COMPARISON RADIUS AND MEAN TOPOLOGICAL DIMENSION: \mathbb{Z}^{d}-ACTIONS

ZHUANG NIU

Abstract

Consider a minimal free topological dynamical system $\left(X, \mathbb{Z}^{d}\right)$. It is shown that the comparison radius of the crossed product C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is at most the half of the mean topological dimension of $\left(X, \mathbb{Z}^{d}\right)$. As a consequence, the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is classified by the Elliott invariant if the mean dimension of $\left(X, \mathbb{Z}^{d}\right)$ is zero.

1. Introduction

Let (X, Γ) be a topological dynamical system, where X is a compact Hausdorff space and Γ is a discrete amenable group. The mean (topological) dimension of (X, Γ), denoted by $\operatorname{mdim}(X, \Gamma)$, was introduced by Gromov ([9]), and then was developed and studied systematically by Lindenstrauss and Weiss ([21). It is a numerical invariant, taking value in $[0,+\infty]$, to measure the complexity of (X, Γ) in terms of dimension growth with respect to partial orbits. Applications of mean dimension theory can be found in topological dynamical systems ([21], [20], [10], [18], [13], [12], [14]), geometric analysis ([34], [5], [23], [35]), operator algebras ([19], [4], [26], [24], [25]), and information theory ([22]).

On the other hand, for a general unital stably finite C^{*}-algebra A, the radius of comparison, introduced by Toms ([32]) and denoted by $\operatorname{rc}(A)$, is also a numerical invariant to measure the regularity of the C^{*}-algebra A; and $\mathrm{rc}(A)$ can be regarded as an abstract version of the dimension growth of A. A heuristic example is $\mathrm{M}_{n}(\mathrm{C}(X))$, the C^{*}-algebra of (complex) $n \times n$ matrix valued continuous functions on a finite CW-complex X; its comparison radius is around $\frac{1}{2} \frac{\operatorname{dim}(X)}{n}$, which is half of the dimension ratio of $\mathrm{M}_{n}(\mathrm{C}(X))$.

For the given topological dynamical system (X, Γ), the canonical C^{*}-algebra to be considered is the transformation group C^{*}-algebra $A=\mathrm{C}(X) \rtimes \Gamma$. A natural question to ask then is how the radius of comparison of the C^{*}-algebra is connected to the mean dimension of the dynamical system. In fact, Phillips and Toms even made the following conjecture:

Conjecture (Phillips-Toms). Let (X, Γ) be a minimal and free topological dynamical system, where X is compact Hausdorff space, and Γ is a discrete amenable group. Then

$$
\operatorname{rc}(\mathrm{C}(X) \rtimes \Gamma)=\frac{1}{2} \operatorname{mdim}(X, \Gamma) .
$$

This conjecture is closed related to the classification of C^{*}-algebras. In general, the C^{*} algebra $\mathrm{C}(X) \rtimes \Gamma$ can be wild and not to be classified by the Elliott invariant (even with $\Gamma=\mathbb{Z}$, see [6]). So, an important question in the classification program of C^{*}-algebras

Date: July 15, 2021.
The research is supported by an NSF grant (DMS-1800882).
is to determine which transformation group C^{*}-algebra is classifiable. Now, a special case of this conjecture is that $\operatorname{mdim}(X, \Gamma)=0$ implies $\operatorname{rc}(\mathrm{C}(X) \rtimes \Gamma)=0$ (strict comparison of positive elements); and by the Toms-Winter conjecture, this should imply that the C^{*} algebra $\mathrm{C}(X) \rtimes \Gamma$ is Jiang-Su stable and classifiable.

There have been many researches on the classifiability of transformation group C ${ }^{*}$-algebras: Under the assumption that X is finite dimensional (hence the mean dimension is automatically zero), it was shown in [33] that the algebra $\mathrm{C}(X) \rtimes \mathbb{Z}$ has finite nuclear dimension, and therefore is Jiang-Su stable. With Rokhlin dimension, this result was generalized to \mathbb{Z}^{d}-actions in [29], and then to the actions of residually finite groups with box spaces of finite asymptotic dimension ([30]); and with almost finiteness, the Jiang-Su stability is also obtained for actions by groups with comparison property ([16]).

Without the finite dimensionality assumption on X, so far the only result was [4] where \mathbb{Z} actions are considered, and the zero mean dimension was shown to imply the classifiability of the C*-algebra. Note that this result particularly covers all strictly ergodic dynamical systems. Beyond the case of mean dimension zero, Phillips considered \mathbb{Z}-actions in [26] and showed that the radius of comparison of $\mathrm{C}(X) \rtimes \mathbb{Z}$ is at most $1+36 \mathrm{mdim}(X, \mathbb{Z})$.

In this paper, let us consider minimal and free \mathbb{Z}^{d}-actions, and show the following:
Theorem A (Theorem 5.6). Let $\left(X, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system. Then

$$
\begin{equation*}
\operatorname{rc}\left(\mathrm{C}(X) \rtimes \mathbb{Z}^{d}\right) \leq \frac{1}{2} \operatorname{mdim}\left(X, \mathbb{Z}^{d}\right) \tag{1.1}
\end{equation*}
$$

As a consequence of (1.1), one obtains the classifiability if $\left(X, \mathbb{Z}^{d}\right)$ has mean dimension zero:

Theorem B (Theorem 5.7). Let $\left(X, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system with mean dimension zero, then $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is classified by its Elliott invariant. In particular, if $\operatorname{dim}(X)<\infty$, or $\left(X, \mathbb{Z}^{d}\right)$ has at most countably many ergodic measures, or $\left(X, \mathbb{Z}^{d}\right)$ has finite topological entropy, then $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is classified by its Elliott invariant.

The argument in [33], 4], or [26] relies on the Putnam's orbit-cutting algebra (or the large sub-algebra) A_{y}; and in the case of zero mean dimension, the argument in [4] also heavily depends on the small boundary property (which is equivalent to mean dimension zero in the case of \mathbb{Z}-actions). However, beyond the case of \mathbb{Z}-actions, it is not clear in general how to construct large sub-algebras; moreover, once the dynamical system does not have mean dimension zero, the small boundary property does not hold anymore. So, instead of large sub-algebra and small boundary property, the proofs of Theorem A and Theorem B depend on Uniform Rokhlin Property (URP) and Cuntz comparison of Open Sets (COS):

Definition 1.1 (Definition 3.1 and Definition 4.1 of [24]). A topological dynamical system (X, Γ), where Γ is a discrete amenable group, is said to have Uniform Rokhlin Property (URP) if for any $\varepsilon>0$ and any finite set $K \subseteq \Gamma$, there exist closed sets $B_{1}, B_{2}, \ldots, B_{S} \subseteq X$ and (K, ε)-invariant sets $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{S} \subseteq \Gamma$ such that

$$
B_{s} \gamma, \quad \gamma \in \Gamma_{s}, s=1, \ldots, S,
$$

are mutually disjoint and

$$
\operatorname{ocap}\left(X \backslash \bigsqcup_{s=1}^{S} \bigsqcup_{\gamma \in \Gamma_{s}} B_{s} \gamma\right)<\varepsilon
$$

where ocap denote the orbit capacity (see, for instance, Definition 5.1 of [21]).
The dynamical system (X, Γ) is said to have (λ, m)-Cuntz-comparison of open sets, where $\lambda \in(0,1]$ and $m \in \mathbb{N}$, if for any open sets $E, F \subseteq X$ with

$$
\mu(E)<\lambda \mu(F), \quad \mu \in \mathcal{M}_{1}(X, \Gamma)
$$

where $\mathcal{M}_{1}(X, \Gamma)$ is the simplex of all invariant probability measures on X, then

$$
\varphi_{E} \precsim \underbrace{\varphi_{F} \oplus \cdots \oplus \varphi_{F}}_{m} \quad \text { in } \mathrm{C}(X) \rtimes \Gamma,
$$

where φ_{E} and φ_{F} are continuous functions supporting on E and F respectively.
The dynamical system (X, Γ) is said to have Cuntz comparison of Open Sets (COS) if it has (λ, m)-Cuntz-comparison on open sets for some λ and m.

It is shown in [24] (Theorem 4.8) that the (URP) and (COS) implies

$$
\operatorname{rc}(\mathrm{C}(X) \rtimes \Gamma) \leq \frac{1}{2} \operatorname{mdim}(X, \Gamma)
$$

and it is also shown in [25] (Theorem 4.8) that if, in addition, (X, Γ) has mean dimension zero, then the C^{*}-algebra $\mathrm{C}(X) \rtimes \Gamma$ is classifiable. Thus, Theorem A and Theorem B follows from the following:

Theorem (Theorem 4.2 and Theorem5.5). Any free and minimal dynamical system (X, \mathbb{Z}^{d}) has the (URP) and (COS).

Remark 1.2. The adding-one-dimension and going-down argument of [11] play a crucial role in the proof of the (COS) and (URP).

Remark 1.3. In [17], it is shown that the (URP) and (COS) imply that the C^{*}-algebra $\mathrm{C}(X) \rtimes \Gamma$ alway has stable rank one (classifiable or not), and satisfies the Toms-Winter conjecture. Thus, by the Theorem above, $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ always has stable rank one (classifiable or not), and satisfies the Toms-Winter conjecture.

2. Notation and Preliminaries

2.1. Topological Dynamical Systems. In this paper, one only considers \mathbb{Z}^{d}-actions on a separable compact Hausdorff space X.

Definition 2.1. Consider a topological dynamical system (X, T, \mathbb{Z}^{d}). A closed set $Y \subseteq X$ is said to be invariant if $T^{n}(Y)=Y, n \in \mathbb{Z}^{d}$, and $\left(X, T, \mathbb{Z}^{d}\right)$ is said to be minimal if \varnothing and X are the only invariant closed subsets. The dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$ is free if for any $x \in X,\left\{n \in \mathbb{Z}^{d}: T^{n}(x)=x\right\}=\{0\}$.

Remark 2.2. The dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$ is induced by d commuting homeomorphisms of X, and vise versa.

Definition 2.3. A Borel measure μ on X is invariant under the action σ if $\mu(E)=\mu\left(T^{n}(E)\right)$, for any $n \in \mathbb{Z}^{d}$ and any Borel set $E \subseteq X$. Denote by $\mathcal{M}_{1}\left(X, T, \mathbb{Z}^{d}\right)$ the collection of all invariant Borel probability measures on X. It is a Choquet simplex under the weak* topology.

Definition 2.4 (see [9] and [21]). Consider a topological dynamical system (X, T, \mathbb{Z}^{d}), and let E be a subset of X. The orbit capacity of E is defined by

$$
\operatorname{ocap}(E):=\lim _{N \rightarrow \infty} \frac{1}{N^{d}} \sup _{x \in X} \sum_{n \in\{0,1, \ldots, N-1\}^{d}} \chi_{E}\left(T^{n}(x)\right),
$$

where χ_{E} is the characteristic function of E. The limit always exists.
Definition 2.5 (see [21]). Let \mathcal{U} be an open cover of X. Define

$$
D(\mathcal{U})=\min \{\operatorname{ord}(\mathcal{V}): \mathcal{V} \preceq U\},
$$

where $\mathcal{V}=-1+\sup _{x \in X} \sum_{V \in \mathcal{V}} \chi_{V}(x)$.
Consider a topological dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$. Then the topological mean dimension of $\left(X, T, \mathbb{Z}^{d}\right)$ is defined by

$$
\operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right):=\sup _{\mathcal{U}} \lim _{N \rightarrow \infty} \frac{1}{N^{d}} D\left(\underset{n \in\{0,1, \ldots, N-1\}^{d}}{\bigvee} T^{-n}(\mathcal{U})\right)
$$

where \mathcal{U} runs over all finite open covers of X.
Remark 2.6. It follows from the definition that if $\operatorname{dim}(X)<\infty$, then $\operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right)=0$; By [21], if $\left(X, T, \mathbb{Z}^{d}\right)$ has at most countably many ergodic measures, then $\operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right)=0$; and by [20], if $\left(X, T, \mathbb{Z}^{d}\right)$ has finite topological entropy, then $\operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right)=0$.
2.2. Crossed product \mathbf{C}^{*}-algebras. Consider a topological dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$. Then the crossed product C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is the universal C^{*}-algebra

$$
A=\mathrm{C}^{*}\left\{f, u_{n} ; u_{n} f u_{n}^{*}=f \circ T^{n}, u_{m} u_{n}^{*}=u_{m-n}, u_{0}=1, f \in \mathrm{C}(X), m, n \in \mathbb{Z}^{d}\right\}
$$

The C^{*}-algebra A is nuclear, and if T is minimal, the C^{*}-algebra A is simple. Moreover, the simplex of tracial states of $\mathrm{C}(X) \rtimes_{\sigma} \Gamma$ is canonically homeomorphic to the simplex of the invariant probability measures of $\left(X, T, \mathbb{Z}^{d}\right)$.

2.3. Cuntz comparison of positive elements of a C ${ }^{*}$-algebra.

Definition 2.7. Let A be a C^{*}-algebra, and let $a, b \in A^{+}$. Then we say that a is Cuntz subequivalent to b, denote by $a \precsim b$, if there are $x_{i}, y_{i}, i=1,2, \ldots$, such that

$$
\lim _{n \rightarrow \infty} x_{i} b y_{i}=a
$$

and we say that a is Cuntz equivalent to b if $a \precsim b$ and $b \precsim a$.
Let $\tau: A \rightarrow \mathbb{C}$ be a trace. Define the rank function

$$
\mathrm{d}_{\tau}(a):=\lim _{n \rightarrow \infty} \tau\left(a^{\frac{1}{n}}\right)=\mu_{\tau}(\operatorname{sp}(a) \cap(0,+\infty))
$$

where μ_{τ} is the Borel measure induced by τ on the spectrum of a. It is well known that

$$
\mathrm{d}_{\tau}(a) \leq \mathrm{d}_{\tau}(b), \quad \text { if } a \precsim b .
$$

Example 2.8. Consider $h \in \mathrm{C}(X)^{+}$and let μ be a probability measure on X. Then

$$
\mathrm{d}_{\tau_{\mu}}=\mu\left(f^{-1}(0,+\infty)\right),
$$

where τ_{μ} is the trace of $\mathrm{C}(X)$ induced by μ.
Let $f, g \in \mathrm{C}(X)$ be positive elements. Then f and g are Cuntz equivalent if and only if $f^{-1}(0,+\infty)=g^{-1}(0,+\infty)$. That is, their equivalence classes are determined by their open support. On the other hand, for each open set $E \subseteq X$, pick a continuous function

$$
\varphi_{E}: X \rightarrow[0,+\infty) \quad \text { such that } \quad E=\varphi_{E}^{-1}(0,+\infty)
$$

For instance, one can pick $\varphi_{E}(x)=d(x, X \backslash E)$, where d is a compatible metric on X. This notation will be used throughout this paper. Note that the Cuntz equivalence class of φ_{E} is independent of the choice of individual function φ_{E}.
Definition 2.9. Let $a \in A^{+}$, where A is a C^{*}-algebra, and let $\varepsilon>0$. Define

$$
(a-\varepsilon)_{+}=f(a) \in A
$$

where $f(t)=\max \{t-\varepsilon, 0\}$.
The following lemma is frequently used:
Lemma 2.10 (Section 2 of [27]). Let a, b be positive elements of $a C^{*}$-algebra A. Then $a \precsim b$ if and only if $(a-\varepsilon)_{+} \precsim b$ for all $\varepsilon>0$.
Definition 2.11 (Definition 6.1 of [32]). Let A be a C^{*}-algebra. Denote by $\mathrm{M}_{n}(A)$ the C^{*}-algebra of $n \times n$ matrices over A. Regard $\mathrm{M}_{n}(A)$ as the upper-left conner of $\mathrm{M}_{n+1}(A)$, and denote by

$$
\mathrm{M}_{\infty}(A)=\bigcup_{n=1}^{\infty} \mathrm{M}_{n}(A)
$$

the algebra of all finite matrices over A.
The radius of comparison of a unital C^{*}-algebra A, denoted by $\operatorname{rc}(A)$, is the infimum of the set of real numbers $r>0$ such that if $a, b \in\left(\mathrm{M}_{\infty}(A)\right)^{+}$satisfy

$$
\mathrm{d}_{\tau}(a)+r<\mathrm{d}_{\tau}(b), \quad \tau \in \mathrm{T}(A)
$$

then $a \precsim b$, where $\mathrm{T}(A)$ is the simplex of tracial states. (In [32], the radius of comparison is defined in terms of quasitraces instead of traces; but since all the algebras considered in this note are nuclear, by [15], any quasitrace actually is a trace.)

Example 2.12. Let X be a compact Hausdorff space. Then

$$
\begin{equation*}
\mathrm{rc}\left(\mathrm{M}_{n}(\mathrm{C}(X))\right) \leq \frac{1}{2} \frac{\operatorname{dim}(X)-1}{n} \tag{2.1}
\end{equation*}
$$

where $\operatorname{dim}(\mathrm{X})$ is the topological covering dimension of X (a lower bound of $\operatorname{rc}(\mathrm{C}(X))$ in terms of cohomological dimension is given in [2]).

The main result of this paper is a dynamical version of (2.1); that is,

$$
\operatorname{rc}\left(\mathrm{C}(X) \rtimes \mathbb{Z}^{d}\right) \leq \frac{1}{2} \operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right)
$$

if $\left(X, T, \mathbb{Z}^{d}\right)$ is minimal and free (Corollary 5.6).
3. ADDING ONE DIMENSION, GOING-DOWN ARGUMENT, R-BOUNDARY POINTS, AND R-INTERIOR POINTS

Adding-one-dimension and going-down argument are introduced in [11], and they play a crucial role in this paper. Let us first take a brief review. Consider a minimal system $\left(X, T, \mathbb{Z}^{d}\right)$. Pick open sets $U^{\prime} \subseteq U \subseteq X$ with $\overline{U^{\prime}} \subseteq U$, and a continuous function $\varphi: X \rightarrow$ $[0,1]$ such that

$$
\left.\varphi\right|_{U^{\prime}}=1 \quad \text { and }\left.\quad \varphi\right|_{X \backslash U}=0
$$

Since $\left(X, T, \mathbb{Z}^{d}\right)$ minimal, there exists $L \in \mathbb{N}$ such that

$$
\bigcup_{|n| \leq L} T^{n}\left(U^{\prime}\right)=X
$$

and hence
(1) for any $x \in X$, there is $n \in \mathbb{Z}^{d}$ with $|n| \leq L$ such that $\varphi\left(T^{n}(x)\right)=1$.

On the other hand, pick M such that

$$
T^{n}(U), \quad|n| \leq M
$$

are mutually disjoint, and therefore
(2) if $\varphi(x)>0$ for some $x \in X$, then $\varphi\left(T^{n}(x)\right)=0$ for all nonzero $n \in \mathbb{Z}^{k}$ with $|n| \leq M$. Note that $M \leq L$; by the freeness of $\left(X, T, \mathbb{Z}^{d}\right)$, the number M is arbitrarily large if U is sufficiently small.

Pick $x \in X$. Following from [11], one considers the set

$$
\left\{\left(n, \frac{1}{\varphi\left(T^{n}(x)\right)}\right): n \in \mathbb{Z}^{d}, \varphi\left(T^{n}(x)\right) \neq 0\right\} \subseteq \mathbb{R}^{d+1}
$$

and defines the Voronoi cell $V(x, n) \subseteq \mathbb{R}^{d+1}$ with center $\left(n, \frac{1}{\varphi\left(T^{n}(x)\right)}\right)$ by

$$
V(x, n)=\left\{\xi \in \mathbb{R}^{k+1}:\left\|\xi-\left(n, \frac{1}{\varphi\left(T^{n}(x)\right)}\right)\right\| \leq\left\|\xi-\left(m, \frac{1}{\varphi\left(T^{m}(x)\right)}\right)\right\|, \forall m \in \mathbb{Z}^{d}\right\}
$$

where $\|\cdot\|$ is the ℓ^{2}-norm on \mathbb{R}^{d+1}. If $\varphi\left(T^{n}(x)\right)=0$, then put

$$
V(x, n)=\varnothing
$$

One then has a tiling

$$
\mathbb{R}^{d+1}=\bigcup_{n \in \mathbb{Z}^{d}} V(x, n)
$$

Pick $H>(L+\sqrt{d})^{2}$. For each $n \in \mathbb{Z}^{d}$, define

$$
W_{H}(x, n)=V(x, n) \cap\left(\mathbb{R}^{d} \times\{-H\}\right)
$$

and one has a tiling

$$
\mathcal{W}_{H}: \mathbb{R}^{d}=\bigcup_{n \in \mathbb{Z}^{d}} W(x, n)
$$

The following are some basic properties of this construction, and the proofs can be found in [11].

Lemma 3.1 (Lemma 4.1 of [11]). With the construction above, one has
(1) \mathcal{W}_{H} is continuous on x in the following sense: Suppose that $W(x, n)$ has non-empty interior. For any $\varepsilon>0$, if $y \in X$ is sufficiently close to x, then the Hausdorff distance between $W_{H}(x, n)$ and $W_{H}(y, n)$ are smaller than ε.
(2) \mathcal{W}_{H} is \mathbb{Z}^{d}-equivariant: $W_{H}\left(T^{m}(x), n-m\right)=-m+W_{H}(x, n)$.
(3) If $\varphi\left(T^{n}(x)\right)>0$, then

$$
B_{\frac{M}{2}}\left(n, \frac{1}{\varphi\left(T^{n}(x)\right)}\right) \subseteq V(x, n)
$$

(4) If $W_{H}(x, n)$ is non-empty, then

$$
1 \leq \frac{1}{\varphi\left(T^{n}(x)\right)} \leq 2
$$

(5) If $(a,-H) \in V(x, n)$, then

$$
\|a-n\|<L+\sqrt{d}
$$

Moreover, if one considers different horizontal cuts, at levels $-s H$ and $-H$ for some $s>1$, one has the following lemma.

Lemma 3.2 (Lemma 4.1(4) of [11] and its proof). Let $s>1$ and $r>0$. One can choose M sufficiently large such that if $(a,-s H) \in V(x, n)$, then

$$
B_{r}\left(\frac{a}{s}+\left(1-\frac{1}{s}\right) n\right) \subseteq W_{H}(x, n)
$$

and

$$
\left\|\frac{a}{s}+\left(1-\frac{1}{s}\right) n-\left(a+\frac{(s-1) H}{s H+t}(n-a)\right)\right\| \leq \frac{4}{L+\sqrt{d}},
$$

where $t=\frac{1}{\varphi\left(T^{n}(x)\right)}$ and $\|\cdot\|$ is the ℓ^{2}-norm on \mathbb{R}^{d}.
Definition 3.3. Note that the point $\left(a+\frac{(s-1) H}{s H+t}(n-a),-H\right)$ is the image of $(a,-s H)$ in the plane $\mathbb{R}^{d} \times\{-H\}$ under the projection towards the center (n, t). Let us call $a+\frac{(s-1) H}{s H+t}(n-a)$ the H-projective image of a (with the center (n, t)).

The following is a lemma on convex bodies in \mathbb{R}^{d}, and the author is in debt to Tyrrell McAllister for the discussions.

Lemma 3.4. Consider \mathbb{R}^{d}. For any $\varepsilon>0$ and any $r>0$, there is $N_{0}>0$ such that if $N \geq N_{0}$, then for any convex body $V \subseteq \mathbb{R}^{d}$, one has

$$
\frac{1}{N^{d}}\left|\left\{n \in \mathbb{Z}^{d}: \operatorname{dist}(n, \partial V) \leq r, n \in I_{N}\right\}\right|<\varepsilon
$$

where $I_{N}=[0, N]^{d}$.
Proof. Pick N_{0} sufficiently large such that

$$
2 \frac{\operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(I_{N}\right)\right)}{\operatorname{vol}\left(I_{N}\right)}<\varepsilon, \quad N>N_{0}
$$

where $\partial_{E}(K)$ denotes the E-neighbourhood of the boundary of a convex body K. Then, this N_{0} satisfies the conclusion of the Lemma.

Indeed, for any $N \geq N_{0}$, denote by $\partial_{r+\sqrt{d}}^{+}\left(V \cap I_{N}\right)$ the outer $(r+\sqrt{d})$-neighborhood of the convex body $V \cap I_{N}$, and it follows from Steiner formula (see, for instance, (4.1.1) of [28]) that

$$
\operatorname{vol}\left(\partial_{r+\sqrt{d}}^{+}\left(V \cap I_{N}\right)\right)=\sum_{j=1}^{d} C_{d}^{j} W_{j}\left(V \cap I_{N}\right)(r+\sqrt{d})^{j}
$$

where $W_{j}\left(V \cap I_{N}\right)$ is the j-th quermassintegral of $V \cap I_{N}$. Since the quermassintegrals W_{j}, $j=1, \ldots, d$, are monotonic (see, for instance, Page 211 of [28]), one has

$$
W_{j}\left(V \cap I_{N}\right) \leq W_{j}\left(I_{N}\right), \quad j=1,2, \ldots, d,
$$

and hence

$$
\begin{aligned}
\operatorname{vol}\left(\partial_{r+\sqrt{d}}^{+}\left(V \cap I_{N}\right)\right) & =\sum_{j=1}^{d} C_{d}^{j} W_{j}\left(V \cap I_{N}\right)(r+\sqrt{d})^{j} \\
& \leq \sum_{j=1}^{d} C_{d}^{j} W_{j}\left(I_{N}\right)(r+\sqrt{d})^{j} \\
& =\operatorname{vol}\left(\partial_{r+\sqrt{d}}^{+}\left(I_{N}\right)\right)
\end{aligned}
$$

Since $\operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(V \cap I_{N}\right)\right) \leq 2 \operatorname{vol}\left(\partial_{r+\sqrt{d}}^{+}\left(V \cap I_{N}\right)\right)$, one has

$$
\frac{\operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(V \cap I_{N}\right)\right)}{\operatorname{vol}\left(I_{N}\right)} \leq 2 \frac{\operatorname{vol}\left(\partial_{r+\sqrt{d}}^{+}\left(V \cap I_{N}\right)\right)}{\operatorname{vol}\left(I_{N}\right)} \leq 2 \frac{\operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(I_{N}\right)\right)}{\operatorname{vol}\left(I_{N}\right)}<\varepsilon
$$

On the other hand, note that

$$
\left|\left\{n \in \mathbb{Z}^{d}: \operatorname{dist}(n, \partial V) \leq r, n \in I_{N}\right\}\right| \leq \operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(V \cap I_{N}\right)\right)
$$

and hence

$$
\frac{1}{N^{d}}\left|\left\{n \in \mathbb{Z}^{d}: \operatorname{dist}(n, \partial V) \leq r, n \in I_{N}\right\}\right| \leq \frac{\operatorname{vol}\left(\partial_{r+\sqrt{d}}\left(V \cap I_{N}\right)\right)}{\operatorname{vol}\left(I_{N}\right)}<\varepsilon
$$

as desired.
Definition 3.5. Consider a continuous function $X \ni x \mapsto \mathcal{W}(x)$ with $\mathcal{W}(x)$ a \mathbb{R}^{d}-tiling. For each $R \geq 0$, a point $x \in X$ is said to be an R-interior point if $\operatorname{dist}(0, \partial \mathcal{W}(x))>R$, where $\partial \mathcal{W}(x)$ denotes the union of the boundaries of the tiles of \mathcal{W}. Note that, in this case, the origin $0 \in \mathbb{R}^{d}$ is an interior point of a (unique) tile of $\mathcal{W}(x)$. Denote this tile by $\mathcal{W}(x)_{0}$, and denote the set of R-interior points by $\iota_{R}(\mathcal{T})$.

Otherwise (if $\operatorname{dist}(0, \partial \mathcal{W}(x)) \leq R$), the point x is said to be an R-boundary point. Denote by $\beta_{R}(\mathcal{T})$ the set of R-boundary points.

Note that $\beta_{R}(\mathcal{T})$ is closed and $\iota_{R}(\mathcal{T})$ is open.
Lemma 3.6. Let $\left(X, T, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system.
Fix $s \in(1,2)$. Let $R_{0}>0$ and $\varepsilon>0$ be arbitrary. Let $N>N_{0}$, where N_{0} the constant of Lemma 3.4 with respect to ε and $2 R_{0}+4+\sqrt{d} / 2$, and let $R_{1}>\max \left\{R_{0}, N \sqrt{d}\right\}$.

Then M can be chosen large enough such that there exist a finite open cover

$$
U_{1} \cup U_{2} \cup \cdots \cup U_{K} \supseteq \beta_{R_{0}}\left(\mathcal{W}_{s H}\right),
$$

and $n_{1}, n_{2}, \ldots, n_{K} \in \mathbb{Z}^{d}$ such that
(1) $T^{n_{i}}\left(U_{i}\right) \subseteq \iota_{R_{1}}\left(\mathcal{W}_{H}\right) \subseteq \iota_{0}\left(\mathcal{W}_{H}\right), i=1,2, \ldots, K$,
(2) the open sets

$$
T^{n_{i}}\left(U_{i}\right), \quad i=1,2, \ldots, K
$$

can be grouped as

$$
\left\{\begin{array}{l}
T^{n_{1}}\left(U_{1}\right), \ldots, T^{n_{s_{1}}}\left(U_{s_{1}}\right) \\
T^{n_{s_{1}+1}}\left(U_{s_{1}+1}\right), \ldots, T^{n_{s_{2}}}\left(U_{s_{2}}\right), \\
\cdots \\
T^{n_{s_{m-1}+1}}\left(U_{s_{m-1}+1}\right), \ldots, T^{n_{s_{m}}}\left(U_{s_{m}}\right)
\end{array}\right.
$$

with $m \leq(\lfloor 2 \sqrt{d}\rfloor+1)^{d}$, such that the open sets in each group are mutually disjoint,
(3) for each $x \in \iota_{0}\left(\mathcal{W}_{H}\right)$ and each $c \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right) \cap \mathbb{Z}^{d}$ with $\operatorname{dist}\left(c, \partial \mathcal{W}_{H}\right)>N \sqrt{d}$, one has

$$
\frac{1}{N^{d}}\left|\left\{n \in\{0,1, \ldots, N-1\}^{d}: T^{c+n}(x) \in \bigcup_{i=1}^{K} T^{n_{i}}\left(U_{i}\right)\right\}\right|<\varepsilon .
$$

Proof. By Lemma 4.1(4) of [11] (see Lemma 3.2), one can choose $U^{\prime} \subseteq U$ and φ such that M is sufficiently large so that for a fixed $H>(L+\sqrt{d})^{2}$, if $(a,-s H) \in V(x, n)$ for some $a \in \mathbb{R}^{d}$, then

$$
B_{R_{1}+2 R_{0}+1+\frac{\sqrt{d}}{2}}\left(\frac{a}{s}+\left(1-\frac{1}{s}\right) n\right) \times\{-H\} \in V(x, n)
$$

and

$$
\begin{equation*}
\left\|\frac{a}{s}+\left(1-\frac{1}{s}\right) n-\left(a+\frac{(s-1) H}{s H+t}(n-a)\right)\right\| \leq \frac{4}{L+\sqrt{d}}<4, \tag{3.1}
\end{equation*}
$$

where $t=\frac{1}{\varphi\left(T^{n}(x)\right)}$, and $a+\frac{(s-1) H}{s H+t}(n-a)$ is the H-projective image of a.
For each $n \in \mathbb{Z}^{d}$, define

$$
U_{n}=\left\{x \in X: \operatorname{dist}\left(0, \partial W_{s H}(x, n)\right)<2 R_{0}, \operatorname{int} W_{s H}(x, n) \neq \varnothing\right\} .
$$

Note that U_{n} is open. For the same n, one also picks $h_{n} \in \mathbb{Z}^{d}$ such that

$$
\begin{equation*}
\left\|\left(1-\frac{1}{s}\right) n-h_{n}\right\| \leq \frac{\sqrt{d}}{2} . \tag{3.2}
\end{equation*}
$$

For each $x \in U_{n}$, there is $a \in \partial W_{s H}(x, n) \subseteq \mathbb{R}^{d}$ with

$$
\|a\|<2 R_{0}
$$

By the choice of M (hence H), one has

$$
\begin{equation*}
B_{R_{1}+2 R_{0}+1+\frac{\sqrt{d}}{2}}\left(\frac{a}{s}+\left(1-\frac{1}{s}\right) n\right) \subseteq W_{H}(x, n) \tag{3.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left\|h_{n}-\left(\frac{a}{s}+\left(1-\frac{1}{s}\right) n\right)\right\| \leq\left\|\frac{a}{s}\right\|+\left\|\left(1-\frac{1}{s}\right) n-h_{n}\right\|<2 R_{0}+\frac{\sqrt{d}}{2}, \tag{3.4}
\end{equation*}
$$

by (3.3), one has

$$
B_{R_{1}+1}\left(h_{n}\right) \subseteq W_{H}(x, n)
$$

which implies

$$
\begin{equation*}
B_{R_{1}}(0) \subset B_{R_{1}+1}(0) \subseteq-h_{n}+W_{H}(x, n)=W_{H}\left(T^{h_{n}}(x), n-h_{n}\right) \tag{3.5}
\end{equation*}
$$

In particular, $T^{h_{n}}(x) \in \iota_{R_{1}}\left(\mathcal{W}_{H}\right)$, which implies

$$
T^{h_{n}}\left(U_{n}\right) \subseteq \iota_{R_{1}}\left(\mathcal{W}_{H}\right)
$$

and this shows Property (1).
Note that by (3.1) and (3.4),

$$
\begin{equation*}
\left\|h_{n}-\left(a+\frac{(s-1) H}{s H+t}(n-a)\right)\right\|<2 R_{0}+4+\frac{\sqrt{d}}{2} . \tag{3.6}
\end{equation*}
$$

Since $a \in \partial W_{s H}(x, n)$, this implies that h_{n} is in the $\left(2 R_{0}+4+\frac{\sqrt{d}}{2}\right)$-neighbourhood of the the H-projective image of $\partial W_{s H}(x, n)$ (with respect to (n, t)).

On the other hand, if $x \in \beta_{R_{0}}\left(\mathcal{W}_{s H}\right)$, then $\operatorname{dist}\left(0, \partial W_{s H}(x, n)\right) \leq R_{0}$ for some $n \in \mathbb{Z}^{d}$ with $\operatorname{int}\left(W_{s H}(x, n)\right) \neq \varnothing$, which implies that $x \in U_{n}$. Therefore, $\left\{U_{n}: n \in \mathbb{Z}^{d}\right\}$ form an open cover of $\beta_{R_{0}}\left(\mathcal{W}_{s H}\right)$. Since $\beta_{R_{0}}\left(\mathcal{W}_{s H}\right)$ is a compact set, there is a finite subcover

$$
U_{n_{1}}, U_{n_{2}}, \ldots, U_{n_{K}}
$$

(In fact, $\left\{U_{n}:\|n\|<L+\sqrt{d}+2 R_{0}\right\}$ already covers $\beta_{R_{0}}\left(\mathcal{W}_{s H}\right)$ by (5) of Lemma 3.1.)
Assume that n_{i} and n_{j} satisfy

$$
T^{h_{n_{i}}}\left(U_{n_{i}}\right) \cap T^{h_{n_{j}}}\left(U_{n_{j}}\right) \neq \varnothing .
$$

Then there are $x_{i} \in U_{n_{i}}$ and $x_{j} \in U_{n_{j}}$ with

$$
T^{h_{n_{i}}}\left(x_{i}\right)=T^{h_{n_{j}}}\left(x_{j}\right)
$$

Since $x_{i} \in U_{n_{i}}$ and $x_{j} \in U_{n_{j}}$, by (3.5), one has that

$$
B_{R}(0) \subseteq W_{H}\left(T^{h_{n_{i}}}\left(x_{i}\right), n_{i}-h_{n_{i}}\right)
$$

and

$$
\begin{aligned}
B_{R}(0) & \subseteq W_{H}\left(T^{h_{n_{j}}}\left(x_{j}\right), n_{j}-h_{n_{j}}\right) \\
& =W_{H}\left(T^{h_{n_{i}}}\left(x_{i}\right), n_{j}-h_{n_{j}}\right)
\end{aligned}
$$

Therefore, $n_{i}-h_{n_{i}}=n_{j}-h_{n_{j}}$, and

$$
n_{i}-n_{j}=h_{n_{i}}-h_{n_{j}} .
$$

Together with (3.2), one has

$$
\begin{aligned}
\left\|n_{i}-n_{j}\right\| & =\left\|h_{n_{j}}-h_{n_{j}}\right\| \\
& \leq\left(1-\frac{1}{s}\right)\left\|n_{i}-n_{j}\right\|+\sqrt{d} \\
& <\frac{1}{2}\left\|n_{i}-n_{j}\right\|+\sqrt{d}
\end{aligned}
$$

and hence

$$
\left\|n_{i}-n_{j}\right\|<2 \sqrt{d}
$$

Note that the set \mathbb{Z}^{d} can be divided into $(\lfloor 2 \sqrt{d}\rfloor+1)^{d}$ groups $\left(\mathbb{Z}^{d}\right)_{1}, \ldots,\left(\mathbb{Z}^{d}\right)_{(\lfloor 2 \sqrt{d}\rfloor+1)^{d}}$ such that any pair of elements inside each group has distance at least $2 \sqrt{d}$, and therefore

$$
T^{h_{n}}\left(U_{n}\right) \cap T^{h_{n^{\prime}}}\left(U_{n^{\prime}}\right)=\varnothing, \quad n, n^{\prime} \in\left(\mathbb{Z}^{d}\right)_{m}, m=1, \ldots,(\lfloor 2 \sqrt{d}\rfloor+1)^{d}
$$

Then group $U_{n_{1}}, \ldots, U_{n_{K}}$ as

$$
\left\{U_{n_{i}}: i=1, \ldots, K, n_{i} \in\left(\mathbb{Z}^{d}\right)_{1}\right\}, \ldots,\left\{U_{n_{i}}: i=1, \ldots, K, n_{i} \in\left(\mathbb{Z}^{d}\right)_{(\lfloor 2 \sqrt{d}\rfloor+1)^{d}}\right\},
$$

and this shows Property (2).
Let $x \in \iota_{0}\left(\mathcal{W}_{H}\right)$ (so that $\mathcal{W}_{H}(x)_{0}$ is well defined). Write

$$
\mathcal{W}_{H}(x)_{0}=W_{H}(x, n(x))=V(x, n(x)) \cap\left(\mathbb{R}^{d} \times\{-H\}\right), \quad \text { where } n(x) \in \mathbb{Z}^{d}
$$

Assume there is $m \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right) \cap \mathbb{Z}^{d}$ such that

$$
\begin{equation*}
T^{m}(x) \in T^{h_{n_{k}}}\left(U_{n_{k}}\right) \tag{3.7}
\end{equation*}
$$

for some n_{k}.
Since $m \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right) \cap \mathbb{Z}^{d}$, one has that

$$
0 \in \operatorname{int}\left(-m+W_{H}(x, n(x))\right)=\operatorname{int} W_{H}\left(T^{m}(x), n(x)-m\right) .
$$

Hence $T^{m}(x) \in \iota_{0}\left(\mathcal{W}_{H}\right)$ and

$$
\begin{equation*}
\mathcal{W}_{H}\left(T^{m}(x)\right)_{0}=W_{H}\left(T^{m}(x), n(x)-m\right) . \tag{3.8}
\end{equation*}
$$

By the assumption (3.7), there is $x_{n_{k}} \in U_{n_{k}}$ such that

$$
T^{m}(x)=T^{h_{n_{k}}}\left(x_{n_{k}}\right) .
$$

Then, with (3.5), one has

$$
B_{R_{1}}(0) \subseteq W_{H}\left(T^{h_{n_{k}}}\left(x_{n_{k}}\right), n_{k}-h_{n_{k}}\right)=W_{H}\left(T^{m}(x), n_{k}-h_{n_{k}}\right),
$$

and therefore (with (3.8)),

$$
W_{H}\left(T^{m}(x), n(x)-m\right)=W_{H}\left(T^{h_{n_{k}}}\left(x_{n_{k}}\right), n_{k}-h_{n_{k}}\right)
$$

and

$$
V\left(T^{m}(x), n(x)-m\right)=V\left(T^{h_{n_{k}}}\left(x_{n_{k}}\right), n_{k}-h_{n_{k}}\right) .
$$

Hence, at the $-s H$ level, one also has

$$
\begin{equation*}
W_{s H}\left(T^{m}(x), n(x)-m\right)=W_{s H}\left(T^{h_{n_{k}}}\left(x_{n_{k}}\right), n_{k}-h_{n_{k}}\right)=-h_{n_{k}}+W_{s H}\left(x_{n_{k}}, n_{k}\right) \tag{3.9}
\end{equation*}
$$

By (3.6), $h_{n_{k}}$ is in the $\left(2 R_{0}+4+\sqrt{d} / 2\right)$-neighbourhood of the H-projective image of $\partial W_{s H}\left(x_{n_{k}}, n_{k}\right)$, and therefore 0 is in the $\left(2 R_{0}+4+\sqrt{d} / 2\right)$-neighbourhood of the H-projective image of

$$
-h_{n_{k}}+\partial W_{s H}\left(x_{n_{k}}, n_{k}\right)=W_{s H}\left(T^{h_{n_{k}}}\left(x_{n_{k}}\right), n_{k}-h_{n_{k}}\right)
$$

Thus, by $(\sqrt{3.9})$, the origin 0 is in the $\left(2 R_{0}+4+\sqrt{d} / 2\right)$-neighbourhood of the H-projective image of $\partial W_{s H}\left(T^{m}(x), n(x)-m\right)$, and hence m is in the $\left(2 R_{0}+4+\sqrt{d} / 2\right)$-neighbourhood of the H-projective image of $\partial W_{s H}(x, n(x))$, which is denoted by $\partial W_{s H}^{H}(x, n(x))$.

Therefore, for any $c \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right) \cap \mathbb{Z}^{d}$ with $\operatorname{dist}\left(c, \partial \mathcal{W}_{H}\right)>N \sqrt{d}$, since

$$
c+n \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right), \quad n \in\{0,1, \ldots, N-1\}^{d}
$$

one has

$$
\begin{aligned}
& \left\{n \in\{0,1, \ldots, N-1\}^{d}: T^{c+n}(x) \in \bigcup_{i=1}^{K} h_{i}\left(U_{i}\right)\right\} \\
\subseteq & \left\{n \in\{0,1, \ldots, N-1\}^{d}: \operatorname{dist}\left(c+n, \partial W_{s H}^{H}(x, n(x))\right)<2 R_{0}+4+\sqrt{d} / 2\right\} .
\end{aligned}
$$

Hence, by the choice of N and Lemma 3.4,

$$
\begin{aligned}
& \frac{1}{N^{d}}\left|\left\{n \in\{0,1, \ldots, N-1\}^{d}: T^{c+n}(x) \in \bigcup_{i=1}^{K} h_{i}\left(U_{i}\right)\right\}\right| \\
\leq & \frac{1}{N^{d}}\left|\left\{n \in c+\{0,1, \ldots, N-1\}^{d}: \operatorname{dist}\left(n, \partial W_{s H}^{H}(x, n(x))\right)<2 R_{0}+4+\sqrt{d} / 2\right\}\right| \\
< & \varepsilon
\end{aligned}
$$

This proves Property (3).

4. Two towers

4.1. Rokhlin towers. Let $x \mapsto \mathcal{W}(x)=\bigcup_{n \in \mathbb{Z}^{d}} W(x, n)$ be a map with $\mathcal{W}(x)$ a tiling of \mathbb{R}^{d} and $W(x, n)$ is the cell with label n. Assume that the map $x \mapsto \mathcal{W}(x)$ is continuous in the sense that for any $\varepsilon>0$ and any $W(x, n)$ with non-empty interior, if $y \in X$ is sufficiently close to x then the Hausdorff distance between $W(x, n)$ and $W(y, n)$ are smaller than ε. One also assumes that the map $x \mapsto \mathcal{W}(x)$ is equivariant in the sense that

$$
W\left(T^{-m}(x), n+m\right)=m+W(x, n), \quad x \in X, m, n \in \mathbb{Z}^{d} .
$$

The tiling functions \mathcal{W}_{H} and $\mathcal{W}_{s H}$ constructed in the previous section clearly satisfy the assumptions above. With a such tiling function, one actually can build a Rokhlin tower as the following:

Let $N \in \mathbb{N}$ be arbitrary. Put
$\Omega=\left\{x \in X: \operatorname{dist}(0, \partial \mathcal{W}(x))>N \sqrt{d}\right.$ and $\mathcal{W}(x)_{0}=W(x, n)$ for some $\left.n=0 \bmod N\right\}$,
where by $n=0 \bmod N$, one means $n_{i}=0 \bmod N, i=1,2, \ldots, d$, if $n=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$. Note that Ω is open.

Let $m \in\{0,1, \ldots, N-1\}^{d}$. Pick arbitrary $x \in \Omega$ and consider $T^{-m}(x)$. Note that $0 \in$ $W(x, n)$ for some $n=0 \bmod N$ and $\operatorname{dist}(0, \partial W(x, n))>N \sqrt{d}$. Since

$$
W\left(T^{-m}(x), n+m\right)=m+W(x, n)
$$

one has that

$$
0 \in \operatorname{int} W\left(T^{-m}(x), n+m\right) \quad \text { and } \quad n+m=m \quad \bmod N .
$$

Hence

$$
\begin{equation*}
T^{-m}(\Omega) \subseteq \Omega_{m}^{\prime} \tag{4.1}
\end{equation*}
$$

where

$$
\Omega_{m}^{\prime}:=\left\{x \in X: 0 \notin \partial \mathcal{W}(x) \text { and } \mathcal{W}(x)_{0}=W(x, n), n=m \quad \bmod N\right\} .
$$

For the same reason, if one defines

$$
\Omega_{m}^{\prime \prime}:=\left\{x \in X: \operatorname{dist}(0, \partial \mathcal{W}(x))>2 N \sqrt{d} \text { and } \mathcal{W}(x)_{0}=W(x, n), n=m \quad \bmod N\right\},
$$

then

$$
\begin{equation*}
\Omega_{m}^{\prime \prime} \subseteq T^{-m}(\Omega) \tag{4.2}
\end{equation*}
$$

Since the sets

$$
\Omega_{m}^{\prime}, \quad m \in\{0,1, \ldots, N-1\}^{d}
$$

are mutually disjoint, it follows from (4.1) that

$$
T^{-m}(\Omega), \quad m \in\{0,1, \ldots, N-1\}^{d}
$$

are mutually disjoint. That is, it forms a Rokhlin tower for $\left(X, T, \mathbb{Z}^{d}\right)$.
On the other hand, by (4.2) and the construction of $\Omega_{m}^{\prime \prime}$, one has

$$
\begin{equation*}
\bigsqcup_{m \in\{0,1, \ldots, N-1\}^{d}} T^{-m}(\Omega) \supseteq \bigsqcup_{m \in\{0,1, \ldots, N-1\}^{d}} \Omega_{m}^{\prime \prime}=\{x \in X: \operatorname{dist}(0, \partial \mathcal{W}(x))>2 N \sqrt{d}\} . \tag{4.3}
\end{equation*}
$$

In particular, one has

$$
\begin{equation*}
\operatorname{ocap}\left(X \backslash \underset{m \in\{0,1, \ldots, N-1\}^{d}}{\bigsqcup} T^{-m}(\Omega)\right) \leq \operatorname{ocap}(\{x \in X: \operatorname{dist}(0, \partial \mathcal{W}(x)) \leq 2 N \sqrt{d}\}) \tag{4.4}
\end{equation*}
$$

Lemma 4.1. For any $E>0$, one has

$$
\operatorname{ocap}(\{x \in X: \operatorname{dist}(0, \partial \mathcal{W}(x)) \leq E\}) \leq \limsup _{R \rightarrow \infty} \frac{1}{\operatorname{vol}\left(B_{R}\right)} \sup _{x \in X} \operatorname{vol}\left(\partial_{E} \mathcal{W}(x) \cap B_{R}\right),
$$

where $\partial_{E} \mathcal{W}(x)=\left\{\xi \in \mathbb{R}^{d}: \operatorname{dist}(\xi, \partial W(x)) \leq E\right\}$.
Proof. Pick an arbitrary $x \in X$ and an arbitrary positive number R, and consider the partial orbit

$$
T^{m}(x), \quad\|m\|<R .
$$

Note that if $\operatorname{dist}\left(0, \partial \mathcal{W}\left(T^{m}(x)\right)\right) \leq E$ (i.e., $\left.0 \in \partial_{E} \mathcal{W}\left(T^{m}(x)\right)\right)$ for some m, then

$$
-m \in \partial_{E} \mathcal{W}(x) .
$$

Therefore

$$
\left\{\|m\|<R: 0 \in \partial_{E} \mathcal{W}\left(T^{m}(x)\right)\right\} \subseteq\left\{\|m\|<R: m \in \partial_{E} \mathcal{W}(x)\right\}
$$

As $N \rightarrow \infty$, one has

$$
\begin{aligned}
& \frac{1}{\left|B_{R} \cap \mathbb{Z}^{d}\right|}\left|\left\{\|m\|<R: 0 \in \partial_{E} \mathcal{W}\left(T^{m}(x)\right)\right\}\right| \\
\leq & \frac{1}{\left|B_{R} \cap \mathbb{Z}^{d}\right|}\left|\left\{\|m\|<R: m \in \partial_{E} \mathcal{W}(x)\right\}\right| \\
\approx & \frac{1}{\operatorname{vol}\left(B_{R}\right)} \operatorname{vol}\left(\partial_{E} \mathcal{W}(x) \cap B_{R}\right), \quad \text { (if } R \text { is sufficiently large). }
\end{aligned}
$$

Hence
$\limsup _{R \rightarrow \infty} \frac{1}{\left|B_{R} \cap \mathbb{Z}^{d}\right|}\left|\left\{|m|<R: 0 \in \partial_{E} \mathcal{W}\left(T^{m}(x)\right)\right\}\right| \leq \limsup _{R \rightarrow \infty} \frac{1}{\operatorname{vol}\left(B_{R}\right)} \sup _{x \in X} \operatorname{vol}\left(\partial_{E} \mathcal{W}(x) \cap B_{R}\right)$.

Since x is arbitrary, this proves the desired conclusion.
Theorem 4.2. Consider the minimal free dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$. Then, for any $\varepsilon>0$ and $N \in \mathbb{N}$, there is an open set $\Omega \subseteq X$ such that

$$
T^{-n}(\Omega), \quad n \in\{0,1, \ldots, N-1\}^{d}
$$

are mutually disjoint (hence form a Rokhlin tower), and

$$
\operatorname{ocap}\left(X \backslash \bigcup_{n \in\{0,1, \ldots, N-1\}^{d}} T^{-n}(\Omega)\right)<\varepsilon
$$

In other words, the system $\left(X, T, \mathbb{Z}^{d}\right)$ has the Uniform Rohklin Property (see Definition 1.1 and Lemma 3.2 of [24]).

Proof. By Lemma 4.2 of [11], there is an equivariant \mathbb{R}^{d}-tiling $x \mapsto \mathcal{W}(x)$ such that

$$
\limsup _{R \rightarrow \infty} \frac{1}{\operatorname{vol}\left(B_{R}\right)} \sup _{x \in X} \operatorname{vol}\left(\partial_{2 N \sqrt{d}} \mathcal{W}(x) \cap B_{R}\right)<\varepsilon
$$

Then, the statement follows from (4.4) and Lemma 4.1 (with $E=2 N \sqrt{d}$).
4.2. The two towers. The Rokhlin tower constructed above in general cannot cover the whole space X. Consider the two continuous tiling functions $\mathcal{W}_{s H}$ and \mathcal{W}_{H}, and consider the Rokhlin towers \mathcal{T}_{0} and \mathcal{T}_{1} constructed from them respectively. It is still possible that \mathcal{T}_{0} together with \mathcal{T}_{1} do not cover the whole space X. However, in the following theorem, one can show that the complement of the tower \mathcal{T}_{0} can be cut into pieces and then each piece can be translated into the tower \mathcal{T}_{1} in a way that the order of the overlaps of the translations are universally bounded, and the intersection of the translations with each \mathcal{T}_{1}-orbit is uniformly small. This eventually leads to a Cuntz comparison of open sets for minimal free \mathbb{Z}^{d}-actions (Theorem 5.5).

Theorem 4.3. Consider a minimal free dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$. Let $N \in \mathbb{N}$ and $\varepsilon>0$ be arbitrary. There exist two Rokhlin towers
$\mathcal{T}_{0}:=\left\{T^{-m}\left(\Omega_{0}\right): m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}\right\} \quad$ and $\quad \mathcal{T}_{1}:=\left\{T^{-m}\left(\Omega_{1}\right): m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}\right\}$, with $N_{0}, N_{1} \geq N$ and $\Omega_{0}, \Omega_{1} \subseteq X$ open, an open cover $\left\{U_{1}, U_{2}, \ldots, U_{K}\right\}$ of $X \backslash \bigcup_{m} T^{-m}\left(\Omega_{0}\right)$, and $h_{1}, h_{2}, \ldots, h_{K} \in \mathbb{Z}^{d}$ such that
(1) $T^{h_{k}}\left(U_{k}\right) \subseteq \bigcup_{m} T^{-m}\left(\Omega_{1}\right), k=1,2, \ldots, K$;
(2) the open sets

$$
T^{h_{k}}\left(U_{k}\right), \quad k=1,2, \ldots, K
$$

can be grouped as

$$
\left\{\begin{array}{l}
T^{h_{1}}\left(U_{1}\right), \ldots, T^{h_{s_{1}}}\left(U_{s_{1}}\right) \\
T^{h_{s_{1}+1}}\left(U_{s_{1}+1}\right), \ldots, T^{h_{s_{2}}}\left(U_{s_{2}}\right), \\
\cdots \\
T^{h_{s_{m-1}+1}}\left(U_{s_{m-1}+1}\right), \ldots, T^{h_{s_{m}}}\left(U_{s_{m}}\right)
\end{array}\right.
$$

for some $m \leq(\lfloor 2 \sqrt{d}\rfloor+1)^{d}$, such that the open sets in each group are mutually disjoint;
(3) for each $x \in \Omega_{1}$, one has

$$
\frac{1}{N_{1}^{d}}\left|\left\{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: T^{m}(x) \in \bigcup_{k=1}^{K} T^{n_{k}}\left(U_{k}\right)\right\}\right|<\varepsilon .
$$

Proof. Applying Lemma 3.6 with $R_{0}=2 N \sqrt{d}, \varepsilon$, and some $s \in(1,2)$, together with some $N_{1}>\max \left\{N\left(R_{0}, \varepsilon\right), N\right\}$ (in place of N) and $R_{1}>\max \left\{R_{0}, 2 N_{1} \sqrt{d}\right\}$, where $N\left(R_{0}, \varepsilon\right)$ is the constant of Lemma 3.4 with respect to ε and $2 R_{0}+4+\sqrt{d} / 2$, there are two continuous equivariant \mathbb{R}^{d}-tilings $\mathcal{W}_{s H}$ and \mathcal{W}_{H} for some (sufficiently large) $H>0$, a finite open cover

$$
U_{1} \cup U_{2} \cup \cdots \cup U_{K} \supseteq \beta_{R_{0}}\left(\mathcal{W}_{s H}\right)
$$

and $n_{1}, n_{2}, \ldots, n_{K} \in \mathbb{Z}^{d}$ such that
(1) $T^{n_{i}}\left(U_{i}\right) \subseteq \iota_{R_{1}}\left(\mathcal{W}_{H}\right) \subseteq \iota_{0}\left(\mathcal{W}_{H}\right), i=1,2, \ldots, K$;
(2) the open sets

$$
T^{n_{i}}\left(U_{i}\right), \quad i=1,2, \ldots, K
$$

can be grouped as

$$
\left\{\begin{array}{l}
T^{n_{1}}\left(U_{1}\right), \ldots, T^{n_{s_{1}}}\left(U_{s_{1}}\right) \\
T^{n_{s_{1}+1}}\left(U_{s_{1}+1}\right), \ldots, T^{n_{s_{2}}}\left(U_{s_{2}}\right), \\
\cdots \\
T^{n_{s_{m-1}+1}}\left(U_{s_{m-1}+1}\right), \ldots, T^{n_{s_{m}}}\left(U_{s_{m}}\right),
\end{array}\right.
$$

with $m \leq(\lfloor 2 \sqrt{d}\rfloor+1)^{d}$, such that the open sets in each group are mutually disjoint;
(3) for each $x \in \iota_{0}\left(\mathcal{W}_{H}\right)$ and each $c \in \operatorname{int}\left(\mathcal{W}_{H}(x)_{0}\right) \cap \mathbb{Z}^{d}$ with $\operatorname{dist}\left(c, \partial \mathcal{W}_{H}\right)>N_{1} \sqrt{d}$, one has

$$
\frac{1}{N_{1}^{d}}\left|\left\{n \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: T^{c+n}(x) \in \bigcup_{i=1}^{K} T^{n_{i}}\left(U_{i}\right)\right\}\right|<\varepsilon .
$$

Put

$$
\Omega_{0}=\left\{x \in X: \operatorname{dist}\left(0, \partial \mathcal{W}_{s H}(x)\right)>N \sqrt{d} \text { and } \mathcal{W}_{s H}(x)_{0}=W_{s H}(x, n), n=0 \quad \bmod N\right\} .
$$

Then

$$
T^{-m}\left(\Omega_{0}\right), \quad m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}
$$

form a Rokhlin tower with $N_{0}=N$, and by (4.3)

$$
\begin{equation*}
X \backslash \bigsqcup_{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}} T^{-m}\left(\Omega_{0}\right) \subseteq\left\{x \in X: \operatorname{dist}\left(0, \partial \mathcal{W}_{s H}(x)\right) \leq 2 N \sqrt{d}\right\}=\beta_{2 N \sqrt{d}}\left(\mathcal{W}_{s H}\right) \tag{4.5}
\end{equation*}
$$

Thus, $U_{1}, U_{2}, \ldots, U_{K}$ form an open cover of $X \backslash \bigsqcup_{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}} T^{-m}\left(\Omega_{0}\right)$.
Put

$$
\Omega_{1}=\left\{x \in X: \operatorname{dist}\left(0, \partial \mathcal{W}_{H}(x)\right)>N_{1} \sqrt{d} \text { and } \mathcal{W}_{H}(x)_{0}=W_{H}(x, n), n=0 \quad \bmod N_{1}\right\} .
$$

Then

$$
T^{-m}\left(\Omega_{1}\right), \quad m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}
$$

form a Rokhlin tower, and by (4.3) (and the assumption that $R_{1}>2 N_{1} \sqrt{d}$),

$$
\begin{equation*}
\bigsqcup_{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}} T^{-m}\left(\Omega_{1}\right) \supseteq\left\{x \in X: \operatorname{dist}\left(0, \partial \mathcal{W}_{H}\right)>2 N_{1} \sqrt{d}\right\} \supseteq \iota_{R_{1}}\left(\mathcal{W}_{H}\right) \tag{4.6}
\end{equation*}
$$

Thus, $T^{-h_{i}}\left(U_{i}\right) \subseteq \bigsqcup_{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}} T^{-m}\left(\Omega_{1}\right)$.
If $x \in \Omega_{1}$ (hence $x \in \iota_{0}\left(\mathcal{W}_{H}\right)$ and $\left.\operatorname{dist}\left(0, \partial \mathcal{W}_{H}\right)>N_{1} \sqrt{d}\right)$, it then follows from (3) (with $c=0$) that

$$
\frac{1}{N_{1}^{d}}\left|\left\{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: T^{m}(x) \in \bigcup_{k=1}^{K} T^{n_{k}}\left(U_{k}\right)\right\}\right|<\varepsilon
$$

as desired.

5. Cuntz comparison of open sets, comparison radius, and the mean TOPOLOGICAL DIMENSION

With the two-tower construction in the previous section, one is able to show that the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ has Cuntz-comparison on open sets (Theorem 5.5), and therefore the radius of comparison of $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is at most half of the mean dimension of $\left(X, T, \mathbb{Z}^{d}\right)$.

As a preparation, one has the following two very simple observations on the Cuntz semigroup of a C^{*}-algebra.
Lemma 5.1. Let A be a C^{*}-algebra, and let $a_{1}, a_{2}, \ldots, a_{m} \in A$ be positive elements. Then

$$
\left[a_{1}\right]+\left[a_{2}\right]+\cdots+\left[a_{m}\right] \leq m\left[a_{1}+a_{2}+\cdots+a_{m}\right]
$$

Proof. The lemma follows from the observation:

$$
\left(\begin{array}{cccc}
a_{1} & & & \\
& a_{2} & & \\
& & \ddots & \\
& & & a_{m}
\end{array}\right) \leq\left(\begin{array}{cccc}
a_{1}+\cdots+a_{m} & & & \\
& a_{1}+\cdots+a_{m} & & \\
& & \ddots & \\
& & & a_{1}+\cdots+a_{m}
\end{array}\right)
$$

Lemma 5.2. Let $U_{1}, U_{2}, \ldots, U_{K} \subseteq X$ be open sets which can be divided into M groups such that each group consists of mutually disjoint sets. Then

$$
\left[\varphi_{U_{1}}\right]+\cdots+\left[\varphi_{U_{K}}\right] \leq M\left[\varphi_{U_{1} \cup \cdots \cup U_{K}}\right]=M\left[\varphi_{U_{1}}+\cdots+\varphi_{U_{K}}\right]
$$

Proof. Write $U_{1}, U_{2}, \ldots, U_{K}$ as

$$
\left\{U_{1}, \ldots, U_{s_{1}}\right\},\left\{U_{s_{1}+1}, \ldots, U_{s_{2}}\right\}, \ldots,\left\{U_{s_{m-1}+1}, \ldots, U_{s_{M}}\right\}
$$

such that the open sets in each group are mutually disjoint. Then

$$
\left[\varphi_{U_{s_{i}+1}}\right]+\cdots+\left[\varphi_{U_{s_{i+1}}}\right]=\left[\varphi_{U_{s_{i}+1}}+\cdots+\varphi_{U_{s_{i+1}}}\right]=\left[\varphi_{U_{s_{i}+1} \cup \cdots \cup U_{s_{i+1}}}\right], \quad i=0,1, \ldots, M-1,
$$

and together with the lemma above, one has

$$
\begin{aligned}
{\left[\varphi_{U_{1}}\right]+\cdots+\left[\varphi_{U_{K}}\right] } & =\left[\varphi_{U_{1}}+\cdots+\varphi_{U_{s_{1}}}\right]+\cdots+\left[\varphi_{U_{s_{m-1}+1}}+\cdots+\varphi_{U_{s_{M}}}\right] \\
& =\left[\varphi_{U_{1} \cup \cdots \cup U_{s_{1}}}\right]+\cdots+\left[\varphi_{U_{s_{m-1}+1} \cup \cdots \cup U_{s_{M}}}\right] \\
& \leq M\left[\varphi_{U_{1} \cup \cdots \cup U_{K}}\right]
\end{aligned}
$$

as desired.
Definition 5.3. Consider a topological dynamical system (X, Γ), where X is a compact metrizable space and Γ is a discrete group acting on X from the right, and consider a Rokhlin tower

$$
\mathcal{T}=\left\{\Omega \gamma, \gamma \in \Gamma_{0}\right\}
$$

where $\Omega \subseteq X$ is open and $\Gamma_{0} \subseteq \Gamma$ is a finite set containing the unit e of the discrete group Γ. Define the C^{*}-algebra

$$
\mathrm{C}^{*}(\mathcal{T}):=\mathrm{C}^{*}\left\{u_{\gamma} \mathrm{C}_{0}(\Omega), \gamma \in \Gamma_{0}\right\} \subseteq \mathrm{C}(X) \rtimes \Gamma .
$$

By Lemma 3.11 of [24], it is canonically isomorphic to $\mathrm{M}_{\left|\Gamma_{0}\right|}\left(\mathrm{C}_{0}(\Omega)\right)$, and

$$
\left.\mathrm{C}_{0}\left(\bigcup_{\gamma \in \Gamma_{0}} \Omega \gamma\right) \ni \phi \mapsto \operatorname{diag}\left\{\left.\phi\right|_{\Omega \gamma_{1}},\left.\phi\right|_{\Omega \gamma_{2}}, \ldots,\left.\phi\right|_{\Omega \gamma_{\left|\Gamma_{0}\right|}}\right\} \in \mathrm{M}_{\left|\Gamma_{0}\right|}\left(\mathrm{C}_{0}(\Omega)\right)\right\}
$$

under this isomorphism.
The following comparison result essentially is a special case of Theorem 7.8 of [24].
Lemma 5.4 (Theorem 7.8 of [24]). Let Z be a locally compact metrizable space, and consider $\mathrm{M}_{n}\left(\mathrm{C}_{0}(Z)\right)$. Let $a, b \in \mathrm{M}_{n}\left(\mathrm{C}_{0}(Z)\right)$ be two positive diagonal elements, i.e.,

$$
a(t)=\operatorname{diag}\left\{a_{1}(t), a_{2}(t), \ldots, a_{n}(t)\right\} \quad \text { and } \quad b(t)=\operatorname{diag}\left\{b_{1}(t), b_{2}(t), \ldots, b_{n}(t)\right\}
$$

for some positive continuous functions $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}: Z \rightarrow \mathbb{R}$. If

$$
\operatorname{rank}(a(t)) \leq \frac{1}{4} \operatorname{rank}(b(t)), \quad t \in Z
$$

and

$$
4<\operatorname{rank}(b(t)), \quad t \in Z
$$

then $a \precsim b$ in $\mathrm{M}_{n}\left(\mathrm{C}_{0}(Z)\right)$.
Proof. It is enough to show that $(a-\varepsilon)_{+} \precsim b$ for arbitrary $\varepsilon>0$. For a given $\varepsilon>0$, there is a compact subset $D \subseteq Z$ such that $(a-\varepsilon)_{+}$is supported inside D. Denote by $\pi: \mathrm{M}_{n}\left(\mathrm{C}_{0}(Z)\right) \rightarrow \mathrm{M}_{n}(\mathrm{C}(D))$ the restriction map. One then has

$$
\operatorname{rank}\left(\pi\left((a-\varepsilon)_{+}\right)(t)\right) \leq \frac{1}{4} \operatorname{rank}(\pi(b)(t)), \quad t \in D
$$

and

$$
\frac{1}{n}<\frac{1}{4 n} \operatorname{rank}(b(t)), \quad t \in D
$$

By Theorem 7.8 of [24], one has that $\pi\left((a-\varepsilon)_{+}\right) \precsim \pi(b)$ in $\mathrm{M}_{n}(\mathrm{C}(D))$, that is, there is a sequence $\left(v_{k}\right) \subseteq \mathrm{M}_{n}(\mathrm{C}(D))$ such that $v_{k}(\pi(b)) v_{k}^{*} \rightarrow \pi\left((a-\varepsilon)_{+}\right)$as $k \rightarrow \infty$. Extend each v_{k} to a function in $\mathrm{M}_{n}\left(\mathrm{C}_{0}(Z)\right)$, and still denote it by v_{k}. It is clear that the new sequence $\left(v_{k}\right)$ satisfies $v_{k} b v_{k}^{*} \rightarrow(a-\varepsilon)_{+}$as $k \rightarrow \infty$, and hence $(a-\varepsilon)_{+} \precsim b$, as desired.

Theorem 5.5. Let $\left(X, T, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system, and let $E, F \subseteq X$ be open sets such that

$$
\mu(E) \leq \frac{1}{4} \nu(F), \quad \mu \in \mathcal{M}_{1}\left(X, T, \mathbb{Z}^{d}\right)
$$

Then,

$$
\left[\varphi_{E}\right] \leq\left((2\lfloor\sqrt{d}\rfloor+1)^{d}+1\right)\left[\varphi_{F}\right]
$$

in the Cuntz semigroup of $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$. In other words, the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ has $\left(\frac{1}{4},(2\lfloor\sqrt{d}\rfloor+1)^{d}+1\right)$-Cuntz-comparison on open sets (see Definition 1.1).

Proof. Let E and F be open sets satisfying the condition of the theorem. Let $\varepsilon>0$ be arbitrary. In order to prove the statement of the theorem, it is enough to show that

$$
\left(\varphi_{E}-\varepsilon\right)_{+} \precsim \underbrace{\varphi_{F} \oplus \cdots \oplus \varphi_{F}}_{(2\lfloor\sqrt{d}\rfloor+1)^{d}+1} .
$$

For the given ε, pick a compact set $E^{\prime} \subseteq E$ such that

$$
\begin{equation*}
\left(\varphi_{E}-\varepsilon\right)_{+}(x)=0, \quad x \notin E^{\prime} . \tag{5.1}
\end{equation*}
$$

By the assumption of the theorem, one has that

$$
\begin{equation*}
\mu\left(E^{\prime}\right)<\frac{1}{4} \mu(F), \quad \mu \in \mathcal{M}_{1}\left(X, T, \mathbb{Z}^{n}\right) \tag{5.2}
\end{equation*}
$$

and then there is $N \in \mathbb{N}$ such that for any $M>N$ and any $x \in X$,

$$
\begin{equation*}
\frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}: T^{-m}(x) \in E^{\prime}\right\}<\frac{1}{4} \frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}: T^{-m}(x) \in F\right\} . \tag{5.3}
\end{equation*}
$$

Otherwise, there are sequences $N_{k} \in \mathbb{N}, x_{k} \in X, k=1,2, \ldots$, such that $N_{k} \rightarrow \infty$ as $k \rightarrow \infty$, and for any k,
$\frac{1}{N_{k}^{d}}\left\{m \in\left\{0,1, \ldots, N_{k}-1\right\}^{d}: T^{-m}\left(x_{k}\right) \in E^{\prime}\right\} \geq \frac{1}{4} \frac{1}{N_{k}^{d}}\left\{m \in\left\{0,1, \ldots, N_{k}-1\right\}^{d}: T^{-m}\left(x_{k}\right) \in F\right\}$.
That is

$$
\begin{equation*}
4 \delta_{N_{k}, x_{k}}\left(E^{\prime}\right) \geq \delta_{N_{k}, x_{k}}(F), \quad k=1,2, \ldots \tag{5.4}
\end{equation*}
$$

where $\delta_{N_{k}, x_{k}}=\frac{1}{N_{k}^{d}} \sum_{m \in\left\{0,1, \ldots, N_{k}-1\right\}^{d}} \delta_{T^{-m}\left(x_{k}\right)}$ and δ_{y} is the Diract measure concentrated at y. Let δ_{∞} be a limit point of $\left\{\delta_{N_{k}, x_{k}}, k=1,2, \ldots\right\}$ and it is clear that $\delta_{\infty} \in \mathcal{M}_{1}\left(X, T, \mathbb{Z}^{d}\right)$. Passing to a subsequence of k, one has

$$
\begin{array}{rlr}
\delta_{\infty}(F) & \leq \liminf _{k \rightarrow \infty} \delta_{N_{k}, x_{k}}(F) \quad(F \text { is open }) \\
& \leq 4 \liminf _{k \rightarrow \infty} \delta_{N_{k}, x_{k}}\left(E^{\prime}\right) \quad(\text { by }(5.4)) \\
& \leq 4 \limsup _{k \rightarrow \infty} \delta_{N_{k}, x_{k}}\left(E^{\prime}\right) \\
& \leq 4 \delta_{\infty}\left(E^{\prime}\right), \quad\left(E^{\prime} \text { is closed }\right)
\end{array}
$$

which contradicts to (5.2).

With (5.1) and (5.3), one has that for any $M>N$ and any $x \in X$,

$$
\begin{align*}
& \frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}:\left(\varphi_{E}-\varepsilon\right)_{+}\left(T^{-m}(x)\right)>0\right\} \tag{5.5}\\
\leq & \frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}: T^{-m}(x) \in E^{\prime}\right\} \\
< & \frac{1}{4} \frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}: T^{-m}(x) \in F\right\} \\
= & \frac{1}{4} \frac{1}{M^{d}}\left\{m \in\{0,1, \ldots, M-1\}^{d}: \varphi_{F}\left(T^{-m}(x)\right)>0\right\} .
\end{align*}
$$

Also note that since $\left(X, T, \mathbb{Z}^{d}\right)$ is minimal, there is $\delta>0$ such that for any $M>N$,

$$
\begin{equation*}
\frac{1}{4 M^{d}}\left|\left\{m \in\{0,1, \ldots, M-1\}^{d}: \varphi_{F}\left(T^{-m}(x)\right)>0\right\}\right|>\delta, \quad x \in X \tag{5.6}
\end{equation*}
$$

Let

$$
\mathcal{T}_{0}=\left\{T^{-m}\left(\Omega_{0}\right), \quad m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}\right\}
$$

and

$$
\mathcal{T}_{1}=\left\{T^{-m}\left(\Omega_{1}\right), \quad m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}\right\}
$$

be the two towers obtained from Theorem 4.3 with respect to $\max \left\{N, \sqrt[d]{\frac{1}{\delta}}\right\}$ and δ. Denote by $U_{1}, U_{2}, \ldots, U_{K}$ and $n_{1}, n_{2}, \ldots, n_{K} \in \mathbb{Z}^{d}$ be the open sets and group elements, respectively, obtained from Theorem4.3,

Pick $\chi_{0} \in \mathrm{C}(X)^{+}$such that

$$
\begin{cases}\chi_{0}(x)=1, & x \notin \bigcup_{k=1}^{K} U_{k}, \tag{5.7}\\ \chi_{0}(x)>0, & x \in \bigsqcup_{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}} T^{-m}\left(\Omega_{0}\right), \\ \chi_{0}(x)=0, & x \notin \bigsqcup_{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}} T^{-m}\left(\Omega_{0}\right)\end{cases}
$$

Note that then $\left(1-\chi_{0}\right)$ is supported in $U_{1} \cup U_{2} \cup \cdots \cup U_{K}$. Consider

$$
\left(\varphi_{E}-\varepsilon\right)_{+}=\left(\varphi_{E}-\varepsilon\right)_{+}\left(1-\chi_{0}\right)+\left(\varphi_{E}-\varepsilon\right)_{+} \chi_{0} .
$$

Then, for any $x \in \Omega_{0}$, it follows from (5.5) and (5.7) that

$$
\begin{aligned}
& \left|\left\{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}:\left(\left(\varphi_{E}-\varepsilon\right)_{+} \chi_{0}\right)\left(T^{-m}(x)\right)>0\right\}\right| \\
= & \left|\left\{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}:\left(\varphi_{E}-\varepsilon\right)_{+}\left(T^{-m}(x)\right)>0\right\}\right| \\
< & \frac{1}{4}\left|\left\{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}: \varphi_{F}\left(T^{-m}(x)\right)>0\right\}\right| \\
= & \frac{1}{4}\left|\left\{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}:\left(\varphi_{F} \chi_{0}\right)\left(T^{-m}(x)\right)>0\right\}\right| .
\end{aligned}
$$

Therefore, under the isomorphism $\mathrm{C}^{*}\left(\mathcal{T}_{0}\right) \cong \mathrm{M}_{N_{0}^{d}}\left(\mathrm{C}_{0}\left(\Omega_{0}\right)\right)$, one has

$$
\operatorname{rank}\left(\left(\left(\varphi_{E}-\varepsilon\right)+\chi_{0}\right)(x)\right) \leq \frac{1}{4} \operatorname{rank}\left(\left(\varphi_{F} \chi_{0}\right)(x)\right), \quad x \in \Omega_{0} .
$$

Moreover, it follows from (5.6) and the fact that $N_{0}>\sqrt[d]{\frac{1}{\delta}}$ that for any $x \in \Omega_{0}$,

$$
\frac{1}{4 N_{0}^{d}} \operatorname{rank}\left(\left(\varphi_{F} \chi_{0}\right)(x)\right)=\frac{1}{4 N_{0}^{d}}\left|\left\{m \in\left\{0,1, \ldots, N_{0}-1\right\}^{d}: \varphi_{F}\left(T^{-m}(x)\right)>0\right\}\right|>\delta>\frac{1}{N_{0}^{d}}
$$

Thus, by Lemma 5.4, one has that

$$
\begin{equation*}
\left(\varphi_{E}-\varepsilon\right)_{+} \chi_{0} \precsim \varphi_{F} \chi_{0} \precsim \varphi_{F} . \tag{5.8}
\end{equation*}
$$

Consider $\left(\varphi_{E}-\varepsilon\right)_{+}\left(1-\chi_{0}\right)$. Since $\left(1-\chi_{0}\right)$ is supported in $U_{1} \cup U_{2} \cup \cdots \cup U_{K}$, one has that

$$
\left(\varphi_{E}-\varepsilon\right)_{+}\left(1-\chi_{0}\right) \precsim\left(1-\chi_{0}\right) \precsim \varphi_{U_{1} \cup \cdots \cup U_{K}} \sim \varphi_{U_{1}}+\cdots+\varphi_{U_{K}} \precsim \varphi_{U_{1}} \oplus \cdots \oplus \varphi_{U_{K}} .
$$

On the other hand, by Lemma 5.2,

$$
\varphi_{T^{n_{1}}\left(U_{1}\right)} \oplus \cdots \oplus \varphi_{T^{n_{K}}\left(U_{K}\right)} \precsim \bigoplus_{(2\lfloor\sqrt{d}\rfloor+1)^{d}}\left(\varphi_{T^{n_{1}}\left(U_{1}\right)}+\cdots+\varphi_{T^{n_{K}}\left(U_{K}\right)}\right) .
$$

Note that $\varphi_{U_{i}} \sim \varphi_{T^{n_{i}}\left(U_{i}\right)}, i=1,2, \ldots, K$, and one has

$$
\begin{equation*}
\left(\varphi_{E}-\varepsilon\right)_{+}\left(1-\chi_{0}\right) \precsim \bigoplus_{(2\lfloor\sqrt{d}\rfloor+1)^{d}}\left(\varphi_{T^{n_{1}}\left(U_{1}\right) \cup \cdots \cup T^{n_{K}}\left(U_{K}\right)}\right) . \tag{5.9}
\end{equation*}
$$

By Theorem 4.3,

$$
\begin{equation*}
\frac{1}{N_{1}^{d}}\left|\left\{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: T^{-m}(x) \in \bigcup_{k=1}^{K} T^{n_{k}}\left(U_{k}\right)\right\}\right|<\delta, \quad x \in \Omega_{1} \tag{5.10}
\end{equation*}
$$

Let $\chi_{1}: X \rightarrow[0,1]$ be a continuous function such that

$$
\begin{cases}\chi_{1}(x)>0, & x \in \bigsqcup_{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}} T^{-m}\left(\Omega_{1}\right) \\ \chi_{1}(x)=0, & x \notin \bigsqcup_{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}} T^{-m}\left(\Omega_{1}\right)\end{cases}
$$

Then
$\frac{1}{4 N_{1}^{d}} \operatorname{rank}\left(\left(\varphi_{F} \chi_{1}\right)(x)\right)=\frac{1}{4 N_{1}^{d}}\left|\left\{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: \varphi_{F}\left(T^{-m}(x)\right)>0\right\}\right|>\delta>\frac{1}{N_{1}^{d}}, \quad x \in \Omega_{1}$, and hence, for any $x \in \Omega_{1}$, with (5.10, one has

$$
\begin{aligned}
\operatorname{rank}\left(\varphi_{T^{n_{1}}\left(U_{1}\right) \cup \ldots \cup T^{n_{K}}\left(U_{K}\right)}(x)\right) & =\left|\left\{m \in\left\{0,1, \ldots, N_{1}-1\right\}^{d}: T^{-m}(x) \in \bigcup_{k=1}^{K} T^{n_{k}}\left(U_{k}\right)\right\}\right| \\
& <N_{1}^{d} \delta<\frac{1}{4} \operatorname{rank}\left(\left(\varphi_{F} \chi_{1}\right)(x)\right) .
\end{aligned}
$$

By Lemma 5.4,

$$
\varphi_{T^{n_{1}}\left(U_{1}\right) \cup \ldots \cup T^{n} K\left(U_{K}\right)}^{\precsim \varphi_{F} \chi_{1} \precsim \varphi_{F}, ~ ;, ~}
$$

and together with (5.9) and (5.8),

$$
\begin{aligned}
\left(\varphi_{E}-\varepsilon\right)_{+} & \precsim\left(\varphi_{E}-\varepsilon\right)_{+}\left(1-\chi_{0}\right) \oplus\left(\varphi_{E}-\varepsilon\right)_{+} \chi_{0} \\
& \precsim\left(\bigoplus _ { (2 \lfloor \sqrt { d } \rfloor + 1) ^ { d } } \left(\varphi_{\left.\left.T^{n_{1}}\left(U_{1}\right) \cup \ldots \cup T^{n_{K}}\left(U_{K}\right)\right)\right) \oplus \varphi_{F}}\right.\right. \\
& \precsim\left(\bigoplus_{(2\lfloor\sqrt{d}\rfloor+1)^{d}} \varphi_{F}\right) \oplus \varphi_{F},
\end{aligned}
$$

as desired.

Theorem 5.6. Let $\left(X, T, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system. Then

$$
\operatorname{rc}\left(\mathrm{C}(X) \rtimes \mathbb{Z}^{d}\right) \leq \frac{1}{2} \operatorname{mdim}\left(X, T, \mathbb{Z}^{d}\right)
$$

Proof. By Theorem 5.5, the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ has the (COS). By Theorem 4.2 , the dynamical system $\left(X, T, \mathbb{Z}^{d}\right)$ has the (URP). Then the statement follows directly from Theorem 4.8 of [24].

The following corollary generalizes Corollary 4.9 of [4] (where $d=1$) and generalizes the classifiability result of [29] (where $\operatorname{dim}(X)<\infty$).

Theorem 5.7. Let $\left(X, T, \mathbb{Z}^{d}\right)$ be a minimal free dynamical system with mean dimension zero, then $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is classified by its Elliott invariant. In particular, if $\operatorname{dim}(X)<\infty$, or $\left(X, T, \mathbb{Z}^{d}\right)$ has at most countably many ergodic measures, or $\left(X, T, \mathbb{Z}^{d}\right)$ has finite topological entropy, then $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ is classified by its Elliott invariant.

Proof. By Theorem 4.2 and Theorem 5.5, the dynamical system $\left(X, \mathbb{Z}^{d}\right)$ has the (URP) and (COS). Then the statement follows from Theorem 4.8 of [25]

Remark 5.8. In [17], it is also shown that the (URP) and (COS) implies that the C^{*}-algebra $\mathrm{C}(X) \rtimes \Gamma$, classifiable or not, always has (topological) stable rank one; and the C^{*}-algebra $\mathrm{C}(X) \rtimes \Gamma$ satisfies the Toms-Winter conjecture (i.e., it is classifiable if, and only if it has the strict comparison of positive elements). Therefore, as corollaries of Theorem 5.6, the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$, classifiable or not, always has stable rank one, and the C^{*}-algebra $\mathrm{C}(X) \rtimes \mathbb{Z}^{d}$ satisfies the Toms-Winter conjecture.

The following is a generalization of Corollary 5.7 of [4].
Corollary 5.9. Let $\left(X_{1}, T_{1}, \mathbb{Z}^{d_{1}}\right)$ and $\left(X_{2}, T_{2}, \mathbb{Z}^{d_{2}}\right)$ be minimal free dynamical systems where $d_{1}, d_{2} \in \mathbb{N}$. Then the tensor product C^{*}-algebra $\left(\mathrm{C}\left(X_{1}\right) \rtimes \mathbb{Z}^{d_{1}}\right) \otimes\left(\mathrm{C}\left(X_{2}\right) \rtimes \mathbb{Z}^{d_{2}}\right)$ is classified by its Elliott invariant.

Proof. Note that

$$
\left(\mathrm{C}\left(X_{1}\right) \rtimes \mathbb{Z}^{d_{1}}\right) \otimes\left(\mathrm{C}\left(X_{2}\right) \rtimes \mathbb{Z}^{d_{2}}\right) \cong \mathrm{C}\left(X_{1} \times X_{2}\right) \rtimes\left(\mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}}\right)
$$

where $\mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}}$ acting on $X_{1} \times X_{2}$ by

$$
\left(T_{1} \times T_{2}\right)^{\left(n_{1}, n_{2}\right)}\left(\left(x_{1}, x_{2}\right)\right)=\left(T_{1}^{n_{1}}\left(x_{1}\right), T_{2}^{n_{2}}\left(x_{2}\right)\right), \quad n_{1} \in \mathbb{Z}^{d_{1}}, n_{2} \in \mathbb{Z}^{d_{2}}
$$

By the argument of Remark 5.8 of [4], one has

$$
\operatorname{mdim}\left(X_{1} \times X_{2}, T_{1} \times T_{2}, \mathbb{Z}^{d_{1}} \times \mathbb{Z}^{d_{2}}\right)=0
$$

and the statement then follows from Theorem 5.7.

References

[1] G. A. Elliott, G. Gong, H. Lin, and Z. Niu. On the classification of simple amenable C*-algebras with finite decomposition rank, II. 07 2015. URL: http://arxiv.org/abs/1507.03437, arXiv: 1507.03437.
[2] G. A. Elliott and Z. Niu. On the radius of comparison of a commutative C*-algebra. Canad. Math. Bull., 56(4):737-744, 2013. doi:10.4153/CMB-2012-012-9.
[3] G. A. Elliott and Z. Niu. On the classification of simple amenable C*-algebras with finite decomposition rank. In R. S. Doran and E. Park, editors, "Operator Algebras and their Applications: A Tribute to Richard V. Kadison", Contemporary Mathematics, volume 671, pages 117-125. Amer. Math. Soc., 2016. arXiv:http://dx.dot.org/10.1090/conm/671/13506.
[4] G. A. Elliott and Z. Niu. The C*-algebra of a minimal homeomorphism of zero mean dimension. Duke Math. J., 166(18):3569-3594, 2017. doi:10.1215/00127094-2017-0033.
[5] Bernardo Freitas Paulo Da Costa. Deux exemples sur la dimension moyenne d'un espace de courbes de Brody. Ann. Inst. Fourier (Grenoble), 63(6):2223-2237, 2013. URL: https://mathscinet.ams.org/ mathscinet-getitem?mr=3237445.
[6] J. Giol and D. Kerr. Subshifts and perforation. J. Reine Angew. Math., 639:107-119, 2010. URL: http://dx.doi.org/10.1515/CRELLE.2010.012, doi:10.1515/CRELLE.2010.012.
[7] G. Gong, H. Lin, and Z. Niu. Classification of finite simple amenable \mathcal{Z}-stable C*-algebras, I. C*-algebras with generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 42(3):63-450, 2020.
[8] G. Gong, H. Lin, and Z. Niu. Classification of finite simple amenable \mathcal{Z}-stable C*-algebras, II. C*algebras with rational generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 42(4):451-539, 2020.
[9] M. Gromov. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom., 2(4):323-415, 1999. URL: https://mathscinet.ams.org/mathscinet-getitem? $\mathrm{mr}=1742309$, doi:10.1023/A:1009841100168.
[10] Y. Gutman. Embedding \mathbb{Z}^{k}-actions in cubical shifts and \mathbb{Z}^{k}-symbolic extensions. Ergodic Theory Dynam. Systems, 31(2):383-403, 2011. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 2776381, doi:10.1017/S0143385709001096.
[11] Y. Gutman, E. Lindenstrauss, and M. Tsukamoto. Mean dimension of \mathbb{Z}^{k}-actions. Geom. Funct. Anal., 26(3):778-817, 2016. URL: http://dx.doi.org/10.1007/s00039-016-0372-9, doi:10.1007/ s00039-016-0372-9.
[12] Yonatan Gutman. Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory Dynam. Systems, 37(2):512-538, 2017. URL: https://mathscinet.ams.org/ mathscinet-getitem?mr=3614036, doi:10.1017/etds.2015.40.
[13] Yonatan Gutman and Masaki Tsukamoto. Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts. Ergodic Theory Dynam. Systems, 34(6):1888-1896, 2014. URL: https: //mathscinet.ams.org/mathscinet-getitem?mr=3272776, doi:10.1017/etds.2013.30.
[14] Yonatan Gutman and Masaki Tsukamoto. Embedding minimal dynamical systems into Hilbert cubes. Invent. Math., 221(1):113-166, 2020. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 4105086, doi:10.1007/s00222-019-00942-w.
[15] U. Haagerup. Quasitraces on exact C^{*}-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can., 36(2-3):67-92, 2014.
[16] D. Kerr and G. Szabo. Almost finiteness and the small boundary property. 07 2018. URL: https: //arxiv.org/pdf/1807.04326, arXiv:1807.04326.
[17] C. Li and Z. Niu. Stable rank of $\mathrm{C}(X) \rtimes \Gamma$. arXiv: 2008.03361, 2020.
[18] Hanfeng Li. Sofic mean dimension. Adv. Math., 244:570-604, 2013. URL: https://mathscinet.ams. org/mathscinet-getitem?mr=3077882, doi:10.1016/j.aim.2013.05.005.
[19] Hanfeng Li and Bingbing Liang. Mean dimension, mean rank, and von Neumann-Lück rank. J. Reine Angew. Math., 739:207-240, 2018. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 3808261, doi:10.1515/crelle-2015-0046.
[20] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math., (89):227-262 (2000), 1999. URL: http://www.numdam.org/item?id=PMIHES_ 1999__89__227_0.
[21] E. Lindenstrauss and B. Weiss. Mean topological dimension. Israel J. Math., 115:1-24, 2000. URL: http://dx.doi.org/10.1007/BF02810577, doi:10.1007/BF02810577.
[22] Elon Lindenstrauss and Masaki Tsukamoto. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inform. Theory, 64(5):3590-3609, 2018. URL: https://mathscinet. ams.org/mathscinet-getitem?mr=3798396, doi:10.1109/TIT.2018.2806219,
[23] Shinichiroh Matsuo and Masaki Tsukamoto. Brody curves and mean dimension. J. Amer. Math. Soc., 28(1):159-182, 2015. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3264765, doi:10.1090/S0894-0347-2014-00798-0.
[24] Z. Niu. Comparison radius and mean topological dimension: Rokhlin property, comparison of open sets, and subhomogeneous C*-algebras. J. Analyse Math., accepted, 2020.
[25] Z. Niu. Z-stability of $\mathrm{C}(X) \rtimes \Gamma$. Trans. Amer. Math. Soc, accepted.
[26] N. C. Phillips. The C^{*}-algebra of a minimal homeomorphism with finite mean dimension has finite radius of comparison. 05 2016. URL: https://arxiv.org/abs/1605.07976, arXiv:1605.07976,
[27] M. Rørdam. On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal., 107(2):255-269, 1992. URL: http://dx.doi.org/10.1016/0022-1236(92)90106-S, doi:10. 1016/0022-1236(92)90106-S.
[28] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. URL: https://mathscinet.ams. org/mathscinet-getitem?mr=1216521, doi:10.1017/CB09780511526282.
[29] G. Szabó. The Rokhlin dimension of topological \mathbb{Z}^{m}-actions. Proc. Lond. Math. Soc. (3), 110(3):673-694, 2015. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3342101, doi:10.1112/plms/ pdu065.
[30] G. Szabo, J. Wu, and J. Zacharias. Rokhlin dimension for actions of residually finite groups. 082014. URL: http://arxiv.org/abs/1408.6096, arXiv:1408.6096.
[31] A Tikuisis, S. White, and W. Winter. Quasidiagonality of nuclear C*-algebras. Ann. of Math. (2), to appear, 09. URL: http://arxiv.org/abs/1509.08318, arXiv:1509.08318.
[32] A. S. Toms. Flat dimension growth for C*-algebras. J. Funct. Anal., 238(2):678-708, 2006.
[33] A. S. Toms and W. Winter. Minimal dynamics and K-theoretic rigidity: Elliott's conjecture. Geom. Funct. Anal., 23(1):467-481, 2013. URL: http://dx.doi.org/10.1007/s00039-012-0208-1, doi:10. 1007/s00039-012-0208-1.
[34] Masaki Tsukamoto. Deformation of Brody curves and mean dimension. Ergodic Theory Dynam. Systems, 29(5):1641-1657, 2009. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2545021, doi: 10.1017/S014338570800076X.
[35] Masaki Tsukamoto. Mean dimension of the dynamical system of Brody curves. Invent. Math., 211(3):935-968, 2018. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3763403, doi: 10.1007/s00222-017-0758-9.

Department of Mathematics, University of Wyoming, Laramie, Wyoming, USA, 82071
Email address: zniu@uwyo.edu

