W0( tδ ) if t ∈ [0, δ]
V if t ∈ [δ, 1− δ]
W1( 1−δ−t

δ ) if t ∈ [1− δ, 1]

It is clear that W (t) ∈ S and uu1 = W ∗u1W . Hence one has that u =
u∗1W

∗uW ∈ CU(S). �

Lemma 3.4. For any ε > 0, there is a constant K such that for any splitting
interval algebra S and a unitary u ∈ S, if for any irreducible representation πt
of S, dim(πt) > K and det(πt(u)) = 1, then

‖u− exp(ih1) exp(ih2) exp(ih3)‖ ≤ ε

for some self-adjoint element hi with ‖hi‖ ≤ 2π, i = 1, ..., 3.

Proof. Without loss of generality, one may assume that there exists 0 < δ <
1/4 such that the restrictions of u to [0, δ] and [1− δ, 1] are constant. Denote by
the constant matrices by u0 and u1, and assume that u and v can be diagonalized
by unitary matrices W ′0 and W ′1. Noting that W ′0 and W1 have the same block
diagonal form as u in 0 and 1, there are unitaries W0 ∈ S and W1 ∈ S such that
W0(t) = W ′0 and W1(t) = I for t ∈ [0, δ], and W0(t) = I and W1(t) = W ′1 for
t ∈ [1− δ, 1]. Thus, by consider (W0W1)∗u(W0W1), we may assume that u(t) is
diagonal for t ∈ [0, δ] ∪ [1− δ, 1].

Denote byK the constant of Theorem 3.3 of [14] corresponding toX = [δ, 1−δ]
and ε, and consider the restriction of u to the interval [δ, 1− δ]. It follows from
Theorem 3.3 of [14] that there exist self-adjoint functions h1, h2, h3 : [δ, 1− δ]→
Mn(C) such that

‖u(t)− exp(ih1(t)) exp(ih2(t)) exp(ih3(t))‖ ≤ ε, ∀t ∈ [δ, 1− δ],

and ‖hi‖ ≤ 2π, i = 1, 2, 3. (The restriction ‖hi‖ ≤ 2π, i = 1, 2, 3 is not in the
statement of Theorem 3.3 of [14]. However, it follows from the construction of
h1, h2, and h3 in the proof. For more details, see the proof of Lemma 3.4 of [15].)
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In order to proof the lemma, one has to show that for each hi, the matrices hi(δ)
and hi(1− δ) has the right diagonal form to fit into the splitting points of S.

By checking the proof of Theorem 3.3 of [14], one has that the matrices h1(δ)
and h1(1 − δ) are diagonal (since the unitary u is diagonal at the points δ and
1 − δ, the unitary u4 in the step 3 of the proof can be chose to be diagonal at
these two points, and hence in the step 4 of the proof, h1(x) = g(x)(u4(x)) is
diagonal if x = δ or x = 1− δ).

By checking the step 5 and the step 6 of proof of Theorem 3.3 of [14], one
has that the unitary v5 and v6 can be chose in such a way that their restrictions
to δ and 1− δ are inside one of the diagonal blocks (which has size at least K).
Hence there is a projection p in Mn(C([δ, 1 − δ])) such that p has rank at least
K, p(δ) and p(1 − δ) are inside the corresponding diagonal blocks, and v5 and
v6 are in the hereditary sub-C*-algebra generated by p.

Consider the unital hereditary sub-C*-algebra generated by p and the element
v6⊕ 1K inside this sub-C*-algebra, and applying step 7 of the proof of Theorem
3.3 of [14]. There are elements h2 and h3 such that

‖v6 ⊕ (p− v∗6v6)− exp(ih′2) exp(ih′3)‖ < 2ε/5.

Since h′2 and h′3 are in the hereditary sub-C*-algebra generated by p, the elements
h2 = h′2 ⊕ (1− p) and h3 = h′3 ⊕ (1− p) has the right form of diagonal blocks at
δ and 1− δ, and

‖u6 − exp(ih2) exp(ih3)‖ < 2ε/5.

Therefore,

‖u(t)− exp(ih1(t)) exp(ih2(t)) exp(ih3(t))‖ ≤ ε, ∀t ∈ [δ, 1− δ],

and the matrices hi(δ) and hi(1 − δ) has the right diagonal form to fit into
the splitting points of S respectively. Extend hi to the whole interval [0, 1]
constantly on [0, δ] and [1− δ, 1]. Then, each hi induces an element of S. Using
the assumption that u is constant on [0, δ] and [δ, 1], one has that

‖u(t)− exp(ih1(t)) exp(ih2(t)) exp(ih3(t))‖ ≤ ε, ∀t ∈ [0, 1],

as desired. �

If φ : A → B is a unital *-homomorphism, it will induce a homomorphism
φ‡ : U(A)/CU(A) → U(B)/CU(B). Moreover, for any finite subset U ⊂ U(A)
and any ε > 0, denote by F̄ the subgroup of U(A)/CU(A) generated by U . We
can choose a finite subset G ⊂ A and δ > 0, such that for any L : A → B
which is a G − δ-multiplicative completely positive linear contraction, there is a
homomorphism L‡ : F̄ → U(B)/CU(B) with ||L(u)−L‡(ū)|| < ε for any u ∈ U .
We say L‡ is induced by L.
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Theorem 3.5 (See Theorem 6.5 of [11]). Let A be a simple TASI-algebra, and
let u ∈ U0(A). Then, for any ε > 0, there are unitaries u1 and u2 such that u1

has exponential length no more than 2π, u2 is an exponential, and

‖u− u1u2‖ < ε.

Moreover, cer(A) ≤ 3 + ε.

Proof. Using the fact that the exponential rank of splitting interval algebra
is 1 + ε (Corollary 3.2), one can repeat the proof of Theorem 6.5 of [11]. �

Lemma 3.6. Let A be a simple TASI-algebra, and let u ∈ CU(A). Then, u ∈
U0(A) and cel(u) ≤ 8π.

Proof. The proof is a repeating of that of Lemma 6.9 of [11]. Instead appeal-
ing to 3.4 of [15], one uses Lemma 3.4 in the proof. �

Theorem 3.7 (See Theorem 6.10 of [11]). Let A be a simple TASI-algebra. Let
u, v ∈ U(A) such that [u] = [v] in K1(A) and

uk, vk ∈ U0(A) and cel((u∗)kuk) ≤ L.

Then,
cel(u∗v) ≤ 8π + L/k.

Moreover, there is y ∈ U0(A) with cel(y) ≤ L/k such that u∗v = y in
U(A)/CU(A).

Proof. The proof is similar to that of Theorem 6.10 of [11]. Write

u∗v =
∏
j

exp(iai) and (uk)∗vk =
∏
m

exp(ibm),

where aj and bm are self-adjoint. We may assume that
∑
‖bm‖ < L, since

cel((u∗)kuk) ≤ L. Write M =
∑
‖bm‖. Since A is a TASI-algebra, for any δ > 0

with δ/(1 − δ) < ε/2(M + L + 1) and sufficiently small η > 0 and sufficiently
large finite subset G, there is a projection p ∈ A and a sub-C*-algebra S ⊂ A
with 1S = p such that S is a direct sum of splitting interval algebras, and

1. pxp ∈η S for any x ∈ G,
2. ‖u− u0 ⊕ u1‖ ≤ η and ‖v − v0 ⊕ v1‖ ≤ η for some unitaries u0, v0 in

(1− p)A(1− p) and u1, v1 in S ⊆ pAp,
3. cel(u∗0v0) ≤M + 1 in (1− p)A(1− p) and cel((uk1)∗vk1 ) < L in S,
4. τ(1− p) ≤ δ for any τ ∈ T(A).

Without loss of generality, we may assume that the dimension of any non-zero
irreducible representation of S is greater that M := max(2π2/ε,K), where K is
the constant of Lemma 3.4.
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Let us assume that S is consisted of one direct summand and has generic
dimension n. Without loss of generality, we may assume that there exists 0 <
δ < 1/4 such that (u∗1)kvk1 is constant on [0, δ] and on [1 − δ, 1]. Consider
the restriction of S to [δ, 1 − δ]. By Lemma 3.3 (1) of [15], there exists a ∈
(Mn(C([δ, 1− δ])))s.a. such that

det(exp(ia)(u∗1)kvk1 ) = 1 for any t ∈ [δ, 1− δ].

Using the connectivity of the unitary subgroup of a matrix algebras, one may
assume further that

a(δ) = diag{r1, ..., rm0︸ ︷︷ ︸
m1

0

, r
m

(1)
0
, ..., r

m
(1)
0 +m

(2)
0︸ ︷︷ ︸

m1
0

, ..., r
n−m(ln)

0
, ..., rn︸ ︷︷ ︸

m
l0
0

}

and

a(1− δ) = diag{s1, ..., sm0︸ ︷︷ ︸
m1

1

, s
m

(1)
1
, ..., s

m
(1)
1 +m

(2)
1︸ ︷︷ ︸

m1
1

, ..., s
n−m(ln)

1
, ..., sn︸ ︷︷ ︸

m
l1
1

}

with products of each group of r’s or s’s equal to one. Therefore, one can extend
a constantly to [0, 1] to get an element in S. Since the restriction of (u∗1)kvk1 is
constant on [0, δ] and on [1− δ, 1], one has that

det(exp(ia)(u∗1)kvk1 ) = 1 for any t ∈ Sp(S).

Therefore
det((exp(ia/k)u∗1v1)k) = 1 for any t ∈ Sp(S),

and
det(exp(ia/k)u∗1v1) = exp(i2lπ/k) for any t ∈ (0, 1),

for some l ∈ 0, 1, ..., k − 1. Define the function f in the following way: On

[δ, 1 − δ], set f = −2lπ/(nk)1n; on points 0 and 1, define ai = −
∑m

(i)
0

j=1 rj/m
(i)
0

and bi = −
∑m

(i)
1

j=1 rj/m
(i)
1

Set
f(0) = diag{a1, ..., a1︸ ︷︷ ︸

m1
0

, a2, ..., a2︸ ︷︷ ︸
m1

0

, ..., al0 , ..., al0︸ ︷︷ ︸
m

l0
0

},

and
f(1) = diag{b1, ..., b1︸ ︷︷ ︸

m1
1

, b2, ..., b2︸ ︷︷ ︸
m1

1

, ..., bl1 , ..., bl1︸ ︷︷ ︸
m

l1
1

},

and define

f(t) = (1− t

δ
)f(0) +

t

δ
f(δ), t ∈ [0, δ],
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f(t) = (
1− t
δ

)f(δ) + (1 +
t− 1

δ
)f(1), t ∈ [1− δ, 1].

We then have f ∈ S with ‖f‖ ≤ ‖a‖ /M + 2π ≤ L/M + 2π and

det(exp(if) exp(ia/k)u∗1v1) = 1 for any t ∈ Sp(S).

By Lemma 3.3, z1 := exp(if) exp(ia/k)u∗1v1 ∈ CU(S). Moreover, by Lemma
3.4, there are unitaries w1, w2, and w3 with ‖wi‖ ≤ 2π such that

‖exp(if) exp(ia/k)u∗1v1 − exp(iw1) exp(iw2) exp(iw3)‖ ≤ ε,

and hence

‖u∗1v1 − exp(if) exp(ia/k) exp(iw1) exp(iw2) exp(iw3)‖ ≤ ε.

Therefore,
cel(u∗1v1) ≤ L/M + L/k + 6π.

Then, by Lemma 6.4 of [11], there is y′ ∈ CU(A) and y′′ ∈ U0(A) such that
(u0 ⊕ p)∗(v0 ⊕ p) = y′y′′ and cel(y′′) < ε/2. Note that ((1− p)⊕ z1)y′ ∈ CU(A).
Therefore

u∗v = exp(if) exp(ia)w

for some w0 ∈ U0(A) with cel(w) ≤ ε/2 for sufficiently small η. By Lemma 3.6,
one has that

cel(u∗v) ≤ 2π/M + L/k + 8π + ε/2 < 8π + L/k + ε,

as desired. �

Theorem 3.8 (See Theorem 6.11 of [11]). Let A be a simple TASI-algebra.
Then the group U0(A)/CU(A) is torsion free.

Proof. The proof is the same as that of Theorem 6.11 of [11], and also essen-
tially the same as that of Theorem 3.7. �

Corollary 3.9 (See Corollary 6.12 of [11]). Let Bn be a sequence of unital

simple TASI-algebras. Let
∏b
n K1(Bn) be the set of sequence z = {zn}, where

zn ∈ K1(Bn) and each zn can be represented by a unitary in a matrix algebra
over Bn. Then the kernel of the map

K1(
∏
n

Bn)→
∏
n

K1(Bn)→ 0

is a divisible and torsion free subgroup of K1(
∏
nBn).

Proof. Using Theorem 3.5 and Theorem 3.7 instead of 6.5 and 6.10 of [11],
one can repeat the argument of 6.12 of [11]. �
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Let us consider concrete model algebras in the class SH, and consider homo-
geneous C*-algebras in the building blocks.

Definition 3.10. Put C ′ = PMn(C(X))P , where X = S1 ∨ · · · ∨ S1 ∨ Y for
some finite CW complex Y with torsion K1-group and dimension no more than 3,
and P is a projection in Mn(C(X)) with rank r ≥ 6. Then K1(PMn(C(X))P ) =
Tor(K1(C ′)) ⊕ G1 for some torsion free group G1

∼= Zs. Denote by D′ =⊕s
i=1 Mr(C(T)). Then, there is an obvious map Π : PMn(C(X))P → D′ in-

duced by the restriction to each circle. We have that K1(D′) ∼= G1 and the
map Π is not surjective if s ≥ 2. Denote by Πi : PMn(C(X))P → Ei to be the
composition of Π with the projection from D′ to Ei.

Denote by C a finite direct sum of the C*-algebras of the form C ′ above,
matrix algebras, splitting interval algebras, and pMm(C(Y ))p with Y a finite
CW-complex with dimension at most 3, p a projection with rank at least 6 and
K1(Y ) finite. Write D by the direct sum of D′ corresponding to the C*-algebras
in the form C ′. Then, one has that

U(C)/CU(C) = U0(C)/CU(C)⊕K1(D)⊕ Tor(K1(C)).

We will set π0, π1, π2 to be the projection maps from U(C)/CU(C) to each
component according to the decomposition above.

As in [11], we have the following lemmas to control the exponential length in
the approximate intertwining argument. The proofs are the repeatings of the
corresponding arguments in [11].

Lemma 3.11 (See Lemma 7.2 of [11]). Let C =
⊕l+l1

i=1 Ci be as above, let
U ⊂ U(C) be a finite subset, and let F be the group generated by U . Suppose
that G is a subgroup of U(C)/CU(C) which contains F̄ , π1(U(C)/CU(C)), and
π2(U(C)/CU(C)). Suppose that the composition map γ : F̄ → U(D)/CU(D)→
U(D)/U0(D) is injective and γ(F̄ ) is free. Let B be a unital C*-algebra and
Λ : G → U(B)/CU(B) be a homomorphism such that Λ(G ∩ U0(C))/CU(C) ⊂
U0(B)/CU(B). Then there are homomorphism β :U(D)/CU(D)→U(B)/CU(B)
with β(U0(D)/CU(D))⊂U(B)/CU(B) and θ :π2(U(C)/CU(C))→U(B)/CU(B)
such that

β ◦Π‡ ◦ π1(w̄) = Λ(w̄)(θ ◦ π2(w̄2))

for any w ∈ F and such that θ(g) = Λ|π2(U(C)/CU(C))(g
−1) for any

g ∈ π2(U(C)/CU(C)). Moreover, β(U0(D)/CU(D)) ⊂ U0(B)/CU(B).
If furthermore B is a simple TASI-algebra and

Λ(U(C)/CU(C)) ⊂ U0(B)/CU(B),

then β ◦Π‡ ◦ (π1)|F̄ = Λ|F̄ .

Proof. The first part of the statement is exactly the same as that of Lemma
7.2 of [11]. Noting that U0(B)/CU(B) is torsion free by Theorem 3.8, then the
second part of the statement follows. �
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Lemma 3.12 (See Lemma 7.3 of [11]). Let B be a separable simple TASI-algebra,
and let C be as above. Let U ⊂ U(B) be a finite subset, and let F be the
subgroup generated by U such that κ1(F̄ ) is free, where κ1 : U(B)/CU(B) →
K1(B) is the quotient map. Suppose that α : K1(C) → K1(B) is a one-to-one
homomorphism and L : F̄ → U(C)/CU(C) is a ono-to-one homomorphism with
L(F̄ ∩U0(C)/CU(C)) ⊂ U0(B)/CU(B) such that π1 ◦ L is one-to-one and

α ◦ κ′1 ◦ L(g) = κ1(g) for all g ∈ F̄ ,

where κ′1 : U(C)/CU(C) → K1(C) is the quotient map. Then there exists a
homomorphism β : U(C)/CU(C) → U(B)/CU(B) with β(U0(C)/CU(C)) ⊂
U0(B)/CU(B) such that

β ◦ L(f) = f

for all f ∈ F̄ .

Proof. The proof is exactly a repeating the that of Lemma 7.3 of [11]. �

Lemma 3.13 (See Lemma 7.4 of [11]). Let B be a simple separable TASI-
algebra, and let C be as above. Let F be a group generated by a finite sub-
set U ⊂ U(C) such that (π1)|F̄ is one-to-one. Let G be a subgroup containing
F̄ , π1(U(C)/CU(C)) and π2(U(C)/CU(C)). Suppose that α : U(C)/CU(C) →
U(B)/CU(B) is a homomorphism (α(U0(C)/CU(C)) ⊂ U0(B)/CU(B)). Then
for any ε > 0, there is δ > 0 satisfying the following: if φ = φ0 ⊕ φ1 : C → B is
a G − η-multiplicative completely positive linear contraction such that

• both φ0 and φ1 are G − η-multiplicative,
• G is sufficiently large and η is sufficiently small depending only on F and C
(such that φ‡ is well defined on a subgroup of U(C)/CU(C) containing all of F̄ ,
π0(F̄ ), π1(U(C)/CU(C)), and π2(U(C)/CU(C))),
• φ0 is homotopically trivial (homotopic to a point evaluation), (φ0)∗0 is well-
defined and [φ]|K1(C) = α∗,
• τ(φ0(1C)) < δ for all τ ∈ T (B) (assume e0 = φ0(1C)),

then there is a homomorphism Φ : C → e0Be0 such that

• Φ is homotopically trivial and (Φ)∗0 = (φ)∗0 and
• α(w̄)−1(Φ⊕ φ1)‡(w̄) = ḡw where gw ∈ U0(B) and cel(gw) < ε for any w ∈ U .

Proof. By Theorem 3.8, the group U(B)/CU(B) is torsion free. One then
can repeat the argument of Lemma 7.4 of [11]. �

Lemma 3.14 (See Lemma 7.5 of [11]). Let B be a separable simple TASI-algebra
and C as above. Let U ⊂ U(B) be a finite subset and F be the subgroup gen-
erated by U such that κ1(F̄ ) is free, where κ : U(B)/CU(B) → K1(B) is the
quotient map. Let φ : C → B be a homomorphism such that (φ)∗1 is one-to-one.
Suppose that j, L : F̄ → U(C)/CU(C) are two one-to-one homomorphisms with
j(F ∩ U0(B)),L(F ∩ U0(B)) ⊂ U0(C)/CU(C) such that κ1 ◦φ‡ ◦L = κ1 ◦φ‡ ◦j =
κ1|F̄ , and they are one-to-one.

Then for any ε > 0, there exists δ > 0 such that if φ = φ0 ⊕ φ1 : C → B,
where φ0 and φ1 are homomorphisms satisfying the following:
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• τ(φ0(1C)) < δ for all τ ∈ T (B) and
• φ0 is homotopically trivial,

then there is a homomorphism ψ : C → e0Be0 (e0 = φ0(1C)) such that

• [ψ] = [φ0] in HomΛ(K(C),K(B)) and
• (φ‡ ◦ j(w̄))−1(ψ ⊕ φ1)‡(L(w̄)) = ḡw where gw ∈ U0(B) and cel(gw) < ε for
any w ∈ U .

Proof. The argument of Lemma 7.5 of [11] can be duplicated in the following
way: instead of using Lemma 7.4 of [11], one uses Lemma 3.13. �

3.2. A classification of TASI-algebras With the preparation above, we shall
prove the classification theorem for TASI-algebras. Using an approximately in-
tertwining argument, the proof is exactly the same as that of Theorem 10.4 of
[11] of Lin for the classification theorem of TAI-algebras. First, we have the
existence of a model algebra for any given TASI-algebra.

Theorem 3.15 ([3]). Let A be a simple separable TASI-algebra. Then there
exists a simple inductive limit B = lim−→(Bn, φn) with Bn ∼= C ⊕ S for some
homogeneous C*-algebra C as described in 3.10 and S a direct sum of splitting
interval algebras such that

• Ell(A) = Ell(B),

• φn = φ
(0)
n ⊕ φ(1)

n ⊕ φ(2)
n , where φ

(0)
n factors through a point evaluation map,

and φ
(1)
n factors through a splitting interval algebra (in particular, φ

(0)
n is homo-

topically trivial),

• τ(φn+1,∞◦φ(0)
n (1Bn

))→ 0 and τ(φn+1,∞◦φ(2)
n (1Bn

))→ 0 uniformly on T(B),
and
• [φn]1 is injective for any n.

Remark 3.16. The model algebra B is automatically a TASI-algebra.

Remark 3.17. The statement of Theorem 3.15 is stronger than the state-
ment of Theorem A of [3], which only states the first property of Theorem 3.15.
However, one can easily obtains the rest of properties in its proof in [3].

Theorem 3.18. Let A and B be two simple separable nuclear TASI-algebra
which satisfies UCT. Then A ∼= B if and only if

((K0(A),K0(A)+, [1A]0),K1(A),T(A), rA)

∼= ((K0(B),K0(B)+, [1B ]0),K1(B),T(B), rB).

Moreover, the *-isomorphism between the C*-algebras can be chosen to induce
the given isomorphism between their invariants.
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Proof. By Theorem 3.15, there is a inductive limit algebra B′ satisfying all
the properties of Theorem 3.15. In particular, Ell(A) ∼= Ell(B′) ∼= Ell(B), and
B′ is a simple TASI-algebra. Fix the algebra B′, and let us prove the theorem for
the TASI-algebras A and B′, and TASI-algebras B and B′ respectively. Once it
is done, one has that A ∼= B′ and B ∼= B′, and hence A ∼= B′, as desired. Thus,
one may assume that the C*-algebra B is one of the concrete algebra described
in Theorem 3.15.

Denote by κ the isomorphism

κ : (K0(A),K0(A)+, [1A]0; K1(A))→ (K0(B),K0(B)+, [1B ]0; K1(B)),

and let θ be the isomorphism from T (B) to T (A) compatible with κ. Since
A and B satisfy the UCT, there is α ∈ HomΛ(K(A),K(B))+ which induces κ.
Moreover, α can be chosen to be invertible.

Define the function L : U(B)→ R+ as follows:

L(u) =

 2cel(u) + 8π + π/16, if u ∈ U0(B),
16π + π/16, if u /∈ U0(B) and [u]1 is torsion-free,
(2cel(uk))/k + 16π + π/16, if u /∈ U0(B) and [u]1 has order k.

Fix ε > 0 and finite subset F ⊂ B. Let δ′ > 0, the natural number n, finite
subset P ⊂ P (B), finite subsets S ⊆ B be as required in Theorem 2.12. Then
there exist mutually orthogonal projections q, p1, ..., pn with q � p1 and p1, ..., pn
mutually unitary equivalent, a sub-C*-algebra S1, which is a splitting interval
algebra with 1S1

= p1 and unital S-δ′1/2-multiplicative completely positive con-
tractions h0 : B → qBq with h0(x) = qxq, and h1 : B → S1 such that

||x− h0(x)⊕ (h1(x)⊕ · · · ⊕ h1(x)︸ ︷︷ ︸
n copies

)|| ≤ δ′1/16

for all x ∈ S. Put S = Mn(S1) ⊂ (1 − q)B(1 − q). Let P0,G0, H, δ0 and σ1 be
required by Theorem 2.12. Set δ = min{δ0, δ′}. We may assume that P0 contains
the minimal projections of S which present a generating set of the positive cone
of K0(S).

Without loss of generality, we may assume that for each u ∈ U(B) ∩ P0

has the form quq ⊕ (1 − q)u(1 − q), where quq ∈ U(qBq) and (1 − q)u(1 −
q) ∈ U(C). Since B is the inductive limit of Bi, we also assume q ∈ B1 and
quq ∈ U(qB1q). Let U ′ = {quq, u ∈ U(B) ∩ P} and let F be the subgroup
of U(qBq) generated by U ′. Let F̄ be the image of F in U(qBq)/CU(qBq)
where CU(qBq) is the commutator subgroup of U(qBq). By 6.6(3) of [11], we
have F̄ = (F̄ ∩ U0(qBq)/CU(qBq)) ⊕ F̄0 ⊕ F̄1, where F̄0 is torsion and F̄1 is
torsion free. Furthermore, we can assume U ′ = U0 ∪ U1 with Ū0 generating
(F̄ ∩ U0(qBq)/CU(qBq)) ⊕ F̄0 and Ū1 generating F̄1. We also assume q ∈ B1

and U0,U1 ⊂ qB1q. Note that K1(Bm)→ K1(Bm+1)→ K1(B) is one-to-one for
all m.
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Let G1 be a finite subset of B containing S, G0, H, U ′, {q, p1, ..., pn} and a
finite set of generators of S. We assume G1 ⊂ B1. By Theorem 2.34 of [13], there
exists a G1-δ/4 multiplicative completely positive linear contraction L1 : B → A
such that

[L1]|P∪P0
= α−1|P∪P0

and

|θ−1(τ)(a)− τ(L1(a))| ≤ σ/2 for all a ∈ H, τ ∈ T (A).

We assume that L‡1 is well defined on F̄ . Define L1 : U(A) → R+ in the same
manner as the L. Let F1 be a finite subset of A. Let δ′1 > 0, the natural number
n1, finite subset P1 ⊂ P (A), finite subsets S1 ⊂ A as required in Theorem
2.12 (for A, L1, F1 and ε/4). Then there exist mutually orthogonal projections
q′, p′1, ..., p

′
n with q′ � p′1 and p′1, ..., p

′
n mutually unitary equivalent, a sub-C*-

algebra S′2 which is a splitting interval algebra with 1S′
2

= p′1 and unital S1-δ′1/4-
multiplicative completely positive contractions h′0 : A → q′Aq′ with h′0(x) =
q′xq′, and h1 : A→ S′1 such that

||x− h′0(x)⊕ (h′1(x)⊕ · · · ⊕ h′1(x)︸ ︷︷ ︸
n1 copies

)|| ≤ δ′1/16

for all x ∈ S′2. We assume L1(S) ⊂ S1. Set S2 = Mn(S′2) ⊂ (1 − q′)A(1 − q′),
and let P01, G01, H1, δ0,1 and σ01 also be as required by Theorem 2.12. Let
δ1 = min{δ′1, δ01}. We may assume that δ1 < δ/2, σ1 < σ/4 and P01 contains
the minimal projections of S2 which present the generating set of the positive
cone of K0(S1). We also assume that q′ commutes with each elements of H1 and
S1, and [L1](P ∪ P0) ⊆ [P1].

Again, we assume for each u ∈ U(A)∩P1 has the form q′uq′⊕(1−q′)u(1−q′),
where q′uq′ ∈ U(q′Aq′) and (1 − q′)u(1 − q′) ∈ U(S1). Let V ′ = {q′uq′, u ∈
U(A) ∩ P1} and let F ′ be the subgroup of U(q′Aq′) generated by V ′. Let F̄ ′ be
the image of F ′ in U(q′Aq′)/CU(q′Aq′). By (3) of Lemma 6.6 of [11], one has
that F̄ ′ = (F̄ ′ ∩U0(q′Aq′)/CU(q′Aq′))⊕ F̄ ′0 ⊕ F̄ ′1, where F̄ ′0 is torsion and F̄ ′1 is
torsion free. Furthermore, we may assume that V ′ = V0 ∪ V1 with V̄0 generates
(F̄ ′ ∩U0(q′Aq′)/CU(q′Aq′))⊕ F̄ ′0 and V̄1 generates F̄ ′1.

Let G′2 be a finite subset of A which contains S1, G01, L1(G′1), H1, V ′,
{q′, p′1, ..., p′n} and a finite generating set of S2. By Theorem 2.34 of [13], there
exists a G′2-δ1/4 multiplicative completely positive linear contraction Φ′1 : A→ B
such that

[Φ1]|P1∪P01 = α|P1∪P01

and

|θ(τ)(a)− τ(L1(a))| ≤ σ/2 for all a ∈ L1H ∪H1, τ ∈ T (B).

We also assume (Φ′1)‡ is well defined on F̄ ′, (Φ′1 ◦ L1)‡ is well defined on F̄ and
the image of Φ′1 is contained in Bn.
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Let B′n = qBnq. Since B is simple, we may assume the rank of q is sufficiently
large (> 6). By the construction, we have that [Φ′1 ◦ L1](q) is equivalent to q.
Therefore we may assume

||Φ′1 ◦ L1(q)− q|| < δ/4

by adjoining a unitary.
Write Bn =

⊕m
j=1Bn(j), where each Bn(j) is a splitting interval algebra or

the homogeneous algebra with dimension less than 3. Therefore, we can write
q = q1⊕ q2⊕ · · ·⊕ ql with 0 ≤ l ≤ m and qj 6= 0. Choose an integer N1 > 0 such
that N1[qj ] ≥ 3[1Bn(j)]. Note that we assume qj has rank at least 6. By applying

an inner automorphism, we may assume that
⊕l

j=1Bn(j) is a hereditary C*-sub-
algebra of MN1

(B′n). Since F1 is finite generated, with sufficiently large n, we
obtain a homomorphism j : F̄1 → U(qB′nq)/CU(qB′nq) such that φ‡n ◦ j = idF̄1

.
Then

κ1 ◦ φ‡n ◦ (Φ′1 ◦ L1)‡|F̄1
= κ1 ◦ φ‡n ◦ j = κ1|F̄1

,

where κ1 : U(qBq)/CU(qBq) → K1(qBq) is the quotient map. Note that
K1(qBq) = K1(B). Let ∆1 and δ be as in Lemma 3.14. We may assume that
∆1 < σ1/4. To simplify notation, we assume that φn(q) = q. By the assumption
on B, we may write that φn|B′

n
= (φn)0 ⊕ (φn)1, where

• τ((φn)0(1B′
n
) < δ1/2(N1 + 1)2 for all τ ∈ T (B) and

• (φn)0 is homotopically trivial (but non-zero).

It follows from Lemma 3.14 that there is a homomorphism h : B′n → e0Be0 such
that

• [h] = [(φn)0] in HomΛ(K(B′n),K(B)) and
• (φ‡n ◦ j((̄w))−1(h⊕ (φn)1)‡(Λ‡(̄w)) = ḡw, where gw ∈ U0(qBq) and cel(gw) <
ε/4 (in U(qBq)) for all w ∈ U1.

Define (we assume that Bn ⊂MN1(B′n))

h′ = (h⊕ (φn)1 ⊗ idMN1
)|⊕l

j=1 Bn(j),

and define Φ′ = h′ ⊕ (φn)|⊕m
j=l+1Bn(j). Let Φ1 = Φ′ ◦ Φ′1, we have

[Φ1]|P1∪P01
= [Φ′1]|P1∪P01

and |τ ◦ Φ1(a)− τ ◦ Φ′1(a)| < σ1/2

for all a ∈ As.a. and τ ∈ T(B). For all w ∈ U1, we have

cel(w∗(Φ1 ◦ L1(w))) < 8π + ε/4 in U(qBq).

For any w ∈ U0, we also have

cel(w∗(Φ ◦ L1(w))) < 2cel(w) + π/64 or < 8π + 2cel(wk)/k + π/16
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in U(qBq), depending in [w] = 0 or [w] has order k in K1(B). Therefore

cel(idB(h0(u))−1(Φ1 ◦ L1(h0(u))) < L(u) in U(qBq)

for all u ∈ U(B) ∩ P1. Since we also have

[id]|P∪P0 = [Φ1 ◦ L1]|P∪P0 and sup
τ∈T (B)

|τ(a)− τ(Φ1 ◦ L1(a))| < δ

for all a ∈ H, by Theorem 2.12, there is a unitary W ∈ U(B) such that

||W (Φ1 ◦ L1(x))W ∗ − x|| < ε/2 for any x ∈ F .

Let F2 ⊆ B be a finite subset. We may assume F2 ⊆ Bm′
1

(m′1 > n).
Let δ′2 > 0, the natural number n2, finite subsets P2 ⊆ P (B), S2 ⊆ B as
required in Theorem 2.12. Then there exist mutually orthogonal projections
q′′, p′′1 , ..., p

′′
n with q′′ � p′′1 and p′′1 , ..., p

′′
n mutually unitary equivalent, a sub-

C*-algebra S′3 which is a splitting interval algebra with 1S′
3

= p′′1 and unital
S-δ′2/4-multiplicative completely positive contractions h′′0 : B → q′′Bq′′ with
h′′0(x) = q′′xq′′, and h′′1 : B → S′3 such that

||x− h′′0(x)⊕ (h′′1(x)⊕ · · · ⊕ h′′1(x)︸ ︷︷ ︸
n copies

)|| ≤ δ′2/16

for all x ∈ S2. Put S2 = Mn2
(S′3) ⊆ (1 − q′′)B(1 − q′′). Let P02, G02, H2,

δ02 and σ2 > 0 be required by Theorem 2.12. Set δ2 = min{δ′2, δ02}. We may
assume that σ2 < σ1/4, δ2 < δ1/4, [Φ(P1 ∪ P01) ⊂ [P2] and P02 contains the
minimal projections of S2 which present a generating set of the positive cone of
K0(S2). Furthermore, we may assume that each u ∈ U(B) ∩ P2 has the form
q′′uq′′⊕(1−q′′)u(1−q′′), where q′′uq′′ ∈ U(q′′Bq′′) and (1−q′′)u(1−q′′) ∈ U(S2).
Put W = {q′′uq′′ : u ∈ U(B) ∩ P2}. Let F ′′ be the subgroup generated by W.
Write F̄ ′′ = (F̄ ′′ ∩U0(q′′Bq′′)/CU(q′′Bq′′))⊕ F̄ ′′0 ⊕ F̄ ′′1 , where F̄ ′′0 is torsion and

F̄ ′′1 is torsion free. We may also assume that Φ‡1(F̄ ′) ⊂ F̄ ′′. Furthermore, we also
assume thatW =W0∪W1 whereW′ generates F̄ ′′∩U0(q′′Bq′′)/CU(q′′Bq′′)⊕F̄ ′′0
and W1 generates F̄ ′′1 .

Let G′3 be a finite subset which contains S2, G02, q′′, p′′1 , ..., p
′′
n, H2, Φ1(G2), a

generating set of S2 and W. Without lose of generality, we can assume Φ1(A) ⊆
Bm for some m > m′, and there is a completely positive linear map J : B → Bm
such that

||J(a)− id(a)|| < δ2/8.

Then we can find a projection p̃′ ∈ Bm such that

||φ(q′)− q̃′|| < δ2/2.

We may write Bm =
⊕s

j=1Bm(j). By choosing large m, we may also assume
that q̃′ has at least rank 6. We write q̃′ = q′1 ⊕ · · · ⊕ q′l according to the direct
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sum decomposition (q′i 6= 0 for each i). Let N2 > 0 be an integer such that

N2[q′j ] > 3[1
m(j)] for any j. Set B′m = q̃′Bmq̃

′. Note Φ‡1 is one-to-one on F̄ ′1. We
may further assume that G′3 contains q′1, ..., q

′
l and a generating set of B′m and

Bm.
Now, let L′2 : B → A be a G′3 − δ2/16(N2 + 1)2-multiplicative completely

positive linear contraction such that

[L′2]|P2 = α−1|P∪P02 and

sup
τ∈TA

{|τ(L′2(a))− θ−1(τ)(a)|} < δ2/4 for any a ∈ H2 ∪ Φ1(H1).

We may assume (L′2)‡ is well defined on F̄ ′′. Let e ∈ A is a projection such that

||L′2 ◦ Φ1(q′)− e|| < δ2/4.

Since q′ ∈ P1, [e] = [q′] in K0(A). Therefore, we can assume e = q′ = L′2 ◦Φ1(q′)
by adjoining some unitary in A. Note that F̄ ′1 is free and (φm,M )∗1 is one-to-one.
We get that

α−1 ◦ (φm)∗1 ◦ κ′1 ◦ (Φ1)‡(g) = κ1(g)

for all g∈ F̄ ′1, where κ′1 :U(B′m)/CU(B′m)→K1(B′m) and κ1 :U(q̃′Bq̃′)/CU(q̃′Bq̃′)
→ K1(q̃′Bq̃′) are the quotient maps. Note that we have K1(q̃′Bq̃′) = K1(B). By
Lemma 3.12, there exists a homomorphism

β : U(B′m)/CU(B′m)→ U(q′Aq′)/CU(q′Aq′)

with β(U0(B′m)/CU(B′m)) ⊂ U0(q′Aq′)/CU(q′Aq′) such that

β ◦ (Φ‡1)(w̄) = w̄

for all w̄ ∈ F̄ ′1. Let δ′2 = δ(ε/16). By the assumption on B, there is M > m

such that φm,M = φ
(0)
m,M ⊕ φ

(1)
m,M : Bm → BM such that φ

(0)
m,M is homotopically

trivial and τ(φM ◦φ(0)
m,M (1B′

m
)) < ∆′2/4(N2+1)2 for all τ ∈ T (B). To simplify the

notation, we assume that e′0 = L′2◦φM◦φ
(0)
m,M (1B′

m
) and e′1 = L′2◦φM◦φ

(1)
m,M (1B′

m
)

are mutually orthogonal projections. It follows from Lemma 3.13 that there is a
homomorphism Ψ′ : B′m → e′0Ae

′
0 such that

• Φ′ is homotopically trivial, Φ′∗0 = [L′2] ◦ (φM ◦ φ(0)
m,M )∗0|K0(B′

m) and

• (β(Φ‡1(w̄)−1)(Φ′⊕ (L′2 ◦φM ◦φ
(1)
m,M ))‡(Φ‡1(w̄)) = ḡw where gw ∈ U0(q′Aq′) and

cel(gw) < ε/4 (in U(q′Aq′)) for all w ∈ V1.

As in the construction of the map from A to B, we have a homomorphism
Φ̃′ : Bm → q′Aq′ such that Φ̃′ is homotopically trivial, Φ̃′∗0 = [L′2]◦ [φM ◦φm,M ]0

and Φ̃′|B′
m

= Φ′. Define L2 = (Φ̃′ ⊕ L′2 ◦ φM ◦ φ
(1)
n,M ) ◦ J . One can verify that

[L2]|P2∪P02 = [L′2]|P2∪P02 = α−1|P2∪P02 and
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|τ ◦ L2(a)− τ ◦ L′2(a)| < σ2/4

for all a ∈ As.a with norm 1 and τ ∈ T (A). In particular

sup
τ∈T (A)

{|τ ◦ L2 ◦ Φ1(a)− τ(a)|} < σ1/2

for all a ∈ H1. Since β ◦ Φ‡1(w̄) = w̄ for all w ∈ V1, we have

cel(idA(h′0(w∗))L2(Φ1(h′0(w)))) < 8π + cel(gw) + ε/4 < 8π + ε/2

in U(q′Aq′) for all w ∈ V1. We also have

cel(idA(h′0(w∗))L2(Φ1(h′0(w))) < 2cel((w) + π/16

or

cel(idA(h′0(w∗))L2(Φ1(h′0(w))) < 8π + 2cel(wk)/k + π/16

in U(q′Aq′) for all w ∈ V0 (depends on [w] = 0 or has torsion k in K1(A)).
Therefore, we have

cel(id(h′0(u∗))L2(Φ1(h′0(u)))) < L(u)

for all u ∈ U(A)∩P2 in U(q′Aq′). By Theorem 2.12, we have a unitary Z ∈ U(A)
such that

||Z(L2 ◦ Φ(a))Z∗ − a|| < ε/16 for all x ∈ F1.

Therefore, by replacing L2 by ad ◦ L2, we obtain the approximate intertwin-
ing diagram. By applying Elliott’s intertwining argument, one has that A is
isomorphic to B, and the isomorphism induces the given isomorphism between
the invariants. �

4. Two remarks on the range of the invariant It is known that there
exists simple inductive limit A of splitting interval algebras such that K0(A)
does not satisfy the Riesz decomposition theorem (see Section 6 of [8], where
the authors constructed such a C*-algebra A with Su(K0(A)) a square rather
than a simplex). Then it is natural to ask the following two questions: Do the
invariants of inductive limits of splitting interval algebras exhaust all countable
simple torsion free unperforated ordered groups. And is A automatically an AH-
algebra if K0(A) is a Riesz group; in other words, does the pairing map preserves
extrema point automatically once the K0-group is Riesz. In the following, we
shall give negative answers to both questions.
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4.1. A remark on ordered K0-groups The ordered K0-group of any simple
TASI-algebra is always simple and weakly unperforated (see Proposition 4.3 of
[12]), but it cannot exhaust all such ordered group. Let us consider the convex
set consisting of the states of the K0-group. The following remark shows that
although this convex might not be a simplex, the defect is actually very small in
certain sense, and it cannot be an arbitrary convex.

Definition 4.1. A compact convex set ∆ is called a pseudo-simplex of order
n if there is a simplex E and a continuous surjective affine map r : E → ∆ such
that for any x ∈ ∆, the pre-image r−1(x) is a simplex with dimension at most
n.

Lemma 4.2. Let S be a splitting tree algebra with n edges. Then the convex
S(K0(S)) is a pseudo-simplex of order n.

Proof. Denote by m the number of vertices of S. Then, there is a positive
embedding K0(S) → Zm. The dual map r sends Em := S(Zm), which is a
simplex, onto S(K0(S)), as desired. �

Lemma 4.3. Let S1 and S2 be two splitting tree algebras with number of vertices
m1 and m2 respectively. Denote by ι1 : K0(S1) → Zm1 and ι2 : K0(S2) → Zm2

the canonical embeddings respectively. Then, any homomorphism κ : K0(S1) →
K0(S2) can be extended to a positive homomorphism Zm1 → Zm2 .

Proof. Let ev : K0(S2)→ Z be the evaluation map on a splitting point of S2.
It is clear that ev can be naturally extended to Zm2 . Thus, in order to prove the
lemma, it is enough to show that ev ◦ κ can be extended to a positive map from
Zm1 to Z.

By Lemma 2.16 of [12], the map ev ◦ κ is a sum of point evaluations, and
hence it can be extended to a positive map on Zm1 naturally. �

Lemma 4.4. Let ∆i, i = 1, 2, ... be pseudo-simplexes of order n with simplexes
Ei and affine maps ri : Ei → ∆i such that r−1

i (x) is a simplex with dimension
at most n for any x ∈ ∆i. Let ϕi : ∆i+1 → ∆i and ϕ̃i : Ei+1 → Ei be affine
maps such that the diagram

Ei

ri

��

Ei+1

ϕ̃i

oo

ri+1

��
∆i ∆i+1

ϕi

oo

commutes. Then the inverse limit of the system (∆i, ϕi) is a pseudo-simplex of
order n.

Proof. Denote by E = lim
←−

Ei, ∆ = lim
←−

∆i, and r : E → ∆ the canonical affine

map. Since each Ei is a compact simplex, E is a compact simplex. Consider
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x = (xi) ∈ lim
←−

∆i. It follows that ϕ̃i(r
−1
i+1(xi+1)) ⊆ r−1

i (xi), and r−1(x) is the

inverse limit of (r−1
i (xi), ϕ̃i). Since each r−1

i (xi) is a simplex of dimension at
most n, their inverse limit r−1(x) is a simplex with dimension at most n, as
desired. �

Applying this lemma to K0-groups of splitting tree algebras, one has that

Theorem 4.5. Let G be an inductive limit of order-unit K0-groups of splitting
interval algebras. Then, the convex set S(G) is a pseudo-simplex of order 1.

Proof. Write G = lim
−→

(Gi, ϕi) where each Gi is the K0-group of a splitting

interval algebra. Then each convex set S(Gi) is a pseudo-simplex of order 1. By
Lemma 4.3, the maps ϕi lift to a map ϕ̃i : Zmi → Zmi+1 such that

Zmi

ϕ̃i

// Zmi+1

Gi

ιi

OO

ϕi

// Gi+1

ιi+1

OO

commutes, where ιi and ιi+1 are canonical embeddings. Consider the dual, one
has the commutative diagram of Lemma 4.4, and hence the S(G) is the pseudo-
simplex of order 1. �

Since the K0-group of any simple TASI-algebra is an inductive limit of direct
sums of K0-group of splitting interval algebras and Z ⊕ (Z/nZ), one has the
following corollary.

Corollary 4.6. Let A be a simple TASI-algebras. Then S(K0(S)) is a pseudo-
simplex of order 1.

Remark 4.7. It is then clear that the K0-group of TASI-algebras cannot ex-
haust all simple weakly unperforated ordered groups. For instance, let G be
an order-unit group with S(G) a pentagon. Then G cannot be realized as the
K0-group of a TASI-algebra, since pentagon is not a pseudo-simplex of order 1
(in fact, it is a pseudo-simplex of order 2).

Remark 4.8. Note that in [2], the author showed that the class of simple
inductive limits of point-line algebras is able to exhaust all simple unperforated
ordered group. Thus, in order to have a classification for a class of simple
C*-algebras with the most general unperforated K0-groups, it is reasonable to
consider the class of C*-algebras which can be tracially approximated by certain
point-line algebras. This will be the topic of forthcoming paper(s).



72 Zhuang Niu

4.2. A remark on pairing maps It is known that the range of the ordered K0-
groups of TASI-algebras is strictly bigger than that of AH-algebras. In this
section, we shall show further that even if the K0-group of a given TASI-algebra
is a dimension group, it still might not be an AH-algebra. We shall consider
the pairing map from tracial simplex to the convex set consisting of the states
of K0-group (it is in fact a simplex in this case), and show that it does not
necessarily preserve extreme points (note that for AH-algebras, the pairing map
always preserves extreme points).

Theorem 4.9. There exists a TASI-algebra such that the ordered K0-group
has the Riesz decomposition property, but the canonical pairing map from trace
simplex to the convex set of the states on the K0-group does not preserve extreme
points.

Proof. Let (kn) be a sequence of natural numbers such that

∞∑
n=1

1

kn + 1
<∞,

and
k1

k1 + 2
· k2

k2 + 2
· · · kn

kn + 2
> c for any n

for some strictly positive number c.
Set mn = (k1 + 2)(k2 + 2) · · · (kn−1 + 2) (assume m1 = 1). Consider the

algebra
An = {f ∈ M2mn

([0, 1]); f(0) ∈ Mmn
⊕Mmn

}.

(In fact, An+1 = An ⊗Mkn+2.)
A simple calculation shows that K0(An) = Z⊕ Z with

K+
0 (An) = {(a, b); a, b ∈ Z+ ∪ {0}}.

It is a Riesz group, so does any inductive limit.
However, the pairing map does not preserve extreme points. For example,

τ{1/2}, the Dirac measure on {1/2}, is an extreme trace. But the induced state
is

[τ{1/2}] : (a, b) 7→ (a+ b)/2,

which is not extremal.
Consider the following inductive limit of An: Let {xn} be a dense sequence

in [0, 1]. Define φn : An → An+1 by

f 7→ f(xn)p0 ⊕ (f ⊗ 1Mkn
)p1 ⊕ f(xn)p2 ∈ An+1,

where
p0 = diag{1, ..., 1︸ ︷︷ ︸

mn

, 0, ..., 0},
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p2 = diag{0, ..., 0, 1, ..., 1︸ ︷︷ ︸
mn

},

and p1 = 1− p0 − p2. Note that

[φn] : (a, b) 7→ (kna+ (a+ b), knb+ (a+ b)).

Then [φn] is injective as a map between abelian groups. Indeed, if

kna+ (a+ b) = 0 and knb+ (a+ b) = 0

for some a, b ∈ Z, one then has

(kn + 1)2a = a and (kn + 1)2b = b.

Since kn ≥ 1, one has that a = b = 0.
Then, A = lim

−→
An is simple, and K0(A) is a Riesz group. Note that

[φn]−1 =
1

(kn + 1)2 − 1

(
kn + 1 −1
−1 kn + 1

)
.

Since
∞∑
n=1

1

kn + 1
<∞,

then K0(A) has two extreme states, denoted by ρ0 and ρ1.
Denote by pn and qn two orthogonal projections in An with

[pn] = (mn, 0) and [qn] = (0,mn).

Denote by ρ
(n)
0 and ρ

(n)
1 the standard extreme states on K0(An), one has∣∣∣ρ(n)

0 (pn)− ρ0(pn)
∣∣∣ < 1

kn + 1
+

1

kn+1 + 1
+ · · ·

and ∣∣∣ρ(n)
0 (qn)− ρ1(qn)

∣∣∣ < 1

kn + 1
+

1

kn+1 + 1
+ · · · .

(Note that ρ
(n)
0 (qn) = 0.)

Since
k1

k1 + 2
· k2

k2 + 2
· · · kn

kn + 2
> c for any n

for some prescribed c > 0, then an asymptotical argument shows that for any
x0 ∈ [0, 1] (as spectrum of An), there is a trace τ on A such that τ({x0}) > c.
In particular, for any An, there is a trace τ on A such that the restriction of τ
to An has mass at least c on {1/2}.
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Let us show that the pairing map of A does not preserve extreme points. Let
τ be any tracial state on A with restriction to projections an extreme state, say
[τ ] = ρ0. We assert that for any ε > 0, there is N such that for any n > N , one
has that τ({x}) < ε for any x ∈ (0, 1) (in the spectrum of An). In fact, for any
n sufficiently large such that

1

kn + 1
+

1

kn+1 + 1
+ · · · < ε,

one has

τ(qn) = ρ0(qn) =ε ρ
(n)
0 (qn) = 0.

If τ({x}) ≥ ε for some x ∈ (0, 1), one has that τ(qn) ≥ ε, and this is a contradic-
tion. The same argument shows that if [τ ] = ρ1, then for any ε > 0, there is N
such that τ({x}) < ε for any n > N . Thus, for any trace τ with [τ ] an extreme
state, for any ε > 0, there is N such that for any n > N , one has

τ({x}) < ε for any x ∈ (0, 1).

Assume that the pairing map of A preserves extreme points, and applying the
statement above to extreme traces, one then has that for any tracial state τ on
A and for any ε > 0, there is N such that

τ({x}) < ε for any x ∈ (0, 1).

But this contradicts to the construction of A which guarantees the existence of
a tracial state with mass at least c on {1/2} on any An. Thus A is the desired
TASI-algebra. �
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