COMPARISON RADIUS AND MEAN TOPOLOGICAL DIMENSION: \mathbb{Z}^d -ACTIONS

ZHUANG NIU

ABSTRACT. Consider a minimal free topological dynamical system (X, \mathbb{Z}^d) . It is shown that the comparison radius of the crossed product C*-algebra $C(X) \rtimes \mathbb{Z}^d$ is at most the half of the mean topological dimension of (X, \mathbb{Z}^d) . As a consequence, the C*-algebra $C(X) \rtimes \mathbb{Z}^d$ is classified by the Elliott invariant if the mean dimension of (X, \mathbb{Z}^d) is zero.

1. INTRODUCTION

Let (X, Γ) be a topological dynamical system, where X is a compact Hausdorff space and Γ is a discrete amenable group. The mean (topological) dimension of (X, Γ) , denoted by mdim (X, Γ) , was introduced by Gromov ([9]), and then was developed and studied systematically by Lindenstrauss and Weiss ([21]). It is a numerical invariant, taking value in $[0, +\infty]$, to measure the complexity of (X, Γ) in terms of dimension growth with respect to partial orbits. Applications of mean dimension theory can be found in topological dynamical systems ([21], [20], [10], [18], [13], [12], [14]), geometric analysis ([34], [5], [23], [35]), operator algebras ([19], [4], [26], [24], [25]), and information theory ([22]).

On the other hand, for a general unital stably finite C*-algebra A, the radius of comparison, introduced by Toms ([32]) and denoted by rc(A), is also a numerical invariant to measure the regularity of the C*-algebra A; and rc(A) can be regarded as an abstract version of the dimension growth of A. A heuristic example is $M_n(C(X))$, the C*-algebra of (complex) $n \times n$ matrix valued continuous functions on a finite CW-complex X; its comparison radius is around $\frac{1}{2} \frac{\dim(X)}{n}$, which is half of the dimension ratio of $M_n(C(X))$.

For the given topological dynamical system (X, Γ) , the canonical C*-algebra to be considered is the transformation group C*-algebra $A = C(X) \rtimes \Gamma$. A natural question to ask then is how the radius of comparison of the C*-algebra is connected to the mean dimension of the dynamical system. In fact, Phillips and Toms even made the following conjecture:

Conjecture (Phillips-Toms). Let (X, Γ) be a minimal and free topological dynamical system, where X is compact Hausdorff space, and Γ is a discrete amenable group. Then

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \Gamma) = \frac{1}{2} \operatorname{mdim}(X, \Gamma).$$

This conjecture is closed related to the classification of C^{*}-algebras. In general, the C^{*}algebra $C(X) \rtimes \Gamma$ can be wild and not to be classified by the Elliott invariant (even with $\Gamma = \mathbb{Z}$, see [6]). So, an important question in the classification program of C^{*}-algebras

Date: July 15, 2021.

The research is supported by an NSF grant (DMS-1800882).

ZHUANG NIU

is to determine which transformation group C*-algebra is classifiable. Now, a special case of this conjecture is that $\operatorname{mdim}(X, \Gamma) = 0$ implies $\operatorname{rc}(\operatorname{C}(X) \rtimes \Gamma) = 0$ (strict comparison of positive elements); and by the Toms-Winter conjecture, this should imply that the C*algebra $\operatorname{C}(X) \rtimes \Gamma$ is Jiang-Su stable and classifiable.

There have been many researches on the classifiability of transformation group C*-algebras: Under the assumption that X is finite dimensional (hence the mean dimension is automatically zero), it was shown in [33] that the algebra $C(X) \rtimes \mathbb{Z}$ has finite nuclear dimension, and therefore is Jiang-Su stable. With Rokhlin dimension, this result was generalized to \mathbb{Z}^d -actions in [29], and then to the actions of residually finite groups with box spaces of finite asymptotic dimension ([30]); and with almost finiteness, the Jiang-Su stability is also obtained for actions by groups with comparison property ([16]).

Without the finite dimensionality assumption on X, so far the only result was [4] where \mathbb{Z} actions are considered, and the zero mean dimension was shown to imply the classifiability of the C*-algebra. Note that this result particularly covers all strictly ergodic dynamical systems. Beyond the case of mean dimension zero, Phillips considered \mathbb{Z} -actions in [26] and showed that the radius of comparison of $C(X) \rtimes \mathbb{Z}$ is at most $1 + 36 \text{mdim}(X, \mathbb{Z})$.

In this paper, let us consider minimal and free \mathbb{Z}^d -actions, and show the following:

Theorem A (Theorem 5.6). Let (X, \mathbb{Z}^d) be a minimal free dynamical system. Then

(1.1)
$$\operatorname{rc}(\operatorname{C}(X) \rtimes \mathbb{Z}^d) \leq \frac{1}{2} \operatorname{mdim}(X, \mathbb{Z}^d).$$

As a consequence of (1.1), one obtains the classifiability if (X, \mathbb{Z}^d) has mean dimension zero:

Theorem B (Theorem 5.7). Let (X, \mathbb{Z}^d) be a minimal free dynamical system with mean dimension zero, then $C(X) \rtimes \mathbb{Z}^d$ is classified by its Elliott invariant. In particular, if $\dim(X) < \infty$, or (X, \mathbb{Z}^d) has at most countably many ergodic measures, or (X, \mathbb{Z}^d) has finite topological entropy, then $C(X) \rtimes \mathbb{Z}^d$ is classified by its Elliott invariant.

The argument in [33], [4], or [26] relies on the Putnam's orbit-cutting algebra (or the large sub-algebra) A_y ; and in the case of zero mean dimension, the argument in [4] also heavily depends on the small boundary property (which is equivalent to mean dimension zero in the case of Z-actions). However, beyond the case of Z-actions, it is not clear in general how to construct large sub-algebras; moreover, once the dynamical system does not have mean dimension zero, the small boundary property does not hold anymore. So, instead of large sub-algebra and small boundary property, the proofs of Theorem A and Theorem B depend on Uniform Rokhlin Property (URP) and Cuntz comparison of Open Sets (COS):

Definition 1.1 (Definition 3.1 and Definition 4.1 of [24]). A topological dynamical system (X, Γ) , where Γ is a discrete amenable group, is said to have Uniform Rokhlin Property (URP) if for any $\varepsilon > 0$ and any finite set $K \subseteq \Gamma$, there exist closed sets $B_1, B_2, ..., B_S \subseteq X$ and (K, ε) -invariant sets $\Gamma_1, \Gamma_2, ..., \Gamma_S \subseteq \Gamma$ such that

$$B_s\gamma, \quad \gamma\in\Gamma_s, \ s=1,...,S,$$

are mutually disjoint and

$$\operatorname{ocap}(X \setminus \bigsqcup_{s=1}^{S} \bigsqcup_{\gamma \in \Gamma_s} B_s \gamma) < \varepsilon,$$

where ocap denote the orbit capacity (see, for instance, Definition 5.1 of [21]).

The dynamical system (X, Γ) is said to have (λ, m) -Cuntz-comparison of open sets, where $\lambda \in (0, 1]$ and $m \in \mathbb{N}$, if for any open sets $E, F \subseteq X$ with

$$\mu(E) < \lambda \mu(F), \quad \mu \in \mathcal{M}_1(X, \Gamma),$$

where $\mathcal{M}_1(X,\Gamma)$ is the simplex of all invariant probability measures on X, then

$$\varphi_E \precsim \underbrace{\varphi_F \oplus \cdots \oplus \varphi_F}_{m}$$
 in $\mathcal{C}(X) \rtimes \Gamma$,

where φ_E and φ_F are continuous functions supporting on E and F respectively.

The dynamical system (X, Γ) is said to have Cuntz comparison of Open Sets (COS) if it has (λ, m) -Cuntz-comparison on open sets for some λ and m.

It is shown in [24] (Theorem 4.8) that the (URP) and (COS) implies

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \Gamma) \leq \frac{1}{2} \operatorname{mdim}(X, \Gamma),$$

and it is also shown in [25] (Theorem 4.8) that if, in addition, (X, Γ) has mean dimension zero, then the C*-algebra $C(X) \rtimes \Gamma$ is classifiable. Thus, Theorem A and Theorem B follows from the following:

Theorem (Theorem 4.2 and Theorem 5.5). Any free and minimal dynamical system (X, \mathbb{Z}^d) has the (URP) and (COS).

Remark 1.2. The adding-one-dimension and going-down argument of [11] play a crucial role in the proof of the (COS) and (URP).

Remark 1.3. In [17], it is shown that the (URP) and (COS) imply that the C*-algebra $C(X) \rtimes \Gamma$ alway has stable rank one (classifiable or not), and satisfies the Toms-Winter conjecture. Thus, by the Theorem above, $C(X) \rtimes \mathbb{Z}^d$ always has stable rank one (classifiable or not), and satisfies the Toms-Winter conjecture.

2. NOTATION AND PRELIMINARIES

2.1. Topological Dynamical Systems. In this paper, one only considers \mathbb{Z}^d -actions on a separable compact Hausdorff space X.

Definition 2.1. Consider a topological dynamical system (X, T, \mathbb{Z}^d) . A closed set $Y \subseteq X$ is said to be invariant if $T^n(Y) = Y$, $n \in \mathbb{Z}^d$, and (X, T, \mathbb{Z}^d) is said to be minimal if \emptyset and X are the only invariant closed subsets. The dynamical system (X, T, \mathbb{Z}^d) is free if for any $x \in X$, $\{n \in \mathbb{Z}^d : T^n(x) = x\} = \{0\}$.

Remark 2.2. The dynamical system (X, T, \mathbb{Z}^d) is induced by d commuting homeomorphisms of X, and vise versa.

Definition 2.3. A Borel measure μ on X is invariant under the action σ if $\mu(E) = \mu(T^n(E))$, for any $n \in \mathbb{Z}^d$ and any Borel set $E \subseteq X$. Denote by $\mathcal{M}_1(X, T, \mathbb{Z}^d)$ the collection of all invariant Borel probability measures on X. It is a Choquet simplex under the weak* topology.

Definition 2.4 (see [9] and [21]). Consider a topological dynamical system (X, T, \mathbb{Z}^d) , and let E be a subset of X. The orbit capacity of E is defined by

$$ocap(E) := \lim_{N \to \infty} \frac{1}{N^d} \sup_{x \in X} \sum_{n \in \{0, 1, \dots, N-1\}^d} \chi_E(T^n(x)),$$

where χ_E is the characteristic function of E. The limit always exists.

Definition 2.5 (see [21]). Let \mathcal{U} be an open cover of X. Define

$$D(\mathcal{U}) = \min\{\operatorname{ord}(\mathcal{V}) : \mathcal{V} \preceq U\}$$

where $\mathcal{V} = -1 + \sup_{x \in X} \sum_{V \in \mathcal{V}} \chi_V(x)$.

Consider a topological dynamical system (X, T, \mathbb{Z}^d) . Then the topological mean dimension of (X, T, \mathbb{Z}^d) is defined by

$$\operatorname{mdim}(X, T, \mathbb{Z}^d) := \sup_{\mathcal{U}} \lim_{N \to \infty} \frac{1}{N^d} D(\bigvee_{n \in \{0, 1, \dots, N-1\}^d} T^{-n}(\mathcal{U})),$$

where \mathcal{U} runs over all finite open covers of X.

Remark 2.6. It follows from the definition that if $\dim(X) < \infty$, then $\min(X, T, \mathbb{Z}^d) = 0$; By [21], if (X, T, \mathbb{Z}^d) has at most countably many ergodic measures, then $\min(X, T, \mathbb{Z}^d) = 0$; and by [20], if (X, T, \mathbb{Z}^d) has finite topological entropy, then $\min(X, T, \mathbb{Z}^d) = 0$.

2.2. Crossed product C*-algebras. Consider a topological dynamical system (X, T, \mathbb{Z}^d) . Then the crossed product C*-algebra $C(X) \rtimes \mathbb{Z}^d$ is the universal C*-algebra

$$A = C^* \{ f, u_n; \ u_n f u_n^* = f \circ T^n, \ u_m u_n^* = u_{m-n}, \ u_0 = 1, \ f \in C(X), \ m, n \in \mathbb{Z}^d \}.$$

The C*-algebra A is nuclear, and if T is minimal, the C*-algebra A is simple. Moreover, the simplex of tracial states of $C(X) \rtimes_{\sigma} \Gamma$ is canonically homeomorphic to the simplex of the invariant probability measures of (X, T, \mathbb{Z}^d) .

2.3. Cuntz comparison of positive elements of a C*-algebra.

Definition 2.7. Let A be a C*-algebra, and let $a, b \in A^+$. Then we say that a is Cuntz subequivalent to b, denote by $a \preceq b$, if there are $x_i, y_i, i = 1, 2, ...$, such that

$$\lim_{n \to \infty} x_i b y_i = a$$

and we say that a is Cuntz equivalent to b if $a \preceq b$ and $b \preceq a$.

Let $\tau: A \to \mathbb{C}$ be a trace. Define the rank function

$$d_{\tau}(a) := \lim_{n \to \infty} \tau(a^{\frac{1}{n}}) = \mu_{\tau}(\operatorname{sp}(a) \cap (0, +\infty)),$$

where μ_{τ} is the Borel measure induced by τ on the spectrum of a. It is well known that

$$d_{\tau}(a) \leq d_{\tau}(b), \text{ if } a \precsim b.$$

Example 2.8. Consider $h \in C(X)^+$ and let μ be a probability measure on X. Then

$$d_{\tau_{\mu}} = \mu(f^{-1}(0, +\infty)),$$

where τ_{μ} is the trace of C(X) induced by μ .

Let $f, g \in C(X)$ be positive elements. Then f and g are Cuntz equivalent if and only if $f^{-1}(0, +\infty) = g^{-1}(0, +\infty)$. That is, their equivalence classes are determined by their open support. On the other hand, for each open set $E \subseteq X$, pick a continuous function

 $\varphi_E: X \to [0, +\infty)$ such that $E = \varphi_E^{-1}(0, +\infty).$

For instance, one can pick $\varphi_E(x) = d(x, X \setminus E)$, where d is a compatible metric on X. This notation will be used throughout this paper. Note that the Cuntz equivalence class of φ_E is independent of the choice of individual function φ_E .

Definition 2.9. Let $a \in A^+$, where A is a C*-algebra, and let $\varepsilon > 0$. Define

$$(a - \varepsilon)_+ = f(a) \in A,$$

where $f(t) = \max\{t - \varepsilon, 0\}.$

The following lemma is frequently used:

Lemma 2.10 (Section 2 of [27]). Let a, b be positive elements of a C*-algebra A. Then $a \preceq b$ if and only if $(a - \varepsilon)_+ \preceq b$ for all $\varepsilon > 0$.

Definition 2.11 (Definition 6.1 of [32]). Let A be a C*-algebra. Denote by $M_n(A)$ the C*-algebra of $n \times n$ matrices over A. Regard $M_n(A)$ as the upper-left conner of $M_{n+1}(A)$, and denote by

$$\mathcal{M}_{\infty}(A) = \bigcup_{n=1}^{\infty} \mathcal{M}_n(A),$$

the algebra of all finite matrices over A.

The radius of comparison of a unital C*-algebra A, denoted by rc(A), is the infimum of the set of real numbers r > 0 such that if $a, b \in (M_{\infty}(A))^+$ satisfy

$$d_{\tau}(a) + r < d_{\tau}(b), \quad \tau \in T(A),$$

then $a \preceq b$, where T(A) is the simplex of tracial states. (In [32], the radius of comparison is defined in terms of quasitraces instead of traces; but since all the algebras considered in this note are nuclear, by [15], any quasitrace actually is a trace.)

Example 2.12. Let X be a compact Hausdorff space. Then

(2.1)
$$\operatorname{rc}(\operatorname{M}_{n}(\operatorname{C}(X))) \leq \frac{1}{2} \frac{\dim(X) - 1}{n}$$

where dim(X) is the topological covering dimension of X (a lower bound of rc(C(X)) in terms of cohomological dimension is given in [2]).

The main result of this paper is a dynamical version of (2.1); that is,

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \mathbb{Z}^d) \leq \frac{1}{2} \operatorname{mdim}(X, T, \mathbb{Z}^d)$$

if (X, T, \mathbb{Z}^d) is minimal and free (Corollary 5.6).

ZHUANG NIU

3. Adding one dimension, going-down argument, R-boundary points, and R-interior points

Adding-one-dimension and going-down argument are introduced in [11], and they play a crucial role in this paper. Let us first take a brief review. Consider a minimal system (X, T, \mathbb{Z}^d) . Pick open sets $U' \subseteq U \subseteq X$ with $\overline{U'} \subseteq U$, and a continuous function $\varphi : X \to$ [0, 1] such that

$$\varphi|_{U'} = 1 \quad \text{and} \quad \varphi|_{X \setminus U} = 0$$

Since (X, T, \mathbb{Z}^d) minimal, there exists $L \in \mathbb{N}$ such that

$$\bigcup_{|n| \le L} T^n(U') = X$$

and hence

(1) for any $x \in X$, there is $n \in \mathbb{Z}^d$ with $|n| \leq L$ such that $\varphi(T^n(x)) = 1$. On the other hand, pick M such that

$$T^n(U), \quad |n| \le M,$$

are mutually disjoint, and therefore

(2) if $\varphi(x) > 0$ for some $x \in X$, then $\varphi(T^n(x)) = 0$ for all nonzero $n \in \mathbb{Z}^k$ with $|n| \leq M$. Note that $M \leq L$; by the freeness of (X, T, \mathbb{Z}^d) , the number M is arbitrarily large if U is sufficiently small.

Pick $x \in X$. Following from [11], one considers the set

$$\{(n, \frac{1}{\varphi(T^n(x))}) : n \in \mathbb{Z}^d, \ \varphi(T^n(x)) \neq 0\} \subseteq \mathbb{R}^{d+1},$$

and defines the Voronoi cell $V(x,n) \subseteq \mathbb{R}^{d+1}$ with center $(n, \frac{1}{\varphi(T^n(x))})$ by

$$V(x,n) = \left\{ \xi \in \mathbb{R}^{k+1} : \left\| \xi - (n, \frac{1}{\varphi(T^n(x))}) \right\| \le \left\| \xi - (m, \frac{1}{\varphi(T^m(x))}) \right\|, \forall m \in \mathbb{Z}^d \right\},$$

where $\|\cdot\|$ is the ℓ^2 -norm on \mathbb{R}^{d+1} . If $\varphi(T^n(x)) = 0$, then put

$$V(x,n) = \emptyset$$

One then has a tiling

$$\mathbb{R}^{d+1} = \bigcup_{n \in \mathbb{Z}^d} V(x, n).$$

Pick $H > (L + \sqrt{d})^2$. For each $n \in \mathbb{Z}^d$, define

$$W_H(x,n) = V(x,n) \cap (\mathbb{R}^d \times \{-H\}),$$

and one has a tiling

$$\mathcal{W}_H : \mathbb{R}^d = \bigcup_{n \in \mathbb{Z}^d} W(x, n).$$

The following are some basic properties of this construction, and the proofs can be found in [11].

Lemma 3.1 (Lemma 4.1 of [11]). With the construction above, one has

- (1) \mathcal{W}_H is continuous on x in the following sense: Suppose that W(x,n) has non-empty interior. For any $\varepsilon > 0$, if $y \in X$ is sufficiently close to x, then the Hausdorff distance between $W_H(x,n)$ and $W_H(y,n)$ are smaller than ε .
- (2) \mathcal{W}_H is \mathbb{Z}^d -equivariant: $W_H(T^m(x), n-m) = -m + W_H(x, n)$.
- (3) If $\varphi(T^n(x)) > 0$, then

$$B_{\frac{M}{2}}(n, \frac{1}{\varphi(T^n(x))}) \subseteq V(x, n).$$

(4) If $W_H(x,n)$ is non-empty, then

$$1 \le \frac{1}{\varphi(T^n(x))} \le 2.$$

(5) If $(a, -H) \in V(x, n)$, then

$$\|a - n\| < L + \sqrt{d}.$$

Moreover, if one considers different horizontal cuts, at levels -sH and -H for some s > 1, one has the following lemma.

Lemma 3.2 (Lemma 4.1(4) of [11] and its proof). Let s > 1 and r > 0. One can choose M sufficiently large such that if $(a, -sH) \in V(x, n)$, then

$$B_r(\frac{a}{s} + (1 - \frac{1}{s})n) \subseteq W_H(x, n)$$

and

$$\left\|\frac{a}{s} + (1 - \frac{1}{s})n - (a + \frac{(s - 1)H}{sH + t}(n - a))\right\| \le \frac{4}{L + \sqrt{d}},$$

where $t = \frac{1}{\varphi(T^n(x))}$ and $\|\cdot\|$ is the ℓ^2 -norm on \mathbb{R}^d .

Definition 3.3. Note that the point $(a + \frac{(s-1)H}{sH+t}(n-a), -H)$ is the image of (a, -sH) in the plane $\mathbb{R}^d \times \{-H\}$ under the projection towards the center (n, t). Let us call $a + \frac{(s-1)H}{sH+t}(n-a)$ the *H*-projective image of *a* (with the center (n, t)).

The following is a lemma on convex bodies in \mathbb{R}^d , and the author is in debt to Tyrrell McAllister for the discussions.

Lemma 3.4. Consider \mathbb{R}^d . For any $\varepsilon > 0$ and any r > 0, there is $N_0 > 0$ such that if $N \ge N_0$, then for any convex body $V \subseteq \mathbb{R}^d$, one has

$$\frac{1}{N^d} \left| \{ n \in \mathbb{Z}^d : \operatorname{dist}(n, \partial V) \le r, \ n \in I_N \} \right| < \varepsilon,$$

where $I_N = [0, N]^d$.

Proof. Pick N_0 sufficiently large such that

$$2\frac{\operatorname{vol}(\partial_{r+\sqrt{d}}(I_N))}{\operatorname{vol}(I_N)} < \varepsilon, \quad N > N_0.$$

where $\partial_E(K)$ denotes the *E*-neighbourhood of the boundary of a convex body *K*. Then, this N_0 satisfies the conclusion of the Lemma.

Indeed, for any $N \ge N_0$, denote by $\partial^+_{r+\sqrt{d}}(V \cap I_N)$ the outer $(r+\sqrt{d})$ -neighborhood of the convex body $V \cap I_N$, and it follows from Steiner formula (see, for instance, (4.1.1) of [28]) that

$$\operatorname{vol}(\partial_{r+\sqrt{d}}^+(V\cap I_N)) = \sum_{j=1}^d C_d^j W_j (V\cap I_N) (r+\sqrt{d})^j,$$

where $W_j(V \cap I_N)$ is the *j*-th quermassintegral of $V \cap I_N$. Since the quermassintegrals W_j , j = 1, ..., d, are monotonic (see, for instance, Page 211 of [28]), one has

$$W_j(V \cap I_N) \le W_j(I_N), \quad j = 1, 2, ..., d,$$

and hence

$$\operatorname{vol}(\partial_{r+\sqrt{d}}^{+}(V \cap I_{N})) = \sum_{j=1}^{d} C_{d}^{j} W_{j}(V \cap I_{N})(r+\sqrt{d})^{j}$$
$$\leq \sum_{j=1}^{d} C_{d}^{j} W_{j}(I_{N})(r+\sqrt{d})^{j}$$
$$= \operatorname{vol}(\partial_{r+\sqrt{d}}^{+}(I_{N})).$$

Since $\operatorname{vol}(\partial_{r+\sqrt{d}}(V \cap I_N)) \leq 2\operatorname{vol}(\partial^+_{r+\sqrt{d}}(V \cap I_N))$, one has

$$\frac{\operatorname{vol}(\partial_{r+\sqrt{d}}(V\cap I_N))}{\operatorname{vol}(I_N)} \le 2\frac{\operatorname{vol}(\partial_{r+\sqrt{d}}^+(V\cap I_N))}{\operatorname{vol}(I_N)} \le 2\frac{\operatorname{vol}(\partial_{r+\sqrt{d}}(I_N))}{\operatorname{vol}(I_N)} < \varepsilon.$$

On the other hand, note that

$$|\{n \in \mathbb{Z}^d : \operatorname{dist}(n, \partial V) \le r, n \in I_N\}| \le \operatorname{vol}(\partial_{r+\sqrt{d}}(V \cap I_N)),$$

and hence

$$\frac{1}{N^d} \left| \{ n \in \mathbb{Z}^d : \operatorname{dist}(n, \partial V) \le r, \ n \in I_N \} \right| \le \frac{\operatorname{vol}(\partial_{r+\sqrt{d}}(V \cap I_N))}{\operatorname{vol}(I_N)} < \varepsilon,$$

as desired.

Definition 3.5. Consider a continuous function $X \ni x \mapsto \mathcal{W}(x)$ with $\mathcal{W}(x)$ a \mathbb{R}^d -tiling. For each $R \ge 0$, a point $x \in X$ is said to be an *R*-interior point if $\operatorname{dist}(0, \partial \mathcal{W}(x)) > R$, where $\partial \mathcal{W}(x)$ denotes the union of the boundaries of the tiles of \mathcal{W} . Note that, in this case, the origin $0 \in \mathbb{R}^d$ is an interior point of a (unique) tile of $\mathcal{W}(x)$. Denote this tile by $\mathcal{W}(x)_0$, and denote the set of *R*-interior points by $\iota_R(\mathcal{T})$.

Otherwise (if dist $(0, \partial \mathcal{W}(x)) \leq R$), the point x is said to be an R-boundary point. Denote by $\beta_R(\mathcal{T})$ the set of R-boundary points.

Note that $\beta_R(\mathcal{T})$ is closed and $\iota_R(\mathcal{T})$ is open.

Lemma 3.6. Let (X, T, \mathbb{Z}^d) be a minimal free dynamical system.

Fix $s \in (1,2)$. Let $R_0 > 0$ and $\varepsilon > 0$ be arbitrary. Let $N > N_0$, where N_0 the constant of Lemma 3.4 with respect to ε and $2R_0 + 4 + \sqrt{d}/2$, and let $R_1 > \max\{R_0, N\sqrt{d}\}$.

Then M can be chosen large enough such that there exist a finite open cover

$$U_1 \cup U_2 \cup \cdots \cup U_K \supseteq \beta_{R_0}(\mathcal{W}_{sH}),$$

$$\square$$

and $n_1, n_2, ..., n_K \in \mathbb{Z}^d$ such that

- (1) $T^{n_i}(U_i) \subseteq \iota_{R_1}(\mathcal{W}_H) \subseteq \iota_0(\mathcal{W}_H), i = 1, 2, ..., K,$
- (2) the open sets

$$T^{n_i}(U_i), \quad i = 1, 2, ..., K$$

can be grouped as

$$\begin{cases} T^{n_1}(U_1), ..., T^{n_{s_1}}(U_{s_1}), \\ T^{n_{s_1+1}}(U_{s_1+1}), ..., T^{n_{s_2}}(U_{s_2}), \\ \cdots \\ T^{n_{s_{m-1}+1}}(U_{s_{m-1}+1}), ..., T^{n_{s_m}}(U_{s_m}), \end{cases}$$

with $m \leq (\lfloor 2\sqrt{d} \rfloor + 1)^d$, such that the open sets in each group are mutually disjoint, (3) for each $x \in \iota_0(\mathcal{W}_H)$ and each $c \in \operatorname{int}(\mathcal{W}_H(x)_0) \cap \mathbb{Z}^d$ with $\operatorname{dist}(c, \partial \mathcal{W}_H) > N\sqrt{d}$, one

(5) for each $x \in \iota_0(VV_H)$ and each $c \in \operatorname{Int}(VV_H(x)_0) + \mathbb{Z}$ with $\operatorname{dist}(c, OVV_H) > \mathbb{N} \lor d$, one has

$$\frac{1}{N^d} \left| \left\{ n \in \{0, 1, ..., N-1\}^d : T^{c+n}(x) \in \bigcup_{i=1}^K T^{n_i}(U_i) \right\} \right| < \varepsilon.$$

Proof. By Lemma 4.1(4) of [11] (see Lemma 3.2), one can choose $U' \subseteq U$ and φ such that M is sufficiently large so that for a fixed $H > (L + \sqrt{d})^2$, if $(a, -sH) \in V(x, n)$ for some $a \in \mathbb{R}^d$, then

$$B_{R_1+2R_0+1+\frac{\sqrt{a}}{2}}(\frac{a}{s}+(1-\frac{1}{s})n)\times\{-H\}\in V(x,n)$$

and

(3.1)
$$\left\|\frac{a}{s} + (1 - \frac{1}{s})n - (a + \frac{(s-1)H}{sH+t}(n-a))\right\| \le \frac{4}{L + \sqrt{d}} < 4,$$

where $t = \frac{1}{\varphi(T^n(x))}$, and $a + \frac{(s-1)H}{sH+t}(n-a)$ is the *H*-projective image of *a*. For each $n \in \mathbb{Z}^d$, define

$$U_n = \{ x \in X : \operatorname{dist}(0, \partial W_{sH}(x, n)) < 2R_0, \ \operatorname{int} W_{sH}(x, n) \neq \emptyset \}.$$

Note that U_n is open. For the same n, one also picks $h_n \in \mathbb{Z}^d$ such that

(3.2)
$$\left\| (1-\frac{1}{s})n - h_n \right\| \le \frac{\sqrt{d}}{2}$$

For each $x \in U_n$, there is $a \in \partial W_{sH}(x, n) \subseteq \mathbb{R}^d$ with

$$||a|| < 2R_0$$

By the choice of M (hence H), one has

(3.3)
$$B_{R_1+2R_0+1+\frac{\sqrt{d}}{2}}(\frac{a}{s}+(1-\frac{1}{s})n) \subseteq W_H(x,n).$$

Since

(3.4)
$$\left\|h_n - \left(\frac{a}{s} + (1 - \frac{1}{s})n\right)\right\| \le \left\|\frac{a}{s}\right\| + \left\|(1 - \frac{1}{s})n - h_n\right\| < 2R_0 + \frac{\sqrt{d}}{2},$$

by (3.3), one has

$$B_{R_1+1}(h_n) \subseteq W_H(x,n),$$

which implies

(3.5)
$$B_{R_1}(0) \subset B_{R_1+1}(0) \subseteq -h_n + W_H(x,n) = W_H(T^{h_n}(x), n - h_n).$$

In particular, $T^{h_n}(x) \in \iota_{R_1}(\mathcal{W}_H)$, which implies

$$T^{h_n}(U_n) \subseteq \iota_{R_1}(\mathcal{W}_H),$$

and this shows Property (1).

Note that by (3.1) and (3.4),

(3.6)
$$\left\| h_n - \left(a + \frac{(s-1)H}{sH+t}(n-a)\right) \right\| < 2R_0 + 4 + \frac{\sqrt{d}}{2}$$

Since $a \in \partial W_{sH}(x, n)$, this implies that h_n is in the $(2R_0 + 4 + \frac{\sqrt{d}}{2})$ -neighbourhood of the the *H*-projective image of $\partial W_{sH}(x, n)$ (with respect to (n, t)).

On the other hand, if $x \in \beta_{R_0}(\mathcal{W}_{sH})$, then $\operatorname{dist}(0, \partial W_{sH}(x, n)) \leq R_0$ for some $n \in \mathbb{Z}^d$ with $\operatorname{int}(W_{sH}(x, n)) \neq \emptyset$, which implies that $x \in U_n$. Therefore, $\{U_n : n \in \mathbb{Z}^d\}$ form an open cover of $\beta_{R_0}(\mathcal{W}_{sH})$. Since $\beta_{R_0}(\mathcal{W}_{sH})$ is a compact set, there is a finite subcover

$$U_{n_1}, U_{n_2}, \dots, U_{n_K}$$

(In fact, $\{U_n : ||n|| < L + \sqrt{d} + 2R_0\}$ already covers $\beta_{R_0}(\mathcal{W}_{sH})$ by (5) of Lemma 3.1.)

Assume that n_i and n_j satisfy

$$T^{h_{n_i}}(U_{n_i}) \cap T^{h_{n_j}}(U_{n_j}) \neq \emptyset$$

Then there are $x_i \in U_{n_i}$ and $x_j \in U_{n_j}$ with

$$T^{h_{n_i}}(x_i) = T^{h_{n_j}}(x_j).$$

Since $x_i \in U_{n_i}$ and $x_j \in U_{n_j}$, by (3.5), one has that

$$B_R(0) \subseteq W_H(T^{h_{n_i}}(x_i), n_i - h_{n_i})$$

and

$$B_R(0) \subseteq W_H(T^{h_{n_j}}(x_j), n_j - h_{n_j}) = W_H(T^{h_{n_i}}(x_i), n_j - h_{n_j}).$$

Therefore, $n_i - h_{n_i} = n_j - h_{n_j}$, and

$$n_i - n_j = h_{n_i} - h_{n_j}.$$

Together with (3.2), one has

$$\begin{aligned} \|n_i - n_j\| &= \|h_{n_j} - h_{n_j}\| \\ &\leq (1 - \frac{1}{s}) \|n_i - n_j\| + \sqrt{d} \\ &< \frac{1}{2} \|n_i - n_j\| + \sqrt{d}, \end{aligned}$$

and hence

$$\|n_i - n_j\| < 2\sqrt{d}.$$

Note that the set \mathbb{Z}^d can be divided into $(\lfloor 2\sqrt{d} \rfloor + 1)^d$ groups $(\mathbb{Z}^d)_1, ..., (\mathbb{Z}^d)_{(\lfloor 2\sqrt{d} \rfloor + 1)^d}$ such that any pair of elements inside each group has distance at least $2\sqrt{d}$, and therefore

$$T^{h_n}(U_n) \cap T^{h_{n'}}(U_{n'}) = \emptyset, \quad n, n' \in (\mathbb{Z}^d)_m, \ m = 1, ..., (\lfloor 2\sqrt{d} \rfloor + 1)^d.$$

Then group $U_{n_1}, ..., U_{n_K}$ as

$$U_{n_i}: i = 1, ..., K, \ n_i \in (\mathbb{Z}^d)_1 \}, ..., \{ U_{n_i}: i = 1, ..., K, \ n_i \in (\mathbb{Z}^d)_{(\lfloor 2\sqrt{d} \rfloor + 1)^d} \},$$

and this shows Property (2).

Let $x \in \iota_0(\mathcal{W}_H)$ (so that $\mathcal{W}_H(x)_0$ is well defined). Write

$$\mathcal{W}_H(x)_0 = W_H(x, n(x)) = V(x, n(x)) \cap (\mathbb{R}^d \times \{-H\}), \text{ where } n(x) \in \mathbb{Z}^d.$$

Assume there is $m \in int(\mathcal{W}_H(x)_0) \cap \mathbb{Z}^d$ such that

$$(3.7) T^m(x) \in T^{h_{n_k}}(U_{n_k})$$

for some n_k .

Since $m \in int(\mathcal{W}_H(x)_0) \cap \mathbb{Z}^d$, one has that

$$0 \in \operatorname{int}(-m + W_H(x, n(x))) = \operatorname{int}W_H(T^m(x), n(x) - m)$$

Hence $T^m(x) \in \iota_0(\mathcal{W}_H)$ and

(3.8)
$$\mathcal{W}_H(T^m(x))_0 = W_H(T^m(x), n(x) - m).$$

By the assumption (3.7), there is $x_{n_k} \in U_{n_k}$ such that

$$T^m(x) = T^{h_{n_k}}(x_{n_k}).$$

Then, with (3.5), one has

$$B_{R_1}(0) \subseteq W_H(T^{h_{n_k}}(x_{n_k}), n_k - h_{n_k}) = W_H(T^m(x), n_k - h_{n_k}),$$

and therefore (with (3.8)),

$$W_H(T^m(x), n(x) - m) = W_H(T^{h_{n_k}}(x_{n_k}), n_k - h_{n_k})$$

and

$$V(T^{m}(x), n(x) - m) = V(T^{h_{n_k}}(x_{n_k}), n_k - h_{n_k}).$$

Hence, at the -sH level, one also has

(3.9)
$$W_{sH}(T^m(x), n(x) - m) = W_{sH}(T^{h_{n_k}}(x_{n_k}), n_k - h_{n_k}) = -h_{n_k} + W_{sH}(x_{n_k}, n_k).$$

By (3.6), h_{n_k} is in the $(2R_0 + 4 + \sqrt{d}/2)$ -neighbourhood of the *H*-projective image of $\partial W_{sH}(x_{n_k}, n_k)$, and therefore 0 is in the $(2R_0 + 4 + \sqrt{d}/2)$ -neighbourhood of the *H*-projective image of

$$-h_{n_k} + \partial W_{sH}(x_{n_k}, n_k) = W_{sH}(T^{h_{n_k}}(x_{n_k}), n_k - h_{n_k})$$

Thus, by (3.9), the origin 0 is in the $(2R_0 + 4 + \sqrt{d}/2)$ -neighbourhood of the *H*-projective image of $\partial W_{sH}(T^m(x), n(x) - m)$, and hence *m* is in the $(2R_0 + 4 + \sqrt{d}/2)$ -neighbourhood of the *H*-projective image of $\partial W_{sH}(x, n(x))$, which is denoted by $\partial W^H_{sH}(x, n(x))$.

Therefore, for any $c \in \operatorname{int}(\mathcal{W}_H(x)_0) \cap \mathbb{Z}^d$ with $\operatorname{dist}(c, \partial \mathcal{W}_H) > N\sqrt{d}$, since

$$c + n \in int(\mathcal{W}_H(x)_0), \quad n \in \{0, 1, ..., N - 1\}^d$$

one has

$$\left\{ n \in \{0, 1, ..., N-1\}^d : T^{c+n}(x) \in \bigcup_{i=1}^K h_i(U_i) \right\}$$
$$\subseteq \left\{ n \in \{0, 1, ..., N-1\}^d : \operatorname{dist}(c+n, \partial W^H_{sH}(x, n(x))) < 2R_0 + 4 + \sqrt{d}/2 \right\}.$$

Hence, by the choice of N and Lemma 3.4,

$$\frac{1}{N^d} \left| \left\{ n \in \{0, 1, ..., N-1\}^d : T^{c+n}(x) \in \bigcup_{i=1}^K h_i(U_i) \right\} \right|$$

$$\leq \frac{1}{N^d} \left| \left\{ n \in c + \{0, 1, ..., N-1\}^d : \operatorname{dist}(n, \partial W^H_{sH}(x, n(x))) < 2R_0 + 4 + \sqrt{d}/2 \right\} \right|$$

$$< \varepsilon.$$

This proves Property (3).

4. Two towers

4.1. Rokhlin towers. Let $x \mapsto \mathcal{W}(x) = \bigcup_{n \in \mathbb{Z}^d} W(x, n)$ be a map with $\mathcal{W}(x)$ a tiling of \mathbb{R}^d and W(x, n) is the cell with label n. Assume that the map $x \mapsto \mathcal{W}(x)$ is continuous in the sense that for any $\varepsilon > 0$ and any W(x, n) with non-empty interior, if $y \in X$ is sufficiently close to x then the Hausdorff distance between W(x, n) and W(y, n) are smaller than ε . One also assumes that the map $x \mapsto \mathcal{W}(x)$ is equivariant in the sense that

$$W(T^{-m}(x), n+m) = m + W(x, n), \quad x \in X, \ m, n \in \mathbb{Z}^d.$$

The tiling functions \mathcal{W}_H and \mathcal{W}_{sH} constructed in the previous section clearly satisfy the assumptions above. With a such tiling function, one actually can build a Rokhlin tower as the following:

Let $N \in \mathbb{N}$ be arbitrary. Put

$$\Omega = \{ x \in X : \operatorname{dist}(0, \partial \mathcal{W}(x)) > N \sqrt{d} \text{ and } \mathcal{W}(x)_0 = W(x, n) \text{ for some } n = 0 \mod N \},\$$

where by $n = 0 \mod N$, one means $n_i = 0 \mod N$, i = 1, 2, ..., d, if $n = (n_1, n_2, ..., n_d) \in \mathbb{Z}^d$. Note that Ω is open.

Let $m \in \{0, 1, ..., N-1\}^d$. Pick arbitrary $x \in \Omega$ and consider $T^{-m}(x)$. Note that $0 \in W(x, n)$ for some $n = 0 \mod N$ and $\operatorname{dist}(0, \partial W(x, n)) > N\sqrt{d}$. Since

$$W(T^{-m}(x), n+m) = m + W(x, n),$$

one has that

$$0 \in \operatorname{int} W(T^{-m}(x), n+m)$$
 and $n+m=m \mod N$.

Hence

(4.1)
$$T^{-m}(\Omega) \subseteq \Omega'_m$$

where

$$\Omega'_m := \{ x \in X : 0 \notin \partial \mathcal{W}(x) \text{ and } \mathcal{W}(x)_0 = W(x, n), \ n = m \mod N \}.$$

For the same reason, if one defines

$$\Omega_m'' := \{ x \in X : \operatorname{dist}(0, \partial \mathcal{W}(x)) > 2N\sqrt{d} \text{ and } \mathcal{W}(x)_0 = W(x, n), \ n = m \mod N \},$$

then

Since the sets

$$\Omega'_m, \quad m \in \{0, 1, ..., N-1\}^d,$$

 $\Omega''_m \subseteq T^{-m}(\Omega).$

are mutually disjoint, it follows from (4.1) that

$$T^{-m}(\Omega), \quad m \in \{0, 1, ..., N-1\}^d$$

are mutually disjoint. That is, it forms a Rokhlin tower for (X, T, \mathbb{Z}^d) .

On the other hand, by (4.2) and the construction of Ω''_m , one has

(4.3)
$$\bigsqcup_{m \in \{0,1,\dots,N-1\}^d} T^{-m}(\Omega) \supseteq \bigsqcup_{m \in \{0,1,\dots,N-1\}^d} \Omega''_m = \{x \in X : \operatorname{dist}(0,\partial \mathcal{W}(x)) > 2N\sqrt{d}\}.$$

In particular, one has

(4.4)
$$\operatorname{ocap}\left(X \setminus \bigsqcup_{m \in \{0,1,\dots,N-1\}^d} T^{-m}(\Omega)\right) \le \operatorname{ocap}(\{x \in X : \operatorname{dist}(0,\partial \mathcal{W}(x)) \le 2N\sqrt{d}\}).$$

Lemma 4.1. For any E > 0, one has

$$\operatorname{ocap}(\{x \in X : \operatorname{dist}(0, \partial \mathcal{W}(x)) \le E\}) \le \limsup_{R \to \infty} \frac{1}{\operatorname{vol}(B_R)} \sup_{x \in X} \operatorname{vol}(\partial_E \mathcal{W}(x) \cap B_R),$$

where $\partial_E \mathcal{W}(x) = \{\xi \in \mathbb{R}^d : \operatorname{dist}(\xi, \partial W(x)) \leq E\}.$

Proof. Pick an arbitrary $x \in X$ and an arbitrary positive number R, and consider the partial orbit

$$T^{m}(x), \quad ||m|| < R.$$

Note that if dist $(0, \partial \mathcal{W}(T^{m}(x))) \leq E$ (i.e., $0 \in \partial_{E} \mathcal{W}(T^{m}(x))$) for some m , then
 $-m \in \partial_{E} \mathcal{W}(x).$

Therefore

$$\{ \|m\| < R : 0 \in \partial_E \mathcal{W}(T^m(x)) \} \subseteq \{ \|m\| < R : m \in \partial_E \mathcal{W}(x) \}.$$

As $N \to \infty$, one has

$$\frac{1}{|B_R \cap \mathbb{Z}^d|} |\{ \|m\| < R : 0 \in \partial_E \mathcal{W}(T^m(x)) \} |$$

$$\leq \frac{1}{|B_R \cap \mathbb{Z}^d|} |\{ \|m\| < R : m \in \partial_E \mathcal{W}(x) \} |$$

$$\approx \frac{1}{\operatorname{vol}(B_R)} \operatorname{vol}(\partial_E \mathcal{W}(x) \cap B_R), \quad \text{(if } R \text{ is sufficiently large)}.$$

Hence

 $\limsup_{R \to \infty} \frac{1}{|B_R \cap \mathbb{Z}^d|} \left| \{ |m| < R : 0 \in \partial_E \mathcal{W}(T^m(x)) \} \right| \le \limsup_{R \to \infty} \frac{1}{\operatorname{vol}(B_R)} \sup_{x \in X} \operatorname{vol}(\partial_E \mathcal{W}(x) \cap B_R).$

Since x is arbitrary, this proves the desired conclusion.

Theorem 4.2. Consider the minimal free dynamical system (X, T, \mathbb{Z}^d) . Then, for any $\varepsilon > 0$ and $N \in \mathbb{N}$, there is an open set $\Omega \subseteq X$ such that

$$T^{-n}(\Omega), \quad n \in \{0, 1, ..., N-1\}^d$$

are mutually disjoint (hence form a Rokhlin tower), and

$$\operatorname{ocap}\left(X \setminus \bigcup_{n \in \{0,1,\dots,N-1\}^d} T^{-n}(\Omega)\right) < \varepsilon.$$

In other words, the system (X, T, \mathbb{Z}^d) has the Uniform Rohklin Property (see Definition 1.1 and Lemma 3.2 of [24]).

Proof. By Lemma 4.2 of [11], there is an equivariant \mathbb{R}^d -tiling $x \mapsto \mathcal{W}(x)$ such that

$$\limsup_{R \to \infty} \frac{1}{\operatorname{vol}(B_R)} \sup_{x \in X} \operatorname{vol}(\partial_{2N\sqrt{d}} \mathcal{W}(x) \cap B_R) < \varepsilon.$$

Then, the statement follows from (4.4) and Lemma 4.1 (with $E = 2N\sqrt{d}$).

4.2. The two towers. The Rokhlin tower constructed above in general cannot cover the whole space X. Consider the two continuous tiling functions \mathcal{W}_{sH} and \mathcal{W}_{H} , and consider the Rokhlin towers \mathcal{T}_0 and \mathcal{T}_1 constructed from them respectively. It is still possible that \mathcal{T}_0 together with \mathcal{T}_1 do not cover the whole space X. However, in the following theorem, one can show that the complement of the tower \mathcal{T}_0 can be cut into pieces and then each piece can be translated into the tower \mathcal{T}_1 in a way that the order of the overlaps of the translations are universally bounded, and the intersection of the translations with each \mathcal{T}_1 -orbit is uniformly small. This eventually leads to a Cuntz comparison of open sets for minimal free \mathbb{Z}^d -actions (Theorem 5.5).

Theorem 4.3. Consider a minimal free dynamical system (X, T, \mathbb{Z}^d) . Let $N \in \mathbb{N}$ and $\varepsilon > 0$ be arbitrary. There exist two Rokhlin towers

 $\mathcal{T}_{0} := \{T^{-m}(\Omega_{0}) : m \in \{0, 1, ..., N_{0} - 1\}^{d}\} \text{ and } \mathcal{T}_{1} := \{T^{-m}(\Omega_{1}) : m \in \{0, 1, ..., N_{1} - 1\}^{d}\},$ with $N_{0}, N_{1} \ge N$ and $\Omega_{0}, \Omega_{1} \subseteq X$ open, an open cover $\{U_{1}, U_{2}, ..., U_{K}\}$ of $X \setminus \bigcup_{m} T^{-m}(\Omega_{0}),$ and $h_{1}, h_{2}, ..., h_{K} \in \mathbb{Z}^{d}$ such that

- (1) $T^{h_k}(U_k) \subseteq \bigcup_m T^{-m}(\Omega_1), \ k = 1, 2, ..., K;$
- (2) the open sets

$$T^{h_k}(U_k), \quad k = 1, 2, ..., K,$$

can be grouped as

$$\begin{cases} T^{h_1}(U_1), \dots, T^{h_{s_1}}(U_{s_1}), \\ T^{h_{s_1+1}}(U_{s_1+1}), \dots, T^{h_{s_2}}(U_{s_2}), \\ \dots \\ T^{h_{s_{m-1}+1}}(U_{s_{m-1}+1}), \dots, T^{h_{s_m}}(U_{s_m}), \end{cases}$$

for some $m \leq (\lfloor 2\sqrt{d} \rfloor + 1)^d$, such that the open sets in each group are mutually disjoint;

(3) for each $x \in \Omega_1$, one has

$$\frac{1}{N_1^d} \left| \left\{ m \in \{0, 1, ..., N_1 - 1\}^d : T^m(x) \in \bigcup_{k=1}^K T^{n_k}(U_k) \right\} \right| < \varepsilon.$$

Proof. Applying Lemma 3.6 with $R_0 = 2N\sqrt{d}$, ε , and some $s \in (1, 2)$, together with some $N_1 > \max\{N(R_0, \varepsilon), N\}$ (in place of N) and $R_1 > \max\{R_0, 2N_1\sqrt{d}\}$, where $N(R_0, \varepsilon)$ is the constant of Lemma 3.4 with respect to ε and $2R_0 + 4 + \sqrt{d}/2$, there are two continuous equivariant \mathbb{R}^d -tilings \mathcal{W}_{sH} and \mathcal{W}_H for some (sufficiently large) H > 0, a finite open cover

 $U_1 \cup U_2 \cup \cdots \cup U_K \supseteq \beta_{R_0}(\mathcal{W}_{sH}),$

and $n_1, n_2, ..., n_K \in \mathbb{Z}^d$ such that

- (1) $T^{n_i}(U_i) \subseteq \iota_{R_1}(\mathcal{W}_H) \subseteq \iota_0(\mathcal{W}_H), i = 1, 2, ..., K;$ (2) the energy sets
- (2) the open sets

$$T^{n_i}(U_i), \quad i = 1, 2, ..., K,$$

can be grouped as

$$\begin{cases} T^{n_1}(U_1), ..., T^{n_{s_1}}(U_{s_1}), \\ T^{n_{s_1+1}}(U_{s_1+1}), ..., T^{n_{s_2}}(U_{s_2}), \\ ... \\ T^{n_{s_{m-1}+1}}(U_{s_{m-1}+1}), ..., T^{n_{s_m}}(U_{s_m}) \end{cases}$$

with $m \leq (\lfloor 2\sqrt{d} \rfloor + 1)^d$, such that the open sets in each group are mutually disjoint;

(3) for each $x \in \iota_0(\mathcal{W}_H)$ and each $c \in \operatorname{int}(\mathcal{W}_H(x)_0) \cap \mathbb{Z}^d$ with $\operatorname{dist}(c, \partial \mathcal{W}_H) > N_1 \sqrt{d}$, one has

$$\frac{1}{N_1^d} \left| \left\{ n \in \{0, 1, ..., N_1 - 1\}^d : T^{c+n}(x) \in \bigcup_{i=1}^K T^{n_i}(U_i) \right\} \right| < \varepsilon.$$

Put

$$\Omega_0 = \{ x \in X : \operatorname{dist}(0, \partial \mathcal{W}_{sH}(x)) > N\sqrt{d} \text{ and } \mathcal{W}_{sH}(x)_0 = W_{sH}(x, n), \ n = 0 \mod N \}.$$

Then

 $T^{-m}(\Omega_0), \quad m \in \{0, 1, ..., N_0 - 1\}^d$

form a Rokhlin tower with $N_0 = N$, and by (4.3)

(4.5)
$$X \setminus \bigsqcup_{m \in \{0,1,\dots,N_0-1\}^d} T^{-m}(\Omega_0) \subseteq \{x \in X : \operatorname{dist}(0,\partial \mathcal{W}_{sH}(x)) \le 2N\sqrt{d}\} = \beta_{2N\sqrt{d}}(\mathcal{W}_{sH}).$$

Thus, $U_1, U_2, ..., U_K$ form an open cover of $X \setminus \bigsqcup_{m \in \{0,1,...,N_0-1\}^d} T^{-m}(\Omega_0)$. Put

$$\Omega_1 = \{ x \in X : \operatorname{dist}(0, \partial \mathcal{W}_H(x)) > N_1 \sqrt{d} \text{ and } \mathcal{W}_H(x)_0 = W_H(x, n), \ n = 0 \mod N_1 \}.$$

Then

$$T^{-m}(\Omega_1), \quad m \in \{0, 1, ..., N_1 - 1\}^d,$$

ZHUANG NIU

form a Rokhlin tower, and by (4.3) (and the assumption that $R_1 > 2N_1\sqrt{d}$),

(4.6)
$$\bigsqcup_{m \in \{0,1,\dots,N_1-1\}^d} T^{-m}(\Omega_1) \supseteq \{x \in X : \operatorname{dist}(0,\partial \mathcal{W}_H) > 2N_1\sqrt{d}\} \supseteq \iota_{R_1}(\mathcal{W}_H).$$

Thus, $T^{-h_i}(U_i) \subseteq \bigsqcup_{m \in \{0,1,...,N_1-1\}^d} T^{-m}(\Omega_1).$

If $x \in \Omega_1$ (hence $x \in \iota_0(\mathcal{W}_H)$ and $\operatorname{dist}(0, \partial \mathcal{W}_H) > N_1 \sqrt{d}$), it then follows from (3) (with c = 0) that

$$\frac{1}{N_1^d} \left| \left\{ m \in \{0, 1, ..., N_1 - 1\}^d : T^m(x) \in \bigcup_{k=1}^K T^{n_k}(U_k) \right\} \right| < \varepsilon,$$

as desired.

5. Cuntz comparison of open sets, comparison radius, and the mean topological dimension

With the two-tower construction in the previous section, one is able to show that the C*-algebra $C(X) \rtimes \mathbb{Z}^d$ has Cuntz-comparison on open sets (Theorem 5.5), and therefore the radius of comparison of $C(X) \rtimes \mathbb{Z}^d$ is at most half of the mean dimension of (X, T, \mathbb{Z}^d) .

As a preparation, one has the following two very simple observations on the Cuntz semigroup of a C*-algebra.

Lemma 5.1. Let A be a C*-algebra, and let $a_1, a_2, ..., a_m \in A$ be positive elements. Then

$$[a_1] + [a_2] + \dots + [a_m] \le m[a_1 + a_2 + \dots + a_m].$$

Proof. The lemma follows from the observation:

$$\begin{pmatrix} a_1 & & \\ & a_2 & \\ & & \ddots & \\ & & & a_m \end{pmatrix} \leq \begin{pmatrix} a_1 + \dots + a_m & & \\ & & a_1 + \dots + a_m & \\ & & & \ddots & \\ & & & & a_1 + \dots + a_m \end{pmatrix}.$$

Lemma 5.2. Let $U_1, U_2, ..., U_K \subseteq X$ be open sets which can be divided into M groups such that each group consists of mutually disjoint sets. Then

$$[\varphi_{U_1}] + \dots + [\varphi_{U_K}] \le M[\varphi_{U_1 \cup \dots \cup U_K}] = M[\varphi_{U_1} + \dots + \varphi_{U_K}]$$

Proof. Write $U_1, U_2, ..., U_K$ as

{
$$U_1, ..., U_{s_1}$$
}, { $U_{s_1+1}, ..., U_{s_2}$ }, ..., { $U_{s_{m-1}+1}, ..., U_{s_M}$ },

such that the open sets in each group are mutually disjoint. Then

 $[\varphi_{U_{s_i+1}}] + \dots + [\varphi_{U_{s_{i+1}}}] = [\varphi_{U_{s_i+1}} + \dots + \varphi_{U_{s_{i+1}}}] = [\varphi_{U_{s_i+1} \cup \dots \cup U_{s_{i+1}}}], \quad i = 0, 1, \dots, M-1,$ and together with the lemma above, one has

$$\begin{split} [\varphi_{U_1}] + \dots + [\varphi_{U_K}] &= [\varphi_{U_1} + \dots + \varphi_{U_{s_1}}] + \dots + [\varphi_{U_{s_{m-1}+1}} + \dots + \varphi_{U_{s_M}}] \\ &= [\varphi_{U_1 \cup \dots \cup U_{s_1}}] + \dots + [\varphi_{U_{s_{m-1}+1} \cup \dots \cup U_{s_M}}] \\ &\leq M[\varphi_{U_1 \cup \dots \cup U_K}], \end{split}$$

as desired.

Definition 5.3. Consider a topological dynamical system (X, Γ) , where X is a compact metrizable space and Γ is a discrete group acting on X from the right, and consider a Rokhlin tower

$$\mathcal{T} = \{\Omega\gamma, \ \gamma \in \Gamma_0\},\$$

where $\Omega \subseteq X$ is open and $\Gamma_0 \subseteq \Gamma$ is a finite set containing the unit *e* of the discrete group Γ . Define the C^{*}-algebra

$$C^*(\mathcal{T}) := C^*\{u_{\gamma}C_0(\Omega), \ \gamma \in \Gamma_0\} \subseteq C(X) \rtimes \Gamma.$$

By Lemma 3.11 of [24], it is canonically isomorphic to $M_{|\Gamma_0|}(C_0(\Omega))$, and

$$C_{0}(\bigcup_{\gamma\in\Gamma_{0}}\Omega\gamma)\ni\phi\mapsto\operatorname{diag}\{\phi|_{\Omega\gamma_{1}},\phi|_{\Omega\gamma_{2}},...,\phi|_{\Omega\gamma|_{\Gamma_{0}|}}\}\in M_{|\Gamma_{0}|}(C_{0}(\Omega))\}$$

under this isomorphism.

The following comparison result essentially is a special case of Theorem 7.8 of [24].

Lemma 5.4 (Theorem 7.8 of [24]). Let Z be a locally compact metrizable space, and consider $M_n(C_0(Z))$. Let $a, b \in M_n(C_0(Z))$ be two positive diagonal elements, i.e.,

 $a(t) = \text{diag}\{a_1(t), a_2(t), ..., a_n(t)\}$ and $b(t) = \text{diag}\{b_1(t), b_2(t), ..., b_n(t)\}$

for some positive continuous functions $a_1, ..., a_n, b_1, ..., b_n : Z \to \mathbb{R}$. If

$$\operatorname{rank}(a(t)) \le \frac{1}{4} \operatorname{rank}(b(t)), \quad t \in \mathbb{Z}$$

and

 $4 < \operatorname{rank}(b(t)), \quad t \in Z,$

then $a \preceq b$ in $M_n(C_0(Z))$.

Proof. It is enough to show that $(a - \varepsilon)_+ \preceq b$ for arbitrary $\varepsilon > 0$. For a given $\varepsilon > 0$, there is a compact subset $D \subseteq Z$ such that $(a - \varepsilon)_+$ is supported inside D. Denote by $\pi : M_n(\mathcal{C}_0(Z)) \to M_n(\mathcal{C}(D))$ the restriction map. One then has

$$\operatorname{rank}(\pi((a-\varepsilon)_+)(t)) \le \frac{1}{4}\operatorname{rank}(\pi(b)(t)), \quad t \in D$$

and

$$\frac{1}{n} < \frac{1}{4n} \operatorname{rank}(b(t)), \quad t \in D.$$

By Theorem 7.8 of [24], one has that $\pi((a - \varepsilon)_+) \preceq \pi(b)$ in $M_n(C(D))$, that is, there is a sequence $(v_k) \subseteq M_n(C(D))$ such that $v_k(\pi(b))v_k^* \to \pi((a - \varepsilon)_+)$ as $k \to \infty$. Extend each v_k to a function in $M_n(C_0(Z))$, and still denote it by v_k . It is clear that the new sequence (v_k) satisfies $v_k b v_k^* \to (a - \varepsilon)_+$ as $k \to \infty$, and hence $(a - \varepsilon)_+ \preceq b$, as desired. \Box

Theorem 5.5. Let (X, T, \mathbb{Z}^d) be a minimal free dynamical system, and let $E, F \subseteq X$ be open sets such that

$$\mu(E) \le \frac{1}{4}\nu(F), \quad \mu \in \mathcal{M}_1(X, T, \mathbb{Z}^d).$$

Then,

$$[\varphi_E] \le ((2\lfloor \sqrt{d} \rfloor + 1)^d + 1)[\varphi_F]$$

in the Cuntz semigroup of $C(X) \rtimes \mathbb{Z}^d$. In other words, the C*-algebra $C(X) \rtimes \mathbb{Z}^d$ has $(\frac{1}{4}, (2\lfloor\sqrt{d}\rfloor + 1)^d + 1)$ -Cuntz-comparison on open sets (see Definition 1.1).

Proof. Let E and F be open sets satisfying the condition of the theorem. Let $\varepsilon > 0$ be arbitrary. In order to prove the statement of the theorem, it is enough to show that

$$(\varphi_E - \varepsilon)_+ \precsim \underbrace{\varphi_F \oplus \cdots \oplus \varphi_F}_{(2\lfloor \sqrt{d} \rfloor + 1)^d + 1}.$$

For the given ε , pick a compact set $E' \subseteq E$ such that

(5.1)
$$(\varphi_E - \varepsilon)_+(x) = 0, \quad x \notin E'.$$

By the assumption of the theorem, one has that

(5.2)
$$\mu(E') < \frac{1}{4}\mu(F), \quad \mu \in \mathcal{M}_1(X, T, \mathbb{Z}^n),$$

and then there is $N \in \mathbb{N}$ such that for any M > N and any $x \in X$, (5.3)

$$\frac{1}{M^d} \{ m \in \{0, 1, ..., M-1\}^d : T^{-m}(x) \in E' \} < \frac{1}{4} \frac{1}{M^d} \{ m \in \{0, 1, ..., M-1\}^d : T^{-m}(x) \in F \}.$$

Otherwise, there are sequences $N_k \in \mathbb{N}$, $x_k \in X$, k = 1, 2, ..., such that $N_k \to \infty$ as $k \to \infty$, and for any k,

$$\frac{1}{N_k^d} \{ m \in \{0, 1, ..., N_k - 1\}^d : T^{-m}(x_k) \in E' \} \ge \frac{1}{4} \frac{1}{N_k^d} \{ m \in \{0, 1, ..., N_k - 1\}^d : T^{-m}(x_k) \in F \}.$$

That is

(5.4)
$$4\delta_{N_k, x_k}(E') \ge \delta_{N_k, x_k}(F), \quad k = 1, 2, ...,$$

where $\delta_{N_k,x_k} = \frac{1}{N_k^d} \sum_{m \in \{0,1,\dots,N_k-1\}^d} \delta_{T^{-m}(x_k)}$ and δ_y is the Diract measure concentrated at y. Let δ_{∞} be a limit point of $\{\delta_{N_k,x_k}, k = 1, 2, \dots\}$ and it is clear that $\delta_{\infty} \in \mathcal{M}_1(X, T, \mathbb{Z}^d)$. Passing to a subsequence of k, one has

$$\delta_{\infty}(F) \leq \liminf_{k \to \infty} \delta_{N_k, x_k}(F) \qquad (F \text{ is open})$$

$$\leq 4 \liminf_{k \to \infty} \delta_{N_k, x_k}(E') \qquad (by (5.4))$$

$$\leq 4 \limsup_{k \to \infty} \delta_{N_k, x_k}(E')$$

$$\leq 4\delta_{\infty}(E'), \qquad (E' \text{ is closed})$$

which contradicts to (5.2).

With (5.1) and (5.3), one has that for any M > N and any $x \in X$,

(5.5)
$$\frac{1}{M^{d}} \{ m \in \{0, 1, ..., M - 1\}^{d} : (\varphi_{E} - \varepsilon)_{+}(T^{-m}(x)) > 0 \}$$

$$\leq \frac{1}{M^{d}} \{ m \in \{0, 1, ..., M - 1\}^{d} : T^{-m}(x) \in E' \}$$

$$< \frac{1}{4} \frac{1}{M^{d}} \{ m \in \{0, 1, ..., M - 1\}^{d} : T^{-m}(x) \in F \}$$

$$= \frac{1}{4} \frac{1}{M^{d}} \{ m \in \{0, 1, ..., M - 1\}^{d} : \varphi_{F}(T^{-m}(x)) > 0 \}.$$

Also note that since (X, T, \mathbb{Z}^d) is minimal, there is $\delta > 0$ such that for any M > N,

(5.6)
$$\frac{1}{4M^d} \left| \{ m \in \{0, 1, ..., M-1\}^d : \varphi_F(T^{-m}(x)) > 0 \} \right| > \delta, \quad x \in X$$

Let

$$\mathcal{T}_0 = \{T^{-m}(\Omega_0), m \in \{0, 1, ..., N_0 - 1\}^d\}$$

and

$$\mathcal{T}_1 = \{T^{-m}(\Omega_1), m \in \{0, 1, ..., N_1 - 1\}^d\}$$

be the two towers obtained from Theorem 4.3 with respect to $\max\{N, \sqrt[d]{\frac{1}{\delta}}\}$ and δ . Denote by $U_1, U_2, ..., U_K$ and $n_1, n_2, ..., n_K \in \mathbb{Z}^d$ be the open sets and group elements, respectively, obtained from Theorem 4.3.

Pick $\chi_0 \in \mathcal{C}(X)^+$ such that

(5.7)
$$\begin{cases} \chi_0(x) = 1, & x \notin \bigcup_{k=1}^K U_k, \\ \chi_0(x) > 0, & x \in \bigsqcup_{m \in \{0,1,\dots,N_0-1\}^d} T^{-m}(\Omega_0), \\ \chi_0(x) = 0, & x \notin \bigsqcup_{m \in \{0,1,\dots,N_0-1\}^d} T^{-m}(\Omega_0). \end{cases}$$

Note that then $(1 - \chi_0)$ is supported in $U_1 \cup U_2 \cup \cdots \cup U_K$. Consider

$$(\varphi_E - \varepsilon)_+ = (\varphi_E - \varepsilon)_+ (1 - \chi_0) + (\varphi_E - \varepsilon)_+ \chi_0.$$

Then, for any $x \in \Omega_0$, it follows from (5.5) and (5.7) that

$$\begin{aligned} & \left| \{m \in \{0, 1, ..., N_0 - 1\}^d : ((\varphi_E - \varepsilon)_+ \chi_0)(T^{-m}(x)) > 0 \} \right| \\ &= \left| \{m \in \{0, 1, ..., N_0 - 1\}^d : (\varphi_E - \varepsilon)_+ (T^{-m}(x)) > 0 \} \right| \\ &< \frac{1}{4} \left| \{m \in \{0, 1, ..., N_0 - 1\}^d : \varphi_F(T^{-m}(x)) > 0 \} \right| \\ &= \frac{1}{4} \left| \{m \in \{0, 1, ..., N_0 - 1\}^d : (\varphi_F \chi_0)(T^{-m}(x)) > 0 \} \right|. \end{aligned}$$

Therefore, under the isomorphism $C^*(\mathcal{T}_0) \cong M_{N_0^d}(C_0(\Omega_0))$, one has

$$\operatorname{rank}(((\varphi_E - \varepsilon)_+ \chi_0)(x)) \le \frac{1}{4} \operatorname{rank}((\varphi_F \chi_0)(x)), \quad x \in \Omega_0.$$

Moreover, it follows from (5.6) and the fact that $N_0 > \sqrt[d]{\frac{1}{\delta}}$ that for any $x \in \Omega_0$,

$$\frac{1}{4N_0^d} \operatorname{rank}((\varphi_F \chi_0)(x)) = \frac{1}{4N_0^d} \left| \{ m \in \{0, 1, ..., N_0 - 1\}^d : \varphi_F(T^{-m}(x)) > 0\} \right| > \delta > \frac{1}{N_0^d}$$

Thus, by Lemma 5.4, one has that

(5.8)
$$(\varphi_E - \varepsilon)_+ \chi_0 \precsim \varphi_F \chi_0 \precsim \varphi_F.$$

Consider $(\varphi_E - \varepsilon)_+ (1 - \chi_0)$. Since $(1 - \chi_0)$ is supported in $U_1 \cup U_2 \cup \cdots \cup U_K$, one has that

$$(\varphi_E - \varepsilon)_+ (1 - \chi_0) \precsim (1 - \chi_0) \precsim \varphi_{U_1 \cup \dots \cup U_K} \sim \varphi_{U_1} + \dots + \varphi_{U_K} \precsim \varphi_{U_1} \oplus \dots \oplus \varphi_{U_K}.$$

On the other hand, by Lemma 5.2,

$$\varphi_{T^{n_1}(U_1)} \oplus \cdots \oplus \varphi_{T^{n_K}(U_K)} \precsim \bigoplus_{(2\lfloor \sqrt{d} \rfloor + 1)^d} (\varphi_{T^{n_1}(U_1)} + \cdots + \varphi_{T^{n_K}(U_K)}).$$

Note that $\varphi_{U_i} \sim \varphi_{T^{n_i}(U_i)}, i = 1, 2, ..., K$, and one has

(5.9)
$$(\varphi_E - \varepsilon)_+ (1 - \chi_0) \precsim \bigoplus_{(2\lfloor \sqrt{d} \rfloor + 1)^d} (\varphi_{T^{n_1}(U_1) \cup \cdots \cup T^{n_K}(U_K)}).$$

By Theorem 4.3,

(5.10)
$$\frac{1}{N_1^d} \left| \left\{ m \in \{0, 1, ..., N_1 - 1\}^d : T^{-m}(x) \in \bigcup_{k=1}^K T^{n_k}(U_k) \right\} \right| < \delta, \quad x \in \Omega_1.$$

Let $\chi_1: X \to [0,1]$ be a continuous function such that

$$\begin{cases} \chi_1(x) > 0, & x \in \bigsqcup_{m \in \{0,1,\dots,N_1-1\}^d} T^{-m}(\Omega_1), \\ \chi_1(x) = 0, & x \notin \bigsqcup_{m \in \{0,1,\dots,N_1-1\}^d} T^{-m}(\Omega_1). \end{cases}$$

Then

$$\frac{1}{4N_1^d} \operatorname{rank}((\varphi_F \chi_1)(x)) = \frac{1}{4N_1^d} \left| \{ m \in \{0, 1, ..., N_1 - 1\}^d : \varphi_F(T^{-m}(x)) > 0 \} \right| > \delta > \frac{1}{N_1^d}, \quad x \in \Omega_1,$$

and hence, for any $\pi \in \Omega$, with (5.10), one has

and hence, for any $x \in \Omega_1$, with (5.10), one has

$$\operatorname{rank}(\varphi_{T^{n_1}(U_1)\cup\dots\cup T^{n_K}(U_K)}(x)) = \left\| \left\{ m \in \{0, 1, \dots, N_1 - 1\}^d : T^{-m}(x) \in \bigcup_{k=1}^K T^{n_k}(U_k) \right\} \right\| \\ < N_1^d \delta < \frac{1}{4} \operatorname{rank}((\varphi_F \chi_1)(x)).$$

By Lemma 5.4,

 $\varphi_{T^{n_1}(U_1)\cup\cdots\cup T^{n_K}(U_K)} \precsim \varphi_F \chi_1 \precsim \varphi_F,$

and together with (5.9) and (5.8),

$$\begin{aligned} (\varphi_E - \varepsilon)_+ & \precsim \quad (\varphi_E - \varepsilon)_+ (1 - \chi_0) \oplus (\varphi_E - \varepsilon)_+ \chi_0 \\ & \precsim \quad (\bigoplus_{(2\lfloor \sqrt{d} \rfloor + 1)^d} (\varphi_{T^{n_1}(U_1) \cup \cdots \cup T^{n_K}(U_K)})) \oplus \varphi_F \\ & \precsim \quad (\bigoplus_{(2\lfloor \sqrt{d} \rfloor + 1)^d} \varphi_F) \oplus \varphi_F, \end{aligned}$$

as desired.

Theorem 5.6. Let (X, T, \mathbb{Z}^d) be a minimal free dynamical system. Then

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \mathbb{Z}^d) \leq \frac{1}{2} \operatorname{mdim}(X, T, \mathbb{Z}^d).$$

Proof. By Theorem 5.5, the C*-algebra $C(X) \rtimes \mathbb{Z}^d$ has the (COS). By Theorem 4.2, the dynamical system (X, T, \mathbb{Z}^d) has the (URP). Then the statement follows directly from Theorem 4.8 of [24].

The following corollary generalizes Corollary 4.9 of [4] (where d = 1) and generalizes the classifiability result of [29] (where $\dim(X) < \infty$).

Theorem 5.7. Let (X, T, \mathbb{Z}^d) be a minimal free dynamical system with mean dimension zero, then $C(X) \rtimes \mathbb{Z}^d$ is classified by its Elliott invariant. In particular, if $\dim(X) < \infty$, or (X, T, \mathbb{Z}^d) has at most countably many ergodic measures, or (X, T, \mathbb{Z}^d) has finite topological entropy, then $C(X) \rtimes \mathbb{Z}^d$ is classified by its Elliott invariant.

Proof. By Theorem 4.2 and Theorem 5.5, the dynamical system (X, \mathbb{Z}^d) has the (URP) and (COS). Then the statement follows from Theorem 4.8 of [25]

Remark 5.8. In [17], it is also shown that the (URP) and (COS) implies that the C*-algebra $C(X) \rtimes \Gamma$, classifiable or not, always has (topological) stable rank one; and the C*-algebra $C(X) \rtimes \Gamma$ satisfies the Toms-Winter conjecture (i.e., it is classifiable if, and only if it has the strict comparison of positive elements). Therefore, as corollaries of Theorem 5.6, the C*-algebra $C(X) \rtimes \mathbb{Z}^d$, classifiable or not, always has stable rank one, and the C*-algebra $C(X) \rtimes \mathbb{Z}^d$ satisfies the Toms-Winter conjecture.

The following is a generalization of Corollary 5.7 of [4].

Corollary 5.9. Let $(X_1, T_1, \mathbb{Z}^{d_1})$ and $(X_2, T_2, \mathbb{Z}^{d_2})$ be minimal free dynamical systems where $d_1, d_2 \in \mathbb{N}$. Then the tensor product C^* -algebra $(C(X_1) \rtimes \mathbb{Z}^{d_1}) \otimes (C(X_2) \rtimes \mathbb{Z}^{d_2})$ is classified by its Elliott invariant.

Proof. Note that

$$(\mathcal{C}(X_1) \rtimes \mathbb{Z}^{d_1}) \otimes (\mathcal{C}(X_2) \rtimes \mathbb{Z}^{d_2}) \cong \mathcal{C}(X_1 \times X_2) \rtimes (\mathbb{Z}^{d_1} \times \mathbb{Z}^{d_2}),$$

where $\mathbb{Z}^{d_1} \times \mathbb{Z}^{d_2}$ acting on $X_1 \times X_2$ by

$$(T_1 \times T_2)^{(n_1, n_2)}((x_1, x_2)) = (T_1^{n_1}(x_1), T_2^{n_2}(x_2)), \quad n_1 \in \mathbb{Z}^{d_1}, \ n_2 \in \mathbb{Z}^{d_2}.$$

By the argument of Remark 5.8 of [4], one has

$$\operatorname{mdim}(X_1 \times X_2, T_1 \times T_2, \mathbb{Z}^{d_1} \times \mathbb{Z}^{d_2}) = 0,$$

and the statement then follows from Theorem 5.7.

ZHUANG NIU

References

- G. A. Elliott, G. Gong, H. Lin, and Z. Niu. On the classification of simple amenable C*-algebras with finite decomposition rank, II. 07 2015. URL: http://arxiv.org/abs/1507.03437, arXiv:1507.03437.
- [2] G. A. Elliott and Z. Niu. On the radius of comparison of a commutative C*-algebra. Canad. Math. Bull., 56(4):737-744, 2013. doi:10.4153/CMB-2012-012-9.
- [3] G. A. Elliott and Z. Niu. On the classification of simple amenable C*-algebras with finite decomposition rank. In R. S. Doran and E. Park, editors, "Operator Algebras and their Applications: A Tribute to Richard V. Kadison", Contemporary Mathematics, volume 671, pages 117–125. Amer. Math. Soc., 2016. arXiv:http://dx.dot.org/10.1090/conm/671/13506.
- [4] G. A. Elliott and Z. Niu. The C*-algebra of a minimal homeomorphism of zero mean dimension. Duke Math. J., 166(18):3569–3594, 2017. doi:10.1215/00127094-2017-0033.
- Bernardo Freitas Paulo Da Costa. Deux exemples sur la dimension moyenne d'un espace de courbes de Brody. Ann. Inst. Fourier (Grenoble), 63(6):2223-2237, 2013. URL: https://mathscinet.ams.org/ mathscinet-getitem?mr=3237445.
- [6] J. Giol and D. Kerr. Subshifts and perforation. J. Reine Angew. Math., 639:107-119, 2010. URL: http://dx.doi.org/10.1515/CRELLE.2010.012, doi:10.1515/CRELLE.2010.012.
- [7] G. Gong, H. Lin, and Z. Niu. Classification of finite simple amenable Z-stable C*-algebras, I. C*-algebras with generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 42(3):63–450, 2020.
- [8] G. Gong, H. Lin, and Z. Niu. Classification of finite simple amenable Z-stable C*-algebras, II. C*algebras with rational generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 42(4):451–539, 2020.
- M. Gromov. Topological invariants of dynamical systems and spaces of holomorphic maps. I. Math. Phys. Anal. Geom., 2(4):323-415, 1999. URL: https://mathscinet.ams.org/mathscinet-getitem? mr=1742309, doi:10.1023/A:1009841100168.
- [10] Y. Gutman. Embedding Z^k-actions in cubical shifts and Z^k-symbolic extensions. Ergodic Theory Dynam. Systems, 31(2):383-403, 2011. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 2776381, doi:10.1017/S0143385709001096.
- [11] Y. Gutman, E. Lindenstrauss, and M. Tsukamoto. Mean dimension of Z^k-actions. Geom. Funct. Anal., 26(3):778-817, 2016. URL: http://dx.doi.org/10.1007/s00039-016-0372-9, doi:10.1007/ s00039-016-0372-9.
- [12] Yonatan Gutman. Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory Dynam. Systems, 37(2):512-538, 2017. URL: https://mathscinet.ams.org/ mathscinet-getitem?mr=3614036, doi:10.1017/etds.2015.40.
- [13] Yonatan Gutman and Masaki Tsukamoto. Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts. *Ergodic Theory Dynam. Systems*, 34(6):1888-1896, 2014. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3272776, doi:10.1017/etds.2013.30.
- [14] Yonatan Gutman and Masaki Tsukamoto. Embedding minimal dynamical systems into Hilbert cubes. Invent. Math., 221(1):113-166, 2020. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 4105086, doi:10.1007/s00222-019-00942-w.
- [15] U. Haagerup. Quasitraces on exact C*-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can., 36(2-3):67–92, 2014.
- [16] D. Kerr and G. Szabo. Almost finiteness and the small boundary property. 07 2018. URL: https: //arxiv.org/pdf/1807.04326, arXiv:1807.04326.
- [17] C. Li and Z. Niu. Stable rank of $C(X) \rtimes \Gamma$. arXiv: 2008.03361, 2020.
- [18] Hanfeng Li. Sofic mean dimension. Adv. Math., 244:570-604, 2013. URL: https://mathscinet.ams. org/mathscinet-getitem?mr=3077882, doi:10.1016/j.aim.2013.05.005.

- [19] Hanfeng Li and Bingbing Liang. Mean dimension, mean rank, and von Neumann-Lück rank. J. Reine Angew. Math., 739:207-240, 2018. URL: https://mathscinet.ams.org/mathscinet-getitem?mr= 3808261, doi:10.1515/crelle-2015-0046.
- [20] E. Lindenstrauss. Mean dimension, small entropy factors and an embedding theorem. Inst. Hautes Études Sci. Publ. Math., (89):227-262 (2000), 1999. URL: http://www.numdam.org/item?id=PMIHES_ 1999_89_227_0.
- [21] E. Lindenstrauss and B. Weiss. Mean topological dimension. Israel J. Math., 115:1-24, 2000. URL: http://dx.doi.org/10.1007/BF02810577, doi:10.1007/BF02810577.
- [22] Elon Lindenstrauss and Masaki Tsukamoto. From rate distortion theory to metric mean dimension: variational principle. *IEEE Trans. Inform. Theory*, 64(5):3590-3609, 2018. URL: https://mathscinet. ams.org/mathscinet-getitem?mr=3798396, doi:10.1109/TIT.2018.2806219.
- [23] Shinichiroh Matsuo and Masaki Tsukamoto. Brody curves and mean dimension. J. Amer. Math. Soc., 28(1):159-182, 2015. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3264765, doi:10.1090/S0894-0347-2014-00798-0.
- [24] Z. Niu. Comparison radius and mean topological dimension: Rokhlin property, comparison of open sets, and subhomogeneous C*-algebras. J. Analyse Math., accepted, 2020.
- [25] Z. Niu. Z-stability of $C(X) \rtimes \Gamma$. Trans. Amer. Math. Soc, accepted.
- [26] N. C. Phillips. The C*-algebra of a minimal homeomorphism with finite mean dimension has finite radius of comparison. 05 2016. URL: https://arxiv.org/abs/1605.07976, arXiv:1605.07976.
- [27] M. Rørdam. On the structure of simple C*-algebras tensored with a UHF-algebra. II. J. Funct. Anal., 107(2):255-269, 1992. URL: http://dx.doi.org/10.1016/0022-1236(92)90106-S, doi:10. 1016/0022-1236(92)90106-S.
- [28] R. Schneider. Convex bodies: the Brunn-Minkowski theory, volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1993. URL: https://mathscinet.ams. org/mathscinet-getitem?mr=1216521, doi:10.1017/CB09780511526282.
- [29] G. Szabó. The Rokhlin dimension of topological Z^m-actions. Proc. Lond. Math. Soc. (3), 110(3):673-694, 2015. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3342101, doi:10.1112/plms/pdu065.
- [30] G. Szabo, J. Wu, and J. Zacharias. Rokhlin dimension for actions of residually finite groups. 08 2014. URL: http://arxiv.org/abs/1408.6096, arXiv:1408.6096.
- [31] A Tikuisis, S. White, and W. Winter. Quasidiagonality of nuclear C*-algebras. Ann. of Math. (2), to appear, 09. URL: http://arxiv.org/abs/1509.08318, arXiv:1509.08318.
- [32] A. S. Toms. Flat dimension growth for C*-algebras. J. Funct. Anal., 238(2):678–708, 2006.
- [33] A. S. Toms and W. Winter. Minimal dynamics and K-theoretic rigidity: Elliott's conjecture. Geom. Funct. Anal., 23(1):467-481, 2013. URL: http://dx.doi.org/10.1007/s00039-012-0208-1, doi:10. 1007/s00039-012-0208-1.
- [34] Masaki Tsukamoto. Deformation of Brody curves and mean dimension. Ergodic Theory Dynam. Systems, 29(5):1641-1657, 2009. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=2545021, doi: 10.1017/S014338570800076X.
- [35] Masaki Tsukamoto. Mean dimension of the dynamical system of Brody curves. Invent. Math., 211(3):935-968, 2018. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3763403, doi: 10.1007/s00222-017-0758-9.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WYOMING, LARAMIE, WYOMING, USA, 82071 *Email address*: zniu@uwyo.edu