
COMPARISON RADIUS AND MEAN TOPOLOGICAL DIMENSION:
Zd-ACTIONS

ZHUANG NIU

Abstract. Consider a minimal free topological dynamical system (X,Zd). It is shown that

the comparison radius of the crossed product C*-algebra C(X) ⋊ Zd is at most the half of

the mean topological dimension of (X,Zd). As a consequence, the C*-algebra C(X)⋊Zd is

classified by the Elliott invariant if the mean dimension of (X,Zd) is zero.

1. Introduction

Let (X,Γ) be a topological dynamical system, where X is a compact Hausdorff space

and Γ is a discrete amenable group. The mean (topological) dimension of (X,Γ), denoted

by mdim(X,Γ), was introduced by Gromov ([9]), and then was developed and studied sys-

tematically by Lindenstrauss and Weiss ([21]). It is a numerical invariant, taking value in

[0,+∞], to measure the complexity of (X,Γ) in terms of dimension growth with respect to

partial orbits. Applications of mean dimension theory can be found in topological dynamical

systems ([21], [20], [10], [18], [13], [12], [14]), geometric analysis ([34], [5], [23], [35]), operator

algebras ([19], [4], [26], [24], [25]), and information theory ([22]).

On the other hand, for a general unital stably finite C*-algebra A, the radius of comparison,

introduced by Toms ([32]) and denoted by rc(A), is also a numerical invariant to measure

the regularity of the C*-algebra A; and rc(A) can be regarded as an abstract version of

the dimension growth of A. A heuristic example is Mn(C(X)), the C*-algebra of (complex)

n× n matrix valued continuous functions on a finite CW-complex X; its comparison radius

is around 1
2
dim(X)

n
, which is half of the dimension ratio of Mn(C(X)).

For the given topological dynamical system (X,Γ), the canonical C*-algebra to be con-

sidered is the transformation group C*-algebra A = C(X) ⋊ Γ. A natural question to ask

then is how the radius of comparison of the C*-algebra is connected to the mean dimension

of the dynamical system. In fact, Phillips and Toms even made the following conjecture:

Conjecture (Phillips-Toms). Let (X,Γ) be a minimal and free topological dynamical system,

where X is compact Hausdorff space, and Γ is a discrete amenable group. Then

rc(C(X)⋊ Γ) =
1

2
mdim(X,Γ).

This conjecture is closed related to the classification of C*-algebras. In general, the C*-

algebra C(X) ⋊ Γ can be wild and not to be classified by the Elliott invariant (even with

Γ = Z, see [6]). So, an important question in the classification program of C*-algebras
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is to determine which transformation group C*-algebra is classifiable. Now, a special case

of this conjecture is that mdim(X,Γ) = 0 implies rc(C(X) ⋊ Γ) = 0 (strict comparison

of positive elements); and by the Toms-Winter conjecture, this should imply that the C*-

algebra C(X)⋊ Γ is Jiang-Su stable and classifiable.

There have been many researches on the classifiability of transformation group C*-algebras:

Under the assumption that X is finite dimensional (hence the mean dimension is automat-

ically zero), it was shown in [33] that the algebra C(X) ⋊ Z has finite nuclear dimension,

and therefore is Jiang-Su stable. With Rokhlin dimension, this result was generalized to

Zd-actions in [29], and then to the actions of residually finite groups with box spaces of

finite asymptotic dimension ([30]); and with almost finiteness, the Jiang-Su stability is also

obtained for actions by groups with comparison property ([16]).

Without the finite dimensionality assumption on X, so far the only result was [4] where Z-
actions are considered, and the zero mean dimension was shown to imply the classifiability

of the C*-algebra. Note that this result particularly covers all strictly ergodic dynamical

systems. Beyond the case of mean dimension zero, Phillips considered Z-actions in [26] and

showed that the radius of comparison of C(X)⋊ Z is at most 1 + 36mdim(X,Z).
In this paper, let us consider minimal and free Zd-actions, and show the following:

Theorem A (Theorem 5.6). Let (X,Zd) be a minimal free dynamical system. Then

(1.1) rc(C(X)⋊ Zd) ≤ 1

2
mdim(X,Zd).

As a consequence of (1.1), one obtains the classifiability if (X,Zd) has mean dimension

zero:

Theorem B (Theorem 5.7). Let (X,Zd) be a minimal free dynamical system with mean

dimension zero, then C(X) ⋊ Zd is classified by its Elliott invariant. In particular, if

dim(X) < ∞, or (X,Zd) has at most countably many ergodic measures, or (X,Zd) has

finite topological entropy, then C(X)⋊ Zd is classified by its Elliott invariant.

The argument in [33], [4], or [26] relies on the Putnam’s orbit-cutting algebra (or the large

sub-algebra) Ay; and in the case of zero mean dimension, the argument in [4] also heavily

depends on the small boundary property (which is equivalent to mean dimension zero in the

case of Z-actions). However, beyond the case of Z-actions, it is not clear in general how

to construct large sub-algebras; moreover, once the dynamical system does not have mean

dimension zero, the small boundary property does not hold anymore. So, instead of large

sub-algebra and small boundary property, the proofs of Theorem A and Theorem B depend

on Uniform Rokhlin Property (URP) and Cuntz comparison of Open Sets (COS):

Definition 1.1 (Definition 3.1 and Definition 4.1 of [24]). A topological dynamical system

(X,Γ), where Γ is a discrete amenable group, is said to have Uniform Rokhlin Property

(URP) if for any ε > 0 and any finite set K ⊆ Γ, there exist closed sets B1, B2, ..., BS ⊆ X

and (K, ε)-invariant sets Γ1,Γ2, ...,ΓS ⊆ Γ such that

Bsγ, γ ∈ Γs, s = 1, ..., S,
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are mutually disjoint and

ocap(X \
S⊔

s=1

⊔
γ∈Γs

Bsγ) < ε,

where ocap denote the orbit capacity (see, for instance, Definition 5.1 of [21]).

The dynamical system (X,Γ) is said to have (λ,m)-Cuntz-comparison of open sets, where

λ ∈ (0, 1] and m ∈ N, if for any open sets E,F ⊆ X with

µ(E) < λµ(F ), µ ∈ M1(X,Γ),

where M1(X,Γ) is the simplex of all invariant probability measures on X, then

φE ≾ φF ⊕ · · · ⊕ φF︸ ︷︷ ︸
m

in C(X)⋊ Γ,

where φE and φF are continuous functions supporting on E and F respectively.

The dynamical system (X,Γ) is said to have Cuntz comparison of Open Sets (COS) if it

has (λ,m)-Cuntz-comparison on open sets for some λ and m.

It is shown in [24] (Theorem 4.8) that the (URP) and (COS) implies

rc(C(X)⋊ Γ) ≤ 1

2
mdim(X,Γ),

and it is also shown in [25] (Theorem 4.8) that if, in addition, (X,Γ) has mean dimension

zero, then the C*-algebra C(X)⋊Γ is classifiable. Thus, Theorem A and Theorem B follows

from the following:

Theorem (Theorem 4.2 and Theorem 5.5). Any free and minimal dynamical system (X,Zd)

has the (URP) and (COS).

Remark 1.2. The adding-one-dimension and going-down argument of [11] play a crucial role

in the proof of the (COS) and (URP).

Remark 1.3. In [17], it is shown that the (URP) and (COS) imply that the C*-algebra

C(X) ⋊ Γ alway has stable rank one (classifiable or not), and satisfies the Toms-Winter

conjecture. Thus, by the Theorem above, C(X)⋊Zd always has stable rank one (classifiable

or not), and satisfies the Toms-Winter conjecture.

2. Notation and Preliminaries

2.1. Topological Dynamical Systems. In this paper, one only considers Zd-actions on a

separable compact Hausdorff space X.

Definition 2.1. Consider a topological dynamical system (X,T,Zd). A closed set Y ⊆ X

is said to be invariant if T n(Y ) = Y , n ∈ Zd, and (X,T,Zd) is said to be minimal if ∅ and

X are the only invariant closed subsets. The dynamical system (X,T,Zd) is free if for any

x ∈ X, {n ∈ Zd : T n(x) = x} = {0}.

Remark 2.2. The dynamical system (X,T,Zd) is induced by d commuting homeomorphisms

of X, and vise versa.
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Definition 2.3. A Borel measure µ onX is invariant under the action σ if µ(E) = µ(T n(E)),

for any n ∈ Zd and any Borel set E ⊆ X. Denote by M1(X,T,Zd) the collection of

all invariant Borel probability measures on X. It is a Choquet simplex under the weak*

topology.

Definition 2.4 (see [9] and [21]). Consider a topological dynamical system (X,T,Zd), and

let E be a subset of X. The orbit capacity of E is defined by

ocap(E) := lim
N→∞

1

Nd
sup
x∈X

∑
n∈{0,1,...,N−1}d

χE(T
n(x)),

where χE is the characteristic function of E. The limit always exists.

Definition 2.5 (see [21]). Let U be an open cover of X. Define

D(U) = min{ord(V) : V ⪯ U},

where V = −1 + supx∈X
∑

V ∈V χV (x).

Consider a topological dynamical system (X,T,Zd). Then the topological mean dimension

of (X,T,Zd) is defined by

mdim(X,T,Zd) := sup
U

lim
N→∞

1

Nd
D(

∨
n∈{0,1,...,N−1}d

T−n(U)),

where U runs over all finite open covers of X.

Remark 2.6. It follows from the definition that if dim(X) < ∞, then mdim(X,T,Zd) = 0; By

[21], if (X,T,Zd) has at most countably many ergodic measures, then mdim(X,T,Zd) = 0;

and by [20], if (X,T,Zd) has finite topological entropy, then mdim(X,T,Zd) = 0.

2.2. Crossed product C*-algebras. Consider a topological dynamical system (X,T,Zd).

Then the crossed product C*-algebra C(X)⋊ Zd is the universal C*-algebra

A = C*{f, un; unfu
∗
n = f ◦ T n, umu

∗
n = um−n, u0 = 1, f ∈ C(X), m, n ∈ Zd}.

The C*-algebra A is nuclear, and if T is minimal, the C*-algebra A is simple. Moreover, the

simplex of tracial states of C(X) ⋊σ Γ is canonically homeomorphic to the simplex of the

invariant probability measures of (X,T,Zd).

2.3. Cuntz comparison of positive elements of a C*-algebra.

Definition 2.7. Let A be a C*-algebra, and let a, b ∈ A+. Then we say that a is Cuntz

subequivalent to b, denote by a ≾ b, if there are xi, yi, i = 1, 2, ..., such that

lim
n→∞

xibyi = a,

and we say that a is Cuntz equivalent to b if a ≾ b and b ≾ a.

Let τ : A → C be a trace. Define the rank function

dτ (a) := lim
n→∞

τ(a
1
n ) = µτ (sp(a) ∩ (0,+∞)),

where µτ is the Borel measure induced by τ on the spectrum of a. It is well known that

dτ (a) ≤ dτ (b), if a ≾ b.
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Example 2.8. Consider h ∈ C(X)+ and let µ be a probability measure on X. Then

dτµ = µ(f−1(0,+∞)),

where τµ is the trace of C(X) induced by µ.

Let f, g ∈ C(X) be positive elements. Then f and g are Cuntz equivalent if and only if

f−1(0,+∞) = g−1(0,+∞). That is, their equivalence classes are determined by their open

support. On the other hand, for each open set E ⊆ X, pick a continuous function

φE : X → [0,+∞) such that E = φ−1
E (0,+∞).

For instance, one can pick φE(x) = d(x,X \E), where d is a compatible metric on X. This

notation will be used throughout this paper. Note that the Cuntz equivalence class of φE is

independent of the choice of individual function φE.

Definition 2.9. Let a ∈ A+, where A is a C*-algebra, and let ε > 0. Define

(a− ε)+ = f(a) ∈ A,

where f(t) = max{t− ε, 0}.

The following lemma is frequently used:

Lemma 2.10 (Section 2 of [27]). Let a, b be positive elements of a C*-algebra A. Then a ≾ b

if and only if (a− ε)+ ≾ b for all ε > 0.

Definition 2.11 (Definition 6.1 of [32]). Let A be a C*-algebra. Denote by Mn(A) the

C*-algebra of n × n matrices over A. Regard Mn(A) as the upper-left conner of Mn+1(A),

and denote by

M∞(A) =
∞⋃
n=1

Mn(A),

the algebra of all finite matrices over A.

The radius of comparison of a unital C*-algebra A, denoted by rc(A), is the infimum of

the set of real numbers r > 0 such that if a, b ∈ (M∞(A))+ satisfy

dτ (a) + r < dτ (b), τ ∈ T(A),

then a ≾ b, where T(A) is the simplex of tracial states. (In [32], the radius of comparison

is defined in terms of quasitraces instead of traces; but since all the algebras considered in

this note are nuclear, by [15], any quasitrace actually is a trace.)

Example 2.12. Let X be a compact Hausdorff space. Then

(2.1) rc(Mn(C(X))) ≤ 1

2

dim(X)− 1

n
,

where dim(X) is the topological covering dimension of X (a lower bound of rc(C(X)) in

terms of cohomological dimension is given in [2]).

The main result of this paper is a dynamical version of (2.1); that is,

rc(C(X)⋊ Zd) ≤ 1

2
mdim(X,T,Zd)

if (X,T,Zd) is minimal and free (Corollary 5.6).



6 ZHUANG NIU

3. Adding one dimension, going-down argument, R-boundary points, and

R-interior points

Adding-one-dimension and going-down argument are introduced in [11], and they play

a crucial role in this paper. Let us first take a brief review. Consider a minimal system

(X,T,Zd). Pick open sets U ′ ⊆ U ⊆ X with U ′ ⊆ U , and a continuous function φ : X →
[0, 1] such that

φ|U ′ = 1 and φ|X\U = 0.

Since (X,T,Zd) minimal, there exists L ∈ N such that⋃
|n|≤L

T n(U ′) = X

and hence

(1) for any x ∈ X, there is n ∈ Zd with |n| ≤ L such that φ(T n(x)) = 1.

On the other hand, pick M such that

T n(U), |n| ≤ M,

are mutually disjoint, and therefore

(2) if φ(x) > 0 for some x ∈ X, then φ(T n(x)) = 0 for all nonzero n ∈ Zk with |n| ≤ M .

Note that M ≤ L; by the freeness of (X,T,Zd), the number M is arbitrarily large if U is

sufficiently small.

Pick x ∈ X. Following from [11], one considers the set

{(n, 1

φ(T n(x))
) : n ∈ Zd, φ(T n(x)) ̸= 0} ⊆ Rd+1,

and defines the Voronoi cell V (x, n) ⊆ Rd+1 with center (n, 1
φ(Tn(x))

) by

V (x, n) =

{
ξ ∈ Rk+1 :

∥∥∥∥ξ − (n,
1

φ(T n(x))
)

∥∥∥∥ ≤
∥∥∥∥ξ − (m,

1

φ(Tm(x))
)

∥∥∥∥ ,∀m ∈ Zd

}
,

where ∥·∥ is the ℓ2-norm on Rd+1. If φ(T n(x)) = 0, then put

V (x, n) = ∅.

One then has a tiling

Rd+1 =
⋃
n∈Zd

V (x, n).

Pick H > (L+
√
d)2. For each n ∈ Zd, define

WH(x, n) = V (x, n) ∩ (Rd × {−H}),

and one has a tiling

WH : Rd =
⋃
n∈Zd

W (x, n).

The following are some basic properties of this construction, and the proofs can be found in

[11].

Lemma 3.1 (Lemma 4.1 of [11]). With the construction above, one has
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(1) WH is continuous on x in the following sense: Suppose that W (x, n) has non-empty

interior. For any ε > 0, if y ∈ X is sufficiently close to x, then the Hausdorff

distance between WH(x, n) and WH(y, n) are smaller than ε.

(2) WH is Zd-equivariant: WH(T
m(x), n−m) = −m+WH(x, n).

(3) If φ(T n(x)) > 0, then

BM
2
(n,

1

φ(T n(x))
) ⊆ V (x, n).

(4) If WH(x, n) is non-empty, then

1 ≤ 1

φ(T n(x))
≤ 2.

(5) If (a,−H) ∈ V (x, n), then

∥a− n∥ < L+
√
d.

Moreover, if one considers different horizontal cuts, at levels −sH and −H for some s > 1,

one has the following lemma.

Lemma 3.2 (Lemma 4.1(4) of [11] and its proof). Let s > 1 and r > 0. One can choose M

sufficiently large such that if (a,−sH) ∈ V (x, n), then

Br(
a

s
+ (1− 1

s
)n) ⊆ WH(x, n)

and ∥∥∥∥as + (1− 1

s
)n− (a+

(s− 1)H

sH + t
(n− a))

∥∥∥∥ ≤ 4

L+
√
d
,

where t = 1
φ(Tn(x))

and ∥·∥ is the ℓ2-norm on Rd.

Definition 3.3. Note that the point (a+ (s−1)H
sH+t

(n−a),−H) is the image of (a,−sH) in the

plane Rd×{−H} under the projection towards the center (n, t). Let us call a+ (s−1)H
sH+t

(n−a)

the H-projective image of a (with the center (n, t)).

The following is a lemma on convex bodies in Rd, and the author is in debt to Tyrrell

McAllister for the discussions.

Lemma 3.4. Consider Rd. For any ε > 0 and any r > 0, there is N0 > 0 such that if

N ≥ N0, then for any convex body V ⊆ Rd, one has

1

Nd

∣∣{n ∈ Zd : dist(n, ∂V ) ≤ r, n ∈ IN}
∣∣ < ε,

where IN = [0, N ]d.

Proof. Pick N0 sufficiently large such that

2
vol(∂r+

√
d(IN))

vol(IN)
< ε, N > N0,

where ∂E(K) denotes the E-neighbourhood of the boundary of a convex body K. Then, this

N0 satisfies the conclusion of the Lemma.
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Indeed, for any N ≥ N0, denote by ∂+

r+
√
d
(V ∩ IN) the outer (r+

√
d)-neighborhood of the

convex body V ∩ IN , and it follows from Steiner formula (see, for instance, (4.1.1) of [28])

that

vol(∂+

r+
√
d
(V ∩ IN)) =

d∑
j=1

Cj
dWj(V ∩ IN)(r +

√
d)j,

where Wj(V ∩ IN) is the j-th quermassintegral of V ∩ IN . Since the quermassintegrals Wj,

j = 1, ..., d, are monotonic (see, for instance, Page 211 of [28]), one has

Wj(V ∩ IN) ≤ Wj(IN), j = 1, 2, ..., d,

and hence

vol(∂+

r+
√
d
(V ∩ IN)) =

d∑
j=1

Cj
dWj(V ∩ IN)(r +

√
d)j

≤
d∑

j=1

Cj
dWj(IN)(r +

√
d)j

= vol(∂+

r+
√
d
(IN)).

Since vol(∂r+
√
d(V ∩ IN)) ≤ 2vol(∂+

r+
√
d
(V ∩ IN)), one has

vol(∂r+
√
d(V ∩ IN))

vol(IN)
≤ 2

vol(∂+

r+
√
d
(V ∩ IN))

vol(IN)
≤ 2

vol(∂r+
√
d(IN))

vol(IN)
< ε.

On the other hand, note that∣∣{n ∈ Zd : dist(n, ∂V ) ≤ r, n ∈ IN}
∣∣ ≤ vol(∂r+

√
d(V ∩ IN)),

and hence

1

Nd

∣∣{n ∈ Zd : dist(n, ∂V ) ≤ r, n ∈ IN}
∣∣ ≤ vol(∂r+

√
d(V ∩ IN))

vol(IN)
< ε,

as desired. □

Definition 3.5. Consider a continuous function X ∋ x 7→ W(x) with W(x) a Rd-tiling. For

each R ≥ 0, a point x ∈ X is said to be an R-interior point if dist(0, ∂W(x)) > R, where

∂W(x) denotes the union of the boundaries of the tiles of W . Note that, in this case, the

origin 0 ∈ Rd is an interior point of a (unique) tile of W(x). Denote this tile by W(x)0, and

denote the set of R-interior points by ιR(T ).

Otherwise (if dist(0, ∂W(x)) ≤ R), the point x is said to be an R-boundary point. Denote

by βR(T ) the set of R-boundary points.

Note that βR(T ) is closed and ιR(T ) is open.

Lemma 3.6. Let (X,T,Zd) be a minimal free dynamical system.

Fix s ∈ (1, 2). Let R0 > 0 and ε > 0 be arbitrary. Let N > N0, where N0 the constant of

Lemma 3.4 with respect to ε and 2R0 + 4 +
√
d/2, and let R1 > max{R0, N

√
d}.

Then M can be chosen large enough such that there exist a finite open cover

U1 ∪ U2 ∪ · · · ∪ UK ⊇ βR0(WsH),
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and n1, n2, ..., nK ∈ Zd such that

(1) T ni(Ui) ⊆ ιR1(WH) ⊆ ι0(WH), i = 1, 2, ..., K,

(2) the open sets

T ni(Ui), i = 1, 2, ..., K,

can be grouped as 
T n1(U1), ..., T

ns1 (Us1),

T ns1+1(Us1+1), ..., T
ns2 (Us2),

· · ·
T nsm−1+1(Usm−1+1), ..., T

nsm (Usm),

with m ≤ (⌊2
√
d⌋+ 1)d, such that the open sets in each group are mutually disjoint,

(3) for each x ∈ ι0(WH) and each c ∈ int(WH(x)0) ∩ Zd with dist(c, ∂WH) > N
√
d, one

has
1

Nd

∣∣∣∣∣
{
n ∈ {0, 1, ..., N − 1}d : T c+n(x) ∈

K⋃
i=1

T ni(Ui)

}∣∣∣∣∣ < ε.

Proof. By Lemma 4.1(4) of [11] (see Lemma 3.2), one can choose U ′ ⊆ U and φ such that

M is sufficiently large so that for a fixed H > (L +
√
d)2, if (a,−sH) ∈ V (x, n) for some

a ∈ Rd, then

B
R1+2R0+1+

√
d
2

(
a

s
+ (1− 1

s
)n)× {−H} ∈ V (x, n)

and

(3.1)

∥∥∥∥as + (1− 1

s
)n− (a+

(s− 1)H

sH + t
(n− a))

∥∥∥∥ ≤ 4

L+
√
d
< 4,

where t = 1
φ(Tn(x))

, and a+ (s−1)H
sH+t

(n− a) is the H-projective image of a.

For each n ∈ Zd, define

Un = {x ∈ X : dist(0, ∂WsH(x, n)) < 2R0, intWsH(x, n) ̸= ∅}.

Note that Un is open. For the same n, one also picks hn ∈ Zd such that

(3.2)

∥∥∥∥(1− 1

s
)n− hn

∥∥∥∥ ≤
√
d

2
.

For each x ∈ Un, there is a ∈ ∂WsH(x, n) ⊆ Rd with

∥a∥ < 2R0.

By the choice of M (hence H), one has

(3.3) B
R1+2R0+1+

√
d
2

(
a

s
+ (1− 1

s
)n) ⊆ WH(x, n).

Since

(3.4)

∥∥∥∥hn − (
a

s
+ (1− 1

s
)n)

∥∥∥∥ ≤
∥∥∥a
s

∥∥∥+

∥∥∥∥(1− 1

s
)n− hn

∥∥∥∥ < 2R0 +

√
d

2
,

by (3.3), one has

BR1+1(hn) ⊆ WH(x, n),
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which implies

(3.5) BR1(0) ⊂ BR1+1(0) ⊆ −hn +WH(x, n) = WH(T
hn(x), n− hn).

In particular, T hn(x) ∈ ιR1(WH), which implies

T hn(Un) ⊆ ιR1(WH),

and this shows Property (1).

Note that by (3.1) and (3.4),

(3.6)

∥∥∥∥hn − (a+
(s− 1)H

sH + t
(n− a))

∥∥∥∥ < 2R0 + 4 +

√
d

2
.

Since a ∈ ∂WsH(x, n), this implies that hn is in the (2R0+4+
√
d
2
)-neighbourhood of the the

H-projective image of ∂WsH(x, n) (with respect to (n, t)).

On the other hand, if x ∈ βR0(WsH), then dist(0, ∂WsH(x, n)) ≤ R0 for some n ∈ Zd with

int(WsH(x, n)) ̸= ∅, which implies that x ∈ Un. Therefore, {Un : n ∈ Zd} form an open

cover of βR0(WsH). Since βR0(WsH) is a compact set, there is a finite subcover

Un1 , Un2 , ..., UnK
.

(In fact, {Un : ∥n∥ < L+
√
d+ 2R0} already covers βR0(WsH) by (5) of Lemma 3.1.)

Assume that ni and nj satisfy

T hni (Uni
) ∩ T hnj (Unj

) ̸= ∅.

Then there are xi ∈ Uni
and xj ∈ Unj

with

T hni (xi) = T hnj (xj).

Since xi ∈ Uni
and xj ∈ Unj

, by (3.5), one has that

BR(0) ⊆ WH(T
hni (xi), ni − hni

)

and

BR(0) ⊆ WH(T
hnj (xj), nj − hnj

)

= WH(T
hni (xi), nj − hnj

).

Therefore, ni − hni
= nj − hnj

, and

ni − nj = hni
− hnj

.

Together with (3.2), one has

∥ni − nj∥ =
∥∥hnj

− hnj

∥∥
≤ (1− 1

s
) ∥ni − nj∥+

√
d

<
1

2
∥ni − nj∥+

√
d,

and hence

∥ni − nj∥ < 2
√
d.
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Note that the set Zd can be divided into (⌊2
√
d⌋ + 1)d groups (Zd)1, ..., (Zd)(⌊2

√
d⌋+1)d such

that any pair of elements inside each group has distance at least 2
√
d, and therefore

T hn(Un) ∩ T hn′ (Un′) = ∅, n, n′ ∈ (Zd)m, m = 1, ..., (⌊2
√
d⌋+ 1)d.

Then group Un1 , ..., UnK
as

{Uni
: i = 1, ..., K, ni ∈ (Zd)1}, ..., {Uni

: i = 1, ..., K, ni ∈ (Zd)(⌊2
√
d⌋+1)d},

and this shows Property (2).

Let x ∈ ι0(WH) (so that WH(x)0 is well defined). Write

WH(x)0 = WH(x, n(x)) = V (x, n(x)) ∩ (Rd × {−H}), where n(x) ∈ Zd.

Assume there is m ∈ int(WH(x)0) ∩ Zd such that

(3.7) Tm(x) ∈ T hnk (Unk
)

for some nk.

Since m ∈ int(WH(x)0) ∩ Zd, one has that

0 ∈ int(−m+WH(x, n(x))) = intWH(T
m(x), n(x)−m).

Hence Tm(x) ∈ ι0(WH) and

(3.8) WH(T
m(x))0 = WH(T

m(x), n(x)−m).

By the assumption (3.7), there is xnk
∈ Unk

such that

Tm(x) = T hnk (xnk
).

Then, with (3.5), one has

BR1(0) ⊆ WH(T
hnk (xnk

), nk − hnk
) = WH(T

m(x), nk − hnk
),

and therefore (with (3.8)),

WH(T
m(x), n(x)−m) = WH(T

hnk (xnk
), nk − hnk

)

and

V (Tm(x), n(x)−m) = V (T hnk (xnk
), nk − hnk

).

Hence, at the −sH level, one also has

(3.9) WsH(T
m(x), n(x)−m) = WsH(T

hnk (xnk
), nk − hnk

) = −hnk
+WsH(xnk

, nk).

By (3.6), hnk
is in the (2R0 + 4 +

√
d/2)-neighbourhood of the H-projective image of

∂WsH(xnk
, nk), and therefore 0 is in the (2R0+4+

√
d/2)-neighbourhood of the H-projective

image of

−hnk
+ ∂WsH(xnk

, nk) = WsH(T
hnk (xnk

), nk − hnk
)

Thus, by (3.9), the origin 0 is in the (2R0 + 4 +
√
d/2)-neighbourhood of the H-projective

image of ∂WsH(T
m(x), n(x) −m), and hence m is in the (2R0 + 4 +

√
d/2)-neighbourhood

of the H-projective image of ∂WsH(x, n(x)), which is denoted by ∂WH
sH(x, n(x)).

Therefore, for any c ∈ int(WH(x)0) ∩ Zd with dist(c, ∂WH) > N
√
d, since

c+ n ∈ int(WH(x)0), n ∈ {0, 1, ..., N − 1}d,
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one has {
n ∈ {0, 1, ..., N − 1}d : T c+n(x) ∈

K⋃
i=1

hi(Ui)

}
⊆

{
n ∈ {0, 1, ..., N − 1}d : dist(c+ n, ∂WH

sH(x, n(x))) < 2R0 + 4 +
√
d/2

}
.

Hence, by the choice of N and Lemma 3.4,

1

Nd

∣∣∣∣∣
{
n ∈ {0, 1, ..., N − 1}d : T c+n(x) ∈

K⋃
i=1

hi(Ui)

}∣∣∣∣∣
≤ 1

Nd

∣∣∣{n ∈ c+ {0, 1, ..., N − 1}d : dist(n, ∂WH
sH(x, n(x))) < 2R0 + 4 +

√
d/2

}∣∣∣
< ε.

This proves Property (3). □

4. Two towers

4.1. Rokhlin towers. Let x 7→ W(x) =
⋃

n∈Zd W (x, n) be a map with W(x) a tiling of Rd

and W (x, n) is the cell with label n. Assume that the map x 7→ W(x) is continuous in the

sense that for any ε > 0 and any W (x, n) with non-empty interior, if y ∈ X is sufficiently

close to x then the Hausdorff distance between W (x, n) and W (y, n) are smaller than ε. One

also assumes that the map x 7→ W(x) is equivariant in the sense that

W (T−m(x), n+m) = m+W (x, n), x ∈ X, m, n ∈ Zd.

The tiling functions WH and WsH constructed in the previous section clearly satisfy the

assumptions above. With a such tiling function, one actually can build a Rokhlin tower as

the following:

Let N ∈ N be arbitrary. Put

Ω = {x ∈ X : dist(0, ∂W(x)) > N
√
d and W(x)0 = W (x, n) for some n = 0 mod N},

where by n = 0 mod N , one means ni = 0 mod N , i = 1, 2, ..., d, if n = (n1, n2, ..., nd) ∈ Zd.

Note that Ω is open.

Let m ∈ {0, 1, ..., N − 1}d. Pick arbitrary x ∈ Ω and consider T−m(x). Note that 0 ∈
W (x, n) for some n = 0 mod N and dist(0, ∂W (x, n)) > N

√
d. Since

W (T−m(x), n+m) = m+W (x, n),

one has that

0 ∈ intW (T−m(x), n+m) and n+m = m mod N.

Hence

(4.1) T−m(Ω) ⊆ Ω′
m.

where

Ω′
m := {x ∈ X : 0 /∈ ∂W(x) and W(x)0 = W (x, n), n = m mod N}.
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For the same reason, if one defines

Ω′′
m := {x ∈ X : dist(0, ∂W(x)) > 2N

√
d and W(x)0 = W (x, n), n = m mod N},

then

(4.2) Ω′′
m ⊆ T−m(Ω).

Since the sets

Ω′
m, m ∈ {0, 1, ..., N − 1}d,

are mutually disjoint, it follows from (4.1) that

T−m(Ω), m ∈ {0, 1, ..., N − 1}d

are mutually disjoint. That is, it forms a Rokhlin tower for (X,T,Zd).

On the other hand, by (4.2) and the construction of Ω′′
m, one has

(4.3)
⊔

m∈{0,1,...,N−1}d
T−m(Ω) ⊇

⊔
m∈{0,1,...,N−1}d

Ω′′
m = {x ∈ X : dist(0, ∂W(x)) > 2N

√
d}.

In particular, one has

(4.4) ocap

X \
⊔

m∈{0,1,...,N−1}d
T−m(Ω)

 ≤ ocap({x ∈ X : dist(0, ∂W(x)) ≤ 2N
√
d}).

Lemma 4.1. For any E > 0, one has

ocap({x ∈ X : dist(0, ∂W(x)) ≤ E}) ≤ lim sup
R→∞

1

vol(BR)
sup
x∈X

vol(∂EW(x) ∩BR),

where ∂EW(x) = {ξ ∈ Rd : dist(ξ, ∂W (x)) ≤ E}.

Proof. Pick an arbitrary x ∈ X and an arbitrary positive number R, and consider the partial

orbit

Tm(x), ∥m∥ < R.

Note that if dist(0, ∂W(Tm(x))) ≤ E (i.e., 0 ∈ ∂EW(Tm(x))) for some m, then

−m ∈ ∂EW(x).

Therefore

{∥m∥ < R : 0 ∈ ∂EW(Tm(x))} ⊆ {∥m∥ < R : m ∈ ∂EW(x)}.
As N → ∞, one has

1

|BR ∩ Zd|
|{∥m∥ < R : 0 ∈ ∂EW(Tm(x))}|

≤ 1

|BR ∩ Zd|
|{∥m∥ < R : m ∈ ∂EW(x)}|

≈ 1

vol(BR)
vol(∂EW(x) ∩BR), (if R is sufficiently large).

Hence

lim sup
R→∞

1

|BR ∩ Zd|
|{|m| < R : 0 ∈ ∂EW(Tm(x))}| ≤ lim sup

R→∞

1

vol(BR)
sup
x∈X

vol(∂EW(x) ∩BR).
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Since x is arbitrary, this proves the desired conclusion. □

Theorem 4.2. Consider the minimal free dynamical system (X,T,Zd). Then, for any ε > 0

and N ∈ N, there is an open set Ω ⊆ X such that

T−n(Ω), n ∈ {0, 1, ..., N − 1}d

are mutually disjoint (hence form a Rokhlin tower), and

ocap

X \
⋃

n∈{0,1,...,N−1}d
T−n(Ω)

 < ε.

In other words, the system (X,T,Zd) has the Uniform Rohklin Property (see Definition 1.1

and Lemma 3.2 of [24]).

Proof. By Lemma 4.2 of [11], there is an equivariant Rd-tiling x 7→ W(x) such that

lim sup
R→∞

1

vol(BR)
sup
x∈X

vol(∂2N
√
dW(x) ∩BR) < ε.

Then, the statement follows from (4.4) and Lemma 4.1 (with E = 2N
√
d). □

4.2. The two towers. The Rokhlin tower constructed above in general cannot cover the

whole space X. Consider the two continuous tiling functions WsH and WH , and consider

the Rokhlin towers T0 and T1 constructed from them respectively. It is still possible that T0

together with T1 do not cover the whole space X. However, in the following theorem, one

can show that the complement of the tower T0 can be cut into pieces and then each piece can

be translated into the tower T1 in a way that the order of the overlaps of the translations are

universally bounded, and the intersection of the translations with each T1-orbit is uniformly

small. This eventually leads to a Cuntz comparison of open sets for minimal free Zd-actions

(Theorem 5.5).

Theorem 4.3. Consider a minimal free dynamical system (X,T,Zd). Let N ∈ N and ε > 0

be arbitrary. There exist two Rokhlin towers

T0 := {T−m(Ω0) : m ∈ {0, 1, ..., N0 − 1}d} and T1 := {T−m(Ω1) : m ∈ {0, 1, ..., N1 − 1}d},

with N0, N1 ≥ N and Ω0,Ω1 ⊆ X open, an open cover {U1, U2, ..., UK} of X \
⋃

m T−m(Ω0),

and h1, h2, ..., hK ∈ Zd such that

(1) T hk(Uk) ⊆
⋃

m T−m(Ω1), k = 1, 2, ..., K;

(2) the open sets

T hk(Uk), k = 1, 2, ..., K,

can be grouped as 
T h1(U1), ..., T

hs1 (Us1),

T hs1+1(Us1+1), ..., T
hs2 (Us2),

· · ·
T hsm−1+1(Usm−1+1), ..., T

hsm (Usm),
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for some m ≤ (⌊2
√
d⌋ + 1)d, such that the open sets in each group are mutually

disjoint;

(3) for each x ∈ Ω1, one has

1

Nd
1

∣∣∣∣∣
{
m ∈ {0, 1, ..., N1 − 1}d : Tm(x) ∈

K⋃
k=1

T nk(Uk)

}∣∣∣∣∣ < ε.

Proof. Applying Lemma 3.6 with R0 = 2N
√
d, ε, and some s ∈ (1, 2), together with some

N1 > max{N(R0, ε), N} (in place of N) and R1 > max{R0, 2N1

√
d}, where N(R0, ε) is the

constant of Lemma 3.4 with respect to ε and 2R0 + 4 +
√
d/2, there are two continuous

equivariant Rd-tilings WsH and WH for some (sufficiently large) H > 0, a finite open cover

U1 ∪ U2 ∪ · · · ∪ UK ⊇ βR0(WsH),

and n1, n2, ..., nK ∈ Zd such that

(1) T ni(Ui) ⊆ ιR1(WH) ⊆ ι0(WH), i = 1, 2, ..., K;

(2) the open sets

T ni(Ui), i = 1, 2, ..., K,

can be grouped as 
T n1(U1), ..., T

ns1 (Us1),

T ns1+1(Us1+1), ..., T
ns2 (Us2),

· · ·
T nsm−1+1(Usm−1+1), ..., T

nsm (Usm),

with m ≤ (⌊2
√
d⌋+ 1)d, such that the open sets in each group are mutually disjoint;

(3) for each x ∈ ι0(WH) and each c ∈ int(WH(x)0) ∩ Zd with dist(c, ∂WH) > N1

√
d, one

has

1

Nd
1

∣∣∣∣∣
{
n ∈ {0, 1, ..., N1 − 1}d : T c+n(x) ∈

K⋃
i=1

T ni(Ui)

}∣∣∣∣∣ < ε.

Put

Ω0 = {x ∈ X : dist(0, ∂WsH(x)) > N
√
d and WsH(x)0 = WsH(x, n), n = 0 mod N}.

Then

T−m(Ω0), m ∈ {0, 1, ..., N0 − 1}d

form a Rokhlin tower with N0 = N , and by (4.3)

(4.5) X \
⊔

m∈{0,1,...,N0−1}d
T−m(Ω0) ⊆ {x ∈ X : dist(0, ∂WsH(x)) ≤ 2N

√
d} = β2N

√
d(WsH).

Thus, U1, U2, ..., UK form an open cover of X \
⊔

m∈{0,1,...,N0−1}d T
−m(Ω0).

Put

Ω1 = {x ∈ X : dist(0, ∂WH(x)) > N1

√
d and WH(x)0 = WH(x, n), n = 0 mod N1}.

Then

T−m(Ω1), m ∈ {0, 1, ..., N1 − 1}d,
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form a Rokhlin tower, and by (4.3) (and the assumption that R1 > 2N1

√
d),

(4.6)
⊔

m∈{0,1,...,N1−1}d
T−m(Ω1) ⊇ {x ∈ X : dist(0, ∂WH) > 2N1

√
d} ⊇ ιR1(WH).

Thus, T−hi(Ui) ⊆
⊔

m∈{0,1,...,N1−1}d T
−m(Ω1).

If x ∈ Ω1 (hence x ∈ ι0(WH) and dist(0, ∂WH) > N1

√
d ), it then follows from (3) (with

c = 0) that

1

Nd
1

∣∣∣∣∣
{
m ∈ {0, 1, ..., N1 − 1}d : Tm(x) ∈

K⋃
k=1

T nk(Uk)

}∣∣∣∣∣ < ε,

as desired. □

5. Cuntz comparison of open sets, comparison radius, and the mean

topological dimension

With the two-tower construction in the previous section, one is able to show that the

C*-algebra C(X)⋊Zd has Cuntz-comparison on open sets (Theorem 5.5), and therefore the

radius of comparison of C(X)⋊ Zd is at most half of the mean dimension of (X,T,Zd).

As a preparation, one has the following two very simple observations on the Cuntz semi-

group of a C*-algebra.

Lemma 5.1. Let A be a C*-algebra, and let a1, a2, ..., am ∈ A be positive elements. Then

[a1] + [a2] + · · ·+ [am] ≤ m[a1 + a2 + · · ·+ am].

Proof. The lemma follows from the observation:
a1

a2
. . .

am

 ≤


a1 + · · ·+ am

a1 + · · ·+ am
. . .

a1 + · · ·+ am

 .

□

Lemma 5.2. Let U1, U2, ..., UK ⊆ X be open sets which can be divided into M groups such

that each group consists of mutually disjoint sets. Then

[φU1 ] + · · ·+ [φUK
] ≤ M [φU1∪···∪UK

] = M [φU1 + · · ·+ φUK
]

Proof. Write U1, U2, ..., UK as

{U1, ..., Us1}, {Us1+1, ..., Us2}, ..., {Usm−1+1, ..., UsM},

such that the open sets in each group are mutually disjoint. Then

[φUsi+1 ] + · · ·+ [φUsi+1
] = [φUsi+1 + · · ·+ φUsi+1

] = [φUsi+1∪···∪Usi+1
], i = 0, 1, ...,M − 1,

and together with the lemma above, one has

[φU1 ] + · · ·+ [φUK
] = [φU1 + · · ·+ φUs1

] + · · ·+ [φUsm−1+1 + · · ·+ φUsM
]

= [φU1∪···∪Us1
] + · · ·+ [φUsm−1+1∪···∪UsM

]

≤ M [φU1∪···∪UK
],
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as desired. □

Definition 5.3. Consider a topological dynamical system (X,Γ), where X is a compact

metrizable space and Γ is a discrete group acting on X from the right, and consider a

Rokhlin tower

T = {Ωγ, γ ∈ Γ0},

where Ω ⊆ X is open and Γ0 ⊆ Γ is a finite set containing the unit e of the discrete group

Γ. Define the C*-algebra

C*(T ) := C*{uγC0(Ω), γ ∈ Γ0} ⊆ C(X)⋊ Γ.

By Lemma 3.11 of [24], it is canonically isomorphic to M|Γ0|(C0(Ω)), and

C0(
⋃
γ∈Γ0

Ωγ) ∋ ϕ 7→ diag{ϕ|Ωγ1 , ϕ|Ωγ2 , ..., ϕ|Ωγ|Γ0|
} ∈ M|Γ0|(C0(Ω))}

under this isomorphism.

The following comparison result essentially is a special case of Theorem 7.8 of [24].

Lemma 5.4 (Theorem 7.8 of [24]). Let Z be a locally compact metrizable space, and consider

Mn(C0(Z)). Let a, b ∈ Mn(C0(Z)) be two positive diagonal elements, i.e.,

a(t) = diag{a1(t), a2(t), ..., an(t)} and b(t) = diag{b1(t), b2(t), ..., bn(t)}

for some positive continuous functions a1, ..., an, b1, ..., bn : Z → R. If

rank(a(t)) ≤ 1

4
rank(b(t)), t ∈ Z

and

4 < rank(b(t)), t ∈ Z,

then a ≾ b in Mn(C0(Z)).

Proof. It is enough to show that (a − ε)+ ≾ b for arbitrary ε > 0. For a given ε > 0,

there is a compact subset D ⊆ Z such that (a − ε)+ is supported inside D. Denote by

π : Mn(C0(Z)) → Mn(C(D)) the restriction map. One then has

rank(π((a− ε)+)(t)) ≤
1

4
rank(π(b)(t)), t ∈ D

and
1

n
<

1

4n
rank(b(t)), t ∈ D.

By Theorem 7.8 of [24], one has that π((a − ε)+) ≾ π(b) in Mn(C(D)), that is, there is a

sequence (vk) ⊆ Mn(C(D)) such that vk(π(b))v
∗
k → π((a− ε)+) as k → ∞. Extend each vk

to a function in Mn(C0(Z)), and still denote it by vk. It is clear that the new sequence (vk)

satisfies vkbv
∗
k → (a− ε)+ as k → ∞, and hence (a− ε)+ ≾ b, as desired. □
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Theorem 5.5. Let (X,T,Zd) be a minimal free dynamical system, and let E,F ⊆ X be

open sets such that

µ(E) ≤ 1

4
ν(F ), µ ∈ M1(X,T,Zd).

Then,

[φE] ≤ ((2⌊
√
d⌋+ 1)d + 1)[φF ]

in the Cuntz semigroup of C(X) ⋊ Zd. In other words, the C*-algebra C(X) ⋊ Zd has

(1
4
, (2⌊

√
d⌋+ 1)d + 1)-Cuntz-comparison on open sets (see Definition 1.1).

Proof. Let E and F be open sets satisfying the condition of the theorem. Let ε > 0 be

arbitrary. In order to prove the statement of the theorem, it is enough to show that

(φE − ε)+ ≾ φF ⊕ · · · ⊕ φF︸ ︷︷ ︸
(2⌊

√
d⌋+1)d+1

.

For the given ε, pick a compact set E ′ ⊆ E such that

(5.1) (φE − ε)+(x) = 0, x /∈ E ′.

By the assumption of the theorem, one has that

(5.2) µ(E ′) <
1

4
µ(F ), µ ∈ M1(X,T,Zn),

and then there is N ∈ N such that for any M > N and any x ∈ X,

(5.3)
1

Md
{m ∈ {0, 1, ...,M − 1}d : T−m(x) ∈ E ′} <

1

4

1

Md
{m ∈ {0, 1, ...,M − 1}d : T−m(x) ∈ F}.

Otherwise, there are sequences Nk ∈ N, xk ∈ X, k = 1, 2, ..., such that Nk → ∞ as k → ∞,

and for any k,

1

Nd
k

{m ∈ {0, 1, ..., Nk−1}d : T−m(xk) ∈ E ′} ≥ 1

4

1

Nd
k

{m ∈ {0, 1, ..., Nk−1}d : T−m(xk) ∈ F}.

That is

(5.4) 4δNk,xk
(E ′) ≥ δNk,xk

(F ), k = 1, 2, ...,

where δNk,xk
= 1

Nd
k

∑
m∈{0,1,...,Nk−1}d δT−m(xk) and δy is the Diract measure concentrated at

y. Let δ∞ be a limit point of {δNk,xk
, k = 1, 2, ...} and it is clear that δ∞ ∈ M1(X,T,Zd).

Passing to a subsequence of k, one has

δ∞(F ) ≤ lim inf
k→∞

δNk,xk
(F ) (F is open)

≤ 4 lim inf
k→∞

δNk,xk
(E ′) (by (5.4))

≤ 4 lim sup
k→∞

δNk,xk
(E ′)

≤ 4δ∞(E ′), (E ′ is closed)

which contradicts to (5.2).
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With (5.1) and (5.3), one has that for any M > N and any x ∈ X,

1

Md
{m ∈ {0, 1, ...,M − 1}d : (φE − ε)+(T

−m(x)) > 0}(5.5)

≤ 1

Md
{m ∈ {0, 1, ...,M − 1}d : T−m(x) ∈ E ′}

<
1

4

1

Md
{m ∈ {0, 1, ...,M − 1}d : T−m(x) ∈ F}

=
1

4

1

Md
{m ∈ {0, 1, ...,M − 1}d : φF (T

−m(x)) > 0}.

Also note that since (X,T,Zd) is minimal, there is δ > 0 such that for any M > N ,

(5.6)
1

4Md

∣∣{m ∈ {0, 1, ...,M − 1}d : φF (T
−m(x)) > 0}

∣∣ > δ, x ∈ X

Let

T0 = {T−m(Ω0), m ∈ {0, 1, ..., N0 − 1}d}
and

T1 = {T−m(Ω1), m ∈ {0, 1, ..., N1 − 1}d}

be the two towers obtained from Theorem 4.3 with respect to max{N, d

√
1
δ
} and δ. Denote

by U1, U2, ..., UK and n1, n2, ..., nK ∈ Zd be the open sets and group elements, respectively,

obtained from Theorem 4.3.

Pick χ0 ∈ C(X)+ such that

(5.7)


χ0(x) = 1, x /∈

⋃K
k=1 Uk,

χ0(x) > 0, x ∈
⊔

m∈{0,1,...,N0−1}d T
−m(Ω0),

χ0(x) = 0, x /∈
⊔

m∈{0,1,...,N0−1}d T
−m(Ω0).

Note that then (1− χ0) is supported in U1 ∪ U2 ∪ · · · ∪ UK . Consider

(φE − ε)+ = (φE − ε)+(1− χ0) + (φE − ε)+χ0.

Then, for any x ∈ Ω0, it follows from (5.5) and (5.7) that∣∣{m ∈ {0, 1, ..., N0 − 1}d : ((φE − ε)+χ0)(T
−m(x)) > 0}

∣∣
=

∣∣{m ∈ {0, 1, ..., N0 − 1}d : (φE − ε)+(T
−m(x)) > 0}

∣∣
<

1

4

∣∣{m ∈ {0, 1, ..., N0 − 1}d : φF (T
−m(x)) > 0}

∣∣
=

1

4

∣∣{m ∈ {0, 1, ..., N0 − 1}d : (φFχ0)(T
−m(x)) > 0}

∣∣ .
Therefore, under the isomorphism C*(T0) ∼= MNd

0
(C0(Ω0)), one has

rank(((φE − ε)+χ0)(x)) ≤
1

4
rank((φFχ0)(x)), x ∈ Ω0.

Moreover, it follows from (5.6) and the fact that N0 >
d

√
1
δ
that for any x ∈ Ω0,

1

4Nd
0

rank((φFχ0)(x)) =
1

4Nd
0

∣∣{m ∈ {0, 1, ..., N0 − 1}d : φF (T
−m(x)) > 0}

∣∣ > δ >
1

Nd
0

.
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Thus, by Lemma 5.4, one has that

(5.8) (φE − ε)+χ0 ≾ φFχ0 ≾ φF .

Consider (φE − ε)+(1 − χ0). Since (1 − χ0) is supported in U1 ∪ U2 ∪ · · · ∪ UK , one has

that

(φE − ε)+(1− χ0) ≾ (1− χ0) ≾ φU1∪···∪UK
∼ φU1 + · · ·+ φUK

≾ φU1 ⊕ · · · ⊕ φUK
.

On the other hand, by Lemma 5.2,

φTn1 (U1) ⊕ · · · ⊕ φTnK (UK) ≾
⊕

(2⌊
√
d⌋+1)d

(φTn1 (U1) + · · ·+ φTnK (UK)).

Note that φUi
∼ φTni (Ui), i = 1, 2, ..., K, and one has

(5.9) (φE − ε)+(1− χ0) ≾
⊕

(2⌊
√
d⌋+1)d

(φTn1 (U1)∪···∪TnK (UK)).

By Theorem 4.3,

(5.10)
1

Nd
1

∣∣∣∣∣
{
m ∈ {0, 1, ..., N1 − 1}d : T−m(x) ∈

K⋃
k=1

T nk(Uk)

}∣∣∣∣∣ < δ, x ∈ Ω1.

Let χ1 : X → [0, 1] be a continuous function such that{
χ1(x) > 0, x ∈

⊔
m∈{0,1,...,N1−1}d T

−m(Ω1),

χ1(x) = 0, x /∈
⊔

m∈{0,1,...,N1−1}d T
−m(Ω1).

Then

1

4Nd
1

rank((φFχ1)(x)) =
1

4Nd
1

∣∣{m ∈ {0, 1, ..., N1 − 1}d : φF (T
−m(x)) > 0}

∣∣ > δ >
1

Nd
1

, x ∈ Ω1,

and hence, for any x ∈ Ω1, with (5.10), one has

rank(φTn1 (U1)∪···∪TnK (UK)(x)) =

∣∣∣∣∣
{
m ∈ {0, 1, ..., N1 − 1}d : T−m(x) ∈

K⋃
k=1

T nk(Uk)

}∣∣∣∣∣
< Nd

1 δ <
1

4
rank((φFχ1)(x)).

By Lemma 5.4,

φTn1 (U1)∪···∪TnK (UK) ≾ φFχ1 ≾ φF ,

and together with (5.9) and (5.8),

(φE − ε)+ ≾ (φE − ε)+(1− χ0)⊕ (φE − ε)+χ0

≾ (
⊕

(2⌊
√
d⌋+1)d

(φTn1 (U1)∪···∪TnK (UK)))⊕ φF

≾ (
⊕

(2⌊
√
d⌋+1)d

φF )⊕ φF ,

as desired. □
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Theorem 5.6. Let (X,T,Zd) be a minimal free dynamical system. Then

rc(C(X)⋊ Zd) ≤ 1

2
mdim(X,T,Zd).

Proof. By Theorem 5.5, the C*-algebra C(X)⋊Zd has the (COS). By Theorem 4.2, the dy-

namical system (X,T,Zd) has the (URP). Then the statement follows directly from Theorem

4.8 of [24]. □

The following corollary generalizes Corollary 4.9 of [4] (where d = 1) and generalizes the

classifiability result of [29] (where dim(X) < ∞).

Theorem 5.7. Let (X,T,Zd) be a minimal free dynamical system with mean dimension

zero, then C(X)⋊ Zd is classified by its Elliott invariant. In particular, if dim(X) < ∞, or

(X,T,Zd) has at most countably many ergodic measures, or (X,T,Zd) has finite topological

entropy, then C(X)⋊ Zd is classified by its Elliott invariant.

Proof. By Theorem 4.2 and Theorem 5.5, the dynamical system (X,Zd) has the (URP) and

(COS). Then the statement follows from Theorem 4.8 of [25] □

Remark 5.8. In [17], it is also shown that the (URP) and (COS) implies that the C*-algebra

C(X) ⋊ Γ, classifiable or not, always has (topological) stable rank one; and the C*-algebra

C(X) ⋊ Γ satisfies the Toms-Winter conjecture (i.e., it is classifiable if, and only if it has

the strict comparison of positive elements). Therefore, as corollaries of Theorem 5.6, the

C*-algebra C(X) ⋊ Zd, classifiable or not, always has stable rank one, and the C*-algebra

C(X)⋊ Zd satisfies the Toms-Winter conjecture.

The following is a generalization of Corollary 5.7 of [4].

Corollary 5.9. Let (X1, T1,Zd1) and (X2, T2,Zd2) be minimal free dynamical systems where

d1, d2 ∈ N. Then the tensor product C*-algebra (C(X1)⋊ Zd1)⊗ (C(X2)⋊ Zd2) is classified

by its Elliott invariant.

Proof. Note that

(C(X1)⋊ Zd1)⊗ (C(X2)⋊ Zd2) ∼= C(X1 ×X2)⋊ (Zd1 × Zd2),

where Zd1 × Zd2 acting on X1 ×X2 by

(T1 × T2)
(n1,n2)((x1, x2)) = (T n1

1 (x1), T
n2
2 (x2)), n1 ∈ Zd1 , n2 ∈ Zd2 .

By the argument of Remark 5.8 of [4], one has

mdim(X1 ×X2, T1 × T2,Zd1 × Zd2) = 0,

and the statement then follows from Theorem 5.7. □
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