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Abstract. Let A and B be unital separable simple amenable C*-algebras which satisfy the

Universal Coefficient Theorem. Suppose that A and B are Z-stable and are of rationally tracial

rank no more than one. We prove the following: Suppose that φ, ψ : A → B are unital *-

monomorphisms. There exists a sequence of unitaries {un} ⊂ B such that

lim
n→∞

u∗nφ(a)un = ψ(a) for all a ∈ A,

if and only if

[φ] = [ψ] in KL(A,B), φ] = ψ] and φ‡ = ψ‡,

where φ], ψ] : Aff(T(A)) → Aff(T(B)) and φ‡, ψ‡ : U(A)/CU(A) → U(B)/CU(B) are the

induced maps (where T(A) and T(B) are the tracial state spaces of A and B, and CU(A)

and CU(B) are the closures of the commutator subgroups of the unitary groups of A and B,

respectively). We also show that this holds if A is a rationally AH-algebra which is not necessarily

simple. Moreover, for any strictly positive unit-preserving κ ∈ KL(A,B), any continuous affine

map λ : Aff(T(A))→ Aff(T(B)) and any continuous group homomorphism γ : U(A)/CU(A)→
U(B)/CU(B) which are compatible, we also show that there is a unital homomorphism φ : A→
B so that ([φ], φ], φ

‡) = (κ, λ, γ), at least in the case that K1(A) is a free group.

1. Introduction

Let X and Y be two compact Hausdorff spaces, and denote by C(X) (or C(Y )) the C*-algebra

of complex-valued continuous functions on X (or Y ). Any continuous map λ : Y → X induces

a homomorphism φ from the commutative C*-algebra C(X) into the commutative C*-algebra

C(Y ) by φ(f) = f ◦ λ, and any homomorphism from C(X) to C(Y ) arises this way (in this

paper, by homomorphisms or isomorphisms between C*-algebras, we mean *-homomorphisms

or *-isomorphisms). It should be noted that, by the Gelfand-Naimark theorem, every unital

commutative C*-algebra has the form C(X) as above.

For non-commutative C*-algebras, one also studies homomorphisms. Let A and B be two

unital C*-algebras and let φ, ψ : A→ B be two homomorphisms. A fundamental problem in the

study of C*-algebras is to determine when φ and ψ are (approximately) unitarily equivalent.

The last two decades saw the rapid development of classification of amenable C*-algebras,

or otherwise known the Elliott program. For instance, all unital simple AH-algebras with slow

dimension growth are classified by their Elliott invariant ([4]). In fact, the class of classifiable

simple C*-algebras includes all unital separable amenable simple C*-algebras with the tracial

rank at most one which satisfy the Universal Coefficient Theorem (the UCT) (see [11]). One of

the crucial problems in the Elliott program is the so-called uniqueness theorem which usually

asserts that two monomorphisms are approximately unitarily equivalent if they induce the same

K-theory related maps under certain assumptions on C*-algebras involved.
1
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Recently, W. Winter’s method ([32]) greatly advances the Elliott classification program. The

class of amenable separable simple C*-algebras that can be classified by the Elliott invariant

has been enlarged so that it contains simple C*-algebras which no longer are assumed to have

finite tracial rank. In fact, with [32], [15], [23] and [18], the classifiable C*-algebras now include

any unital separable simple Z-stable C*-algebra A satisfying the UCT such that A⊗ U has the

tracial rank no more than one for some UHF-algebra U (it has recently been shown, for example,

A⊗ U has tracial rank at most one for all UHF-algebras U of infinite type, if A⊗ C has tracial

rank at most one for one of infinite dimensional unital simple AF-algebra (see [26])). This class

of C*-algebras is strictly larger than the class of AH-algebras without dimension growth. For

example, it contains the Jiang-Su algebra Z itself which is projectionless and all simple unital

inductive limits of so-called generalized dimension drop algebras (see [20]).

Recall that the Elliott invariant for a stably finite unital simple separable C*-algebra A is

Ell(A) := ((K0(A), K0(A)+, [1A],T(A)), K1(A)),

where (K0(A), K0(A)+, [1A],T(A)) is the quadruple consisting of the K0-group, its positive cone,

the order unit and tracial simplex together with their pairing, and K1(A) is the K1-group.

Denote by C the class of all unital simple C*-algebras A for which A⊗ U has tracial rank no

more than one for some UHF-algebra U of infinite type. Suppose that A and B are two unital

separable amenable C*-algebras in C which satisfy the UCT. The classification theorem in [18]

states that if the Elliott invariants of A and B are isomorphic, i.e.,

Ell(A) ∼= Ell(B),

then there is an isomorphism φ : A→ B which carries the isomorphism above.

However, the question when two isomorphisms are approximately unitarily equivalent was still

left open. A more general question is: for any two such C*-algebras A and B, and, for any two

homomorphisms φ, ψ : A→ B, when are they approximately unitarily equivalent?

If φ and ψ are approximately unitarily equivalent, then one must have,

[φ] = [ψ] in KL(A,B) and φ] = ψ],

where φ], ψ] : Aff(T(A)) → Aff(T(B)) are the affine maps induced by φ and ψ, respectively.

Moreover, as shown in [16], one also has

φ‡ = ψ‡,

where φ‡, ψ‡ : U(A)/CU(A)→ U(B)/CU(B) are homomorphisms induced by φ, ψ, and CU(A)

and CU(B) are the closures of the commutator subgroups of the unitary groups of A and B,

respectively.

In this paper, we will show that the above conditions are also sufficient, that is, the maps φ

and ψ are approximately unitarily equivalent if and only if [φ] = [ψ] in KL(A,B), φ] = ψ] and

φ‡ = ψ‡.

Not surprisingly, the proof of this uniqueness theorem is based on the methods developed in

the proof of the classification result mentioned above, which can be found in [18], [17], [16], [23]
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and [14]. Most technical tools are developed in those papers, either directly or implicitly. In the

present paper, we will collect them and then assemble them into production.

It should be noted that the above-mentioned uniqueness theorem still holds in a more general

setting where the source algebra A is not necessary in the class C. For example, it is still valid

for all AH-algebras A which are not necessarily simple. In particular, A could be just C(X) for

any compact metric space X.

In that situation, the first version of this kind of uniqueness theorem was proved in [6], where

A = C(X) and B is a unital simple C*-algebra with the unique tracial state and with real rank

zero, stable rank one and weakly unperforated K0(B).

Then, in [10], it was shown that, if A = C(X) for some compact metric space X and B is a

unital simple C*-algebra with tracial rank zero, then any unital monomorphisms φ and ψ from

A to B are approximately unitarily equivalent if and only if [φ] = [ψ] in KL(A,B) and φ] = ψ].

This result was then generalized to the case that B has tracial rank no more than one with the

additional condition φ‡ = ψ‡ in [21].

From this point of view, the main result in this paper may also be regarded as a further

generalization of these uniqueness theorems. In fact, in this paper, we also allow the source

algebra A to be any unital C*-algebra such that A⊗U is a unital AH-algebra for all UHF-algebra

U of infinite type. One should also realize that these uniqueness theorems have a common root:

The Brown-Douglass-Fillmore theorem for essentially normal operators. One version of it can be

stated as follows: Two monomorphisms φ, ψ : C(X) → B(H)/K—the Calkin algebra, which is

a unital simple C*-algebra with real rank zero—are unitarily equivalent if and only if [φ] = [ψ]

in KK(C(X), B(H)/K).

As this research was under way, we learned that H. Matui was conducting his own investigation

on the same problems. In fact, he proved the same uniqueness theorems mentioned under the

assumption that B⊗U has tracial rank zero. Moreover, he actually showed the same result holds

if the assumption that B ⊗ U has tracial rank zero is weaken to be that B ⊗ U has real rank

zero, stable rank one and weakly unperforated K0(B⊗U), at least for the case that quasi-traces

are traces and there are only finitely many of extremal tracial states.

In [24], it is shown that, for any partially ordered simple weakly unperforated rationally Riesz

group G0 with order unit u, any countable abelian group G1, any metrizable Choquet simple S,

and any surjective affine continuous map r : S → Su(G0) (the state space of G0) which preserves

extremal points, there exists one (and only one up to isomorphism) unital separable simple

amenable C*-algebra A ∈ C which satisfies the UCT so that Ell(A) = (G0, (G0)+, u,G1, S, r).

Then a natural question is: Given two unital separable simple amenable C*-algebras A, B ∈ C
which satisfy the UCT, and a homomorphism Γ from Ell(A) to Ell(B), does there exist a unital

homomorphism φ : A→ B which induces Γ? We will give an answer to this question. Related to

the uniqueness theorem discussed earlier and also related to the question above, one may also ask

the following: Given an element κ ∈ KL(A,B) which preserves the unit and order, an affine map

λ : Aff(T(A))→ Aff(T(B)) and a homomorphism γ : U(A)/CU(A)→ U(B)/CU(B) which are

compatible, does there exist a unital homomorphism φ : A → B so that [φ] = κ, φ] = λ and

φ‡ = γ? We will, at least, partially answer this question.
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2. Preliminaries

2.1. Let A be a unital stably finite C*-algebra. Denote by T(A) the simplex of tracial states of A

and denote by Aff(T(A)) the space of all real affine continuous functions on T(A). Suppose that

τ ∈ T(A) is a tracial state. We will also denote by τ the trace τ⊗Tr on Mk(A) = A⊗Mk(C) (for

every integer k ≥ 1), where Tr is the standard trace on Mk(C). A trace τ is faithful if τ(a) > 0

for any a ∈ A+ \{0}. Denote by Tf(A) the convex subset of T(A) consisting of all faithful tracial

states.

Denote by M∞(A) the set ∪∞k=1Mk(A), where Mk(A) is regarded as a C*-subalgebra of Mk+1(A)

by the embedding a 7→
(
a 0

0 a

)
. For any projection p ∈ M∞(A), the restriction τ 7→ τ(p)

defines a positive affine function on T(A). This induces a canonical positive homomorphism

ρA : K0(A)→ Aff(T(A)).

Denote by U(A) the unitary group of A, and denote by U(A)0 the connected component of

U(A) containing the identity. Let C be another unital C*-algebra and let φ : C → A be a unital

*-homomorphism. Denote by φT : T(A)→ T(C) the continuous affine map induced by φ, i.e.,

φT(τ)(c) = τ ◦ φ(c)

for all c ∈ C and τ ∈ T(A). Denote by φ] : Aff(T(C))→ Aff(T(A)) the map defined by

φ](f)(τ) = f(φT(τ)) for all τ ∈ T(A).

Definition 2.2. Let A be a unital C*-algebra. Denote by CU(A) the closure of the subgroup

generated by commutators of U(A). If u ∈ U(A), its image in the quotient U(A)/CU(A) will be

denoted by u. Let B be another unital C*-algebra and let φ : A→ B be a unital homomorphism.

it is clear that φ maps CU(A) into CU(B). Let φ‡ denote the induced homomorphism from

U(A)/CU(A) into U(B)/CU(B).

Let n ≥ 1 be any integer. Denote by Un(A) the unitary group of Mn(A), and denote by

CU(A)n the closure of commutator subgroup of Un(A). Regard Un(A) as a subgroup of Un+1(A)

via the embedding u 7→
(
u 0

0 1

)
and denote by U∞(A) the union of all Un(A).

Consider the union CU∞(A) :=
⋃
nCUn(A). It is then a normal subgroup of U∞(A), and

the quotient U(A)∞/CU∞(A) is in fact isomorphic to the inductive limit of Un(A)/CUn(A) (as

abelian groups). We will use φ‡ for the homomorphism induced by φ from U∞(A)/CU∞(A) into

U∞(B)/CU∞(B).

Definition 2.3. Let A be a unital C*-algebra, and let u ∈ U(A)0. Let u(t) ∈ C([0, 1], A) be

a piecewise-smooth path of unitaries such that u(0) = u and u(1) = 1. Then the de la Harpe–

Skandalis determinant of u(t) is defined by

Det(u(t))(τ) =
1

2πi

∫ 1

0

τ(
du(t)

dt
u(t)∗)dt for all τ ∈ T(A),

which induces a homomorphism

Det : U(A)0 → Aff(T(A))/ρA(K0(A)).
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The determinant Det can be extended to a map from U∞(A)0 into Aff(T(A))/ρA(K0(A)).

It is easy to see that the determinant vanishes on the closure of commutator subgroup of

U∞(A). In fact, by a result of K. Thomsen ([31]), the closure of the commutator subgroup

is exactly the kernel of this map, that is, it induces an isomorphism Det : U∞(A)0/CU∞(A) →
Aff(T(A))/ρA(K0(A)). Moreover, by ([31]), one has the following short exact sequence

0→ Aff(T(A))/ρA(K0(A))→U∞(A)/CU∞(A)
Π→K1(A)→ 0(2.1)

which splits (with the embedding of Aff(T(A))/ρA(K0(A)) induced by (Det)−1). We will fix a

splitting map s1 : K1(A) → U∞(A)/CU∞(A). The notation Π and s1 will be used late without

further warning.

For each ū ∈ s1(K1(A)), select and fix one element uc ∈
⋃∞
n=1Mn(A) such that uc = ū. Denote

this set by Uc(A).

In the case that A has tracial rank at most one (see 2.8 below), by Corollary 3.4 of [31], one

has

U∞(A)0/CU∞(A) = U(A)0/CU(A)

and thus the following splitting short exact sequence:

0→ Aff(T(A))/ρA(K0(A))→ U(A)/CU(A)→ K1(A)→ 0.(2.2)

Definition 2.4. Let A be a unital C*-algebra and let C be a separable C*-algebra which satisfies

the Universal Coefficient Theorem. Recall that KL(C,A) is the quotient of KK(C,A) modulo

pure extensions. By a result of Dădărlat and Loring in [1], one has

KL(C,A) = HomΛ(K(C), K(A)),(2.3)

where

K(B) = (K0(B)⊕K1(B))⊕ (
∞⊕
n=2

(K0(B,Z/nZ)⊕K1(B,Z/nZ)))

for any C*-algebra B. Then, in the rest of the paper, we will identifyKL(C,A) with HomΛ(K(C), K(A)).

Denote by κi : Ki(C) → Ki(A) the homomorphism given by κ with i = 0, 1, and denote by

KL(C,A)++ the set of those κ ∈ HomΛ(K(C), K(A)) such that

κ0(K+
0 (C) \ {0}) ⊆ K+

0 (A) \ {0}.

Denote by KLe(C,A)++ the set of those elements κ ∈ KL(C,A)++ such that κ0([1C ]) = [1A].

Suppose that both A and C are unital, T(C) 6= Ø and T(A) 6= Ø. Let λT : T(A) → T(C) be

a continuous affine map. Let h0 : K0(C) → K0(A) be a positive homomorphism. We say λT is

compatible with h0 if for any projection p ∈ M∞(C), λT(τ)(p) = τ(h0([p])) for all τ ∈ T(A). Let

λ : Aff(Tf(C))→ Aff(T(A)) be an affine continuous map. We say λ and h0 are compatible if h0

is compatible to λT, where λT : T(A) → Tf(C) is the map λT(τ)(a) = λ(a∗)(τ),∀a ∈ C+ and

τ ∈ T(A), where a∗ ∈ Aff(Tf(C)) is the affine function induced by a. We say κ and λ (or λT )

are compatible, if κ0 is positive and κ0 and λ are compatible.

Denote by KLT e(C,A)++ the set of those pairs (κ, λT) (or, (κ, λ)), where κ ∈ KLe(C,A)++

and λT : T(A) → Tf(C) (or, λ : Aff(Tf(C)) → Aff(T(A))) is a continuous affine map which is

compatible with κ. If λ is compatible with κ, then λ maps ρC(K0(C)) into ρA(K0(A)). Therefore



HOMOMORPHISMS INTO SIMPLE Z-STABLE C∗-ALGEBRAS 6

λ induces a continuous homomorphism λ : Aff(Tf(C))/ρC(K0(C)) → Aff(T(A))/ρA(K0(A)).

Suppose that γ : U∞(C)/CU∞(C) → U∞(A)/CU∞(A) is a continuous homomorphism and

hi : Ki(C) → Ki(A) are homomorphisms for which h0 is positive. We say that γ and h1 are

compatible if γ(U∞(C)0/CU∞(C)) ⊂ U∞(A)0/CU∞(A) and γ ◦ s1 = s1 ◦h1, we say that h0, h1, λ

and γ are compatible, if λ and h0 are compatible, γ and h1 are compatible and

DetA ◦ γ|U∞(C)0/CU∞(C) = λ ◦DetC ,

and we also say that κ, λ and γ are compatible, if κ0, κ1, λ and γ are compatible.

2.5. For each prime number p, let εp be a number in {0, 1, 2, ...,+∞}. Then a supernatural

number is the formal product p =
∏

p p
εp . Here we insist that there are either infinitely many p in

the product, or, one of εp is infinite. Two supernatural numbers p =
∏

p p
εp(p) and q =

∏
p p

εp(q)

are relatively prime if for any prime number p, at most one of εp(p) and εp(q) is nonzero. A

supernatural number p is called of infinite type if for any prime number, either εp(p) = 0 or

εp(p) = +∞. For each supernatural number p, there is a UHF-algebra Mp associated to it, and

the UHF-algebra is unique up to isomorphism (see [2]).

2.6. Denote by Q the UHF-algebra with (K0(Q), K0(Q)+, [1A]) = (Q,Q+, 1) (the supernatural

number associated to Q is
∏

p p
+∞), and let Mp and Mq be two UHF-algebras with Mp⊗Mq

∼= Q

and p =
∏

p p
εp(p) and q =

∏
p p

εp(q) relatively prime. Then it follows that p and q are of infinite

type. Denote by

Qp = Z[
1

p1

, ...,
1

pn
, ...] ⊆ Q, where εpn(p) = +∞ and

Qq = Z[
1

p1

, ...,
1

pn
, ...] ⊆ Q, where εpn(q) = +∞.

Note that (K0(Mp), K0(Mp)+, [1Mp ]) = (Qp, (Qp)+, 1) and (K0(Mq), K0(Nq)+, [1Mq ]) = (Qq, (Qq)+, 1).

Moreover, Qp ∩Qq = Z and Q = Qp + Qq.

2.7. For any pair of relatively prime supernatural numbers p and q, define the C*-algebra Zp,q

by

Zp,q = {f : [0, 1]→Mp ⊗Mq; f(0) ∈Mp ⊗ 1Mq and f(1) ∈ 1Mp ⊗Mq}.
The Jiang-Su algebra Z is the unital inductive limit of dimension drop interval algebras with

unique trace, and (K0(Z), K0(Z), [1]) = (Z,Z+, 1) (see [8]). By Theorem 3.4 of [29], for any pair

of relatively prime supernatural numbers p and q of infinite type, the Jiang-Su algebra Z has a

stationary inductive limit decomposition:

Zp,q
// Zp,q

// · · · // Zp,q
// · · · // Z .

By Corollary 3.2 of [29], the C*-algebra Zp,q absorbs the Jiang-Su algebra: Zp,q⊗Z ∼= Zp,q. A

C*-algebra A is said to be Z-stable if A⊗Z ∼= A.

Definition 2.8. A unital simple C*-algebra A has tracial rank at most one, denoted by TR(A) ≤
1, if for any finite subset F ⊂ A, any ε > 0, and any nonzero a ∈ A+, there exist a nonzero

projection p ∈ A and a C*-subalgebra I ∼=
⊕m

i=1 C(Xi)⊗Mr(i) with 1I = p for some finite CW

complexes Xi with dimension at most one such that
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(1) ‖[x, p]‖ ≤ ε for any x ∈ F ,

(2) for any x ∈ F , there is x′ ∈ I such that ‖pxp− x′‖ ≤ ε, and

(3) 1− p is Murray-von Neumann equivalent to a projection in aAa.

Moreover, if the C*-subalgebra I above can be chosen to be a finite dimensional C*-algebra,

then A is said to have tracial rank zero, and in such case, we write TR(A) = 0. It is a theorem

of Guihua Gong [5] that every unital simple AH-algebra with no dimension growth has tracial

rank at most one. It has been proved in [18] that every Z-stable unital simple AH-algebra has

tracial rank at most one.

Definition 2.9. Denote by N the class of all separable amenable C*-algebras which satisfy the

Universal Coefficient Theorem (UCT). Denote by C the class of all simple C*-algebras A for which

TR(A⊗Mp) ≤ 1 for some UHF-algebra Mp, where p is a supernatural number of infinite type.

Note, by [24], that, if TR(A⊗Mp) ≤ 1 for some supernatural number p then TR(A⊗Mp) ≤ 1

for all supernatural number p.

Denote by C0 the class of all simple C*-algebras A for which TR(A ⊗ Mp) = 0 for some

supernatural number p of infinite type (and hence for all supernatural number p of infinite type).

Theorem 2.10 (Theorem 5.10 [21]). Let C be a unital AH-algebra and let A be a unital simple

C*-algebra with TR(A) ≤ 1. Suppose that φ, ψ : C → A are two unital monomorphisms. Then

φ and ψ are approximately unitarily equivalent if and only if

[φ] = [ψ] in KL(C,A),

φ] = ψ] and φ‡ = ψ‡.

Remark 2.11. One of the main purposes of this paper is to generalize this result so that A can

be allowed to be in the class C, and C can be rationally AH; that is, C ⊗U is an AH-algebra for

all UHF-algebra U of infinite type.

2.12. Let A and B be two unital C*-algebras. Let h : A→ B be a homomorphism and v ∈ U(B)

be such that

[h(g), v] = 0 for any g ∈ A.
We then have a homomorphism h : A⊗ C(T) → B defined by f ⊗ g 7→ h(f)g(v) for any f ∈ A
and g ∈ C(T). The tensor product induces two injective homomorphisms:

β(0) : K0(A)→ K1(A⊗ C(T)) and β(1) : K1(A)→ K0(A⊗ C(T)).

The second one is the usual Bott map. Note that, in this way, one writes

Ki(A⊗ C(T)) = Ki(A)⊕ β(i−1)(Ki−1(A)).

Let us use β̂(i) : Ki(A⊗ C(T))→ β(i−1)(Ki−1(A)) to denote the quotient map.

For each integer k ≥ 2, one also has the following injective homomorphisms:

β
(i)
k : Ki(A,Z/kZ)→ Ki−1(A⊗ C(T),Z/kZ), i = 0, 1.

Thus, we write

Ki(A⊗ C(T),Z/kZ) = Ki(A,Z/kZ)⊕ β(i−1)(Ki−1(A),Z/kZ).
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Denote by β̂
(i)
k : Ki(A ⊗ C(T),Z/kZ) → β(i−1)(Ki−1(A),Z/kZ) the map analogous to β̂(i). If

x ∈ K(A), we use β(x) for β(i)(x) if x ∈ Ki(A) and for β
(i)
k (x) if x ∈ Ki(A,Z/kZ). Thus we

have a map β : K(A)→ K(A⊗C(T)) as well as β̂ : K(A⊗C(T))→ β(K). Therefore, we may

write K(A⊗ C(T)) = K(A)⊕ β(K(A)). On the other hand, h induces homomorphisms

h∗i,k : Ki(A⊗ C(T),Z/kZ)→ Ki(B,Z/kZ),

k = 0, 2, ..., and i = 0, 1.

We use Bott(h, v) for all homomorphisms h∗i,k ◦ β(i)
k , and we use bott1(h, v) for the homomor-

phism h1,0 ◦ β(1) : K1(A)→ K0(B), and bott0(h, v) for the homomorphism h0,0 ◦ β(0) : K0(A)→
K1(B). Bott(h, v) as well as botti(h, v) (i = 0, 1) may be defined for a unitary v which only

approximately commutes with h. In fact, given a finite subset P ⊂ K(A), there exists a finite

subset F ⊂ A and δ0 > 0 such that

Bott(h, v)|P
is well defined if

‖[h(a), v]‖ < δ0

for all a ∈ F . See 2.11 of [14], 2.10 of [13], 2.21 of [22] for more details.

We have the following generalized Exel’s formula for the traces of Bott elements.

Theorem 2.13 (Theorem 3.5 of [18]). There is δ > 0 satisfying the following: Let A be a unital

separable simple C*-algebra with TR(A) ≤ 1 and let u, v ∈ U(A) be two unitaries such that

‖uv − vu‖ < δ. Then bott1(u, v) is well defined and

τ(bott1(u, v)) =
1

2πi
(τ(log(vuv∗u∗)))

for all τ ∈ T(A).

3. Rotation maps

In this section, we collect several facts on the rotation map which are going to be used frequently

in the rest of the paper. Most of them can be found in the literature.

Definition 3.1. Let A and B be two unital C*-algebras, and let ψ and φ be two unital monomor-

phisms from B to A. Then the mapping torus Mφ,ψ is the C*-algebra defined by

Mφ,ψ := {f ∈ C([0, 1], A); f(0) = φ(b) and f(1) = ψ(b) for some b ∈ B}.

For any ψ, φ ∈ Hom(B,A), denoting by π0 the evaluation of Mφ,ψ at 0, we have the short exact

sequence

0 // S(A)
ı // Mφ,ψ

π0 // B // 0,

where S(A) = C0((0, 1), A). If φ∗i = ψ∗i (i = 0, 1), then the corresponding six-term exact sequence

breaks down to the following two extensions:

ηi(Mφ,ψ) : 0 // Ki+1(A) // Ki(Mφ,ψ) // Ki(B) // 0, (i = 0, 1).
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3.2. Suppose that, in addition,

τ ◦ φ = τ ◦ ψ for all τ ∈ T(A).(3.1)

For any continuous piecewise smooth path of unitaries u(t) ∈Mφ,ψ, consider the path of unitaries

w(t) = u∗(0)u(t) in A. Then it is a continuous and piecewise smooth path with w(0) = 1 and

w(1) = u∗(0)u(1). Denote by Rφ,ψ(u) = Det(w) the determinant of w(t). It is clear with the

assumption of (3.1) that Rφ,ψ(u) depends only on the homotopy class of u(t). Therefore, it

induces a homomorphism, denoted by Rφ,ψ, from K1(Mφ,ψ) to Aff(T(A)).

Definition 3.3. Fix two unital C*-algebras A and B with T(A) 6= Ø. Define R0 to be the subset

of Hom(K1(B),Aff(T(A))) consisting of those homomorphisms h ∈ Hom(K1(B),Aff(T(A))) for

which there exists a homomorphism d : K1(B)→ K0(A) such that

h = ρA ◦ d.

It is clear that R0 is a subgroup of Hom(K1(B),Aff(T(A))).

3.4. If [φ] = [ψ] in KK(B,A), then the exact sequences ηi(Mφ,ψ) (i = 0, 1) above split. In

particular, there is a lifting θ : K1(B)→ K1(Mφ,ψ). Consider the map

Rφ,ψ ◦ θ : K1(B)→ Aff(T(A)).

If a different lifting θ′ is chosen, then, θ − θ′ maps K1(B) into K0(A). Therefore

Rφ,ψ ◦ θ −Rφ,ψ ◦ θ′ ∈ R0.

Then define

Rφ,ψ = [Rφ,ψ ◦ θ] ∈ Hom(K1(B),Aff(T(A)))/R0.

If [φ] = [ψ] in KL(B,A), then the exact sequences ηi(Mφ,ψ) (i = 0, 1) are pure, i.e., any finitely

generated subgroup in the quotient groups has a lifting. In particular, for any finitely generated

subgroup G ⊆ K1(B), one has a map

Rφ,ψ ◦ θG : G→ Aff(T(A)),

where θG : G→ K1(Mφ,ψ) is a lifting. Let G ⊂ K1(B) be a finitely generated subgroup. Denote

byR0,G the set of those elements h in Hom(G,Aff(T (A))) such that there exists a homomorphism

dG : G→ K0(A) such that h|G = ρA ◦ dG.
If [φ] = [ψ] in KL(B,A) and Rφ,ψ(K1(Mφ,ψ)) ⊂ ρA(K0(A)), then θG ∈ R0,G for any finitely

generated subgroup G ⊂ K1(B) and any lifting θG. In this case, we will also write

Rφ,ψ = 0.

See 3.4 of [18] for more details.

Lemma 3.5 (Lemma 9.2 of [18]). Let C and A be unital C*-algebras with T(A) 6= Ø. Suppose

that φ, ψ : C → A are two unital homomorphisms such that

[φ] = [ψ] in KL(C,A), φ] = ψ] and φ‡ = ψ‡.

Then the image of Rφ,ψ is in the ρA(K0(A))⊆Aff(T(A)).
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Proof. Let z ∈ K1(C). Suppose that u ∈ Un(C) for some integer n ≥ 1 such that [u] = z.

Note that ψ(u)∗φ(u) ∈ CUn(A). Thus, by 2.3, for any continuous and piecewise smooth path of

unitaries {w(t) : t ∈ [0, 1]} ⊂ U(A) with w(0) = ψ(u)∗φ(u) and w(1) = 1,

Det(w)(τ) =

∫ 1

0

τ(
dw(t)

dt
w(t)∗)dt ∈ ρA(K0(A)).(3.2)

Suppose that {(v)(t) : t ∈ [0, 1]} is a continuous and piecewise smooth path of unitaries in

Un(A) with v(0) = φ(u) and v(1) = ψ(u). Define w(t) = ψ(u)∗v(t). Then w(0) = ψ∗(u)φ(u) and

w(1) = 1. Thus, by (3.2),

Rφ,ψ(z)(τ) =

∫ 1

0

τ(
dv(t)

dt
v(t)∗)dt(3.3)

=

∫ 1

0

τ(ψ(u)∗
dv(t)

dt
v(t)∗ψ(u))dt(3.4)

=

∫ 1

0

τ(
dw(t)

dt
w(t)∗)dt ∈ ρA(K0(A)).(3.5)

�

3.6. Let A be a unital C*-algebra and let u and v be two unitaries with ‖u∗v − 1‖ < 2. Then

h = 1
2πi

log(u∗v) is a well-defined self-adjoint element of A, and w(t) := u exp(2πiht) is a smooth

path of unitaries connecting u and v. It is a straightforward calculation that for any τ ∈ T(A),

Det(w(t))(τ) =
1

2πi
τ(log(u∗v)).

3.7. Let A be a unital C*-algebra, and let u and w be two unitaries. Suppose that w ∈ U0(A).

Then w =
∏m

k=0 exp(2πihk) for some self-adjoint elements h0, ..., hm. Define the path

w(t) = (
l−1∏
k=0

exp(2πihk)) exp(2πihlmt), if t ∈ [(l − 1)/m, l/m],

and define u(t) = w∗(t)uw(t) for t ∈ [0, 1]. Then, u(t) is continuous and piecewise smooth, and

u(0) = u and u(1) = w∗uw. A straightforward calculation shows that Det(u(t)) = 0.

In general, if w is not in the path-connected component containing the identity, one can

consider unitaries diag(u, 1) and diag(w,w∗). Then, the same argument as above shows that

there is a piecewise smooth path u(t) of unitaries in M2(A) such that u(0) = diag(u, 1), u(1) =

diag(w∗uw, 1), and

Det(u(t)) = 0.

Lemma 3.8 (Lemma 3.5 of [14]). Let B and C be two unital C*-algebras with T(B) 6= Ø.

Suppose that φ, ψ : C → B are two unital monomorphisms such that [φ] = [ψ] in KL(C,B) and

τ ◦ φ = τ ◦ ψ

for all τ ∈ T(B). Suppose that u ∈ Ul(C) is a unitary and w ∈ Ul(B) such that

‖(φ⊗ idMl
)(u)w∗(ψ ⊗ idMl

)(u∗)w − 1‖ < 2.
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Then, for any unitary U ∈ Ul(Mφ,ψ) with U(0) = (φ ⊗ idMl
)(u) and U(1) = (ψ ⊗ idMl

)(u), one

has that

1

2πi
τ(log((φ⊗ idMl

)(u∗)w∗(ψ ⊗ idMl
)(u)w))−Rφ,ψ([U ])(τ) ∈ ρB(K0(B)).(3.6)

Proof. Without loss of generality, one may assume that u ∈ C. Moreover, to prove the lemma,

it is enough to show that (3.6) holds for one path of unitaries U(t) in M2(B) with U(0) =

diag(φ(u), 1) and U(1) = diag(ψ(u), 1).

Let U1 be the path of unitaries specified in 3.6 with U1(0) = diag(φ(u), 1) and U1(1/2) =

diag(w∗ψ(u)w, 1), and let U2 be the path specified in 3.7 with U2(1/2) = diag(w∗ψ(u)w, 1) and

U2(1) = diag(ψ(u), 1).

Set U the path of unitaries by connecting U1 and U2. Then U(0) = diag(φ(u), 1) and U(1) =

diag(ψ(u), 1). By applying 3.6 and 3.7, for any τ ∈ T(B), one computes that

Rφ,ψ([U ]) = Det(U(t))(τ) = Det(U1(t))(τ) + Det(U2(t))(τ) =
1

2πi
τ(φ(u∗)w∗ψ(u)w),

as desired. �

4. Homotopy lemma

In this section, we collect several results from [25] on the homotopy lemma.

Definition 4.1. Let A be a unital C*-algebra. In the following, for any invertible element x ∈ A,

let 〈x〉 denote the unitary x(x∗x)−
1
2 , and let x denote the element 〈x〉 in U(A)/CU(A). Consider

a subgroup Zk ⊆ K1(A), and write the unitary {u1, ..., uk} ⊆ Uc(A) the unitary corresponding

to the standard generators {e1, e2, ..., ek} of Zk. Suppose that {u1, u2, ..., uk} ⊂ Mn(A) for some

integer n ≥ 1. Let Φ : A → B be a unital positive linear map and Φ ⊗ idMn is at least

{u1, ..., uk}-1/4-multiplicative (hence each Φ ⊗ idMn(ui) is invertible), then the map Φ‡|s1(Zk) :

Zk → U(B)/CU(B) is defined by

Φ‡|s1(Zk)(ei) = 〈Φ⊗ idMn(ui)〉, 1 ≤ i ≤ k.

Thus, for any finitely generated subgroup G ⊂ Uc(A), there exists δ > 0 and a finite subset

G ⊂ A such that, for any unital δ-G-multiplicative completely positive linear map L : A → B

(for any unital C*-algebra B), the map L‡ is well defined on s1(G). (Please see 2.1 for Uc(A)

and s1.)

The following theorems are taken from [25].

Theorem 4.2 (3.10 of [25]). Let C = PMn(C(X))P , where X is a compact subset of a finite

CW-complex and P a projection in Mn(C(X)) with an integer n ≥ 1. Let ∆ : (0, 1) → (0, 1) be

a non-decreasing map. For any ε > 0 and any finite subset F ⊆ C, there exists δ > 0, η > 0,

γ > 0, a finite subsets G ⊆ C, P ⊆ K(C), a finite subset Q = {x1, x2, ..., xk} ⊂ K0(C) which

generates a free subgroup and xi = [pi]− [qi], where pi, qi ∈Mm(C) (for some integer m ≥ 1) are

projections, satisfying the following:
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Suppose that A is a unital simple C*-algebra with TR(A) ≤ 1, φ : C → A is a unital homo-

morphism and u ∈ A is a unitary, and suppose that

‖[φ(c), u]‖ < δ, ∀c ∈ G and Bott(φ, u)|P = 0,

and

µτ◦φ(Oa) ≥ ∆(a) ∀τ ∈ T (A⊗D),

where Oa is any open ball in X with radius η ≤ a < 1 and µτ◦φ is the Borel probability measure

defined by τ ◦ φ. Moreover, for each 1 ≤ i ≤ k, there is vi ∈ CU(Mm(A)) such that

‖〈(1m − φ(pi) + φ(pi)u)(1m − φ(qi) + φ(qi)u
∗〉 − vi‖ < γ.

Then there is a continuous path of unitaries {u(t) : t ∈ [0, 1]} in A such that

u(0) = u, u(1) = 1, and ‖[φ(c), u(t)]‖ < ε

for any c ∈ F and for any t ∈ [0, 1].

Theorem 4.3 (3.14 of [25]). Let C = PMn(C(X))P , where X is a compact subset of a finite

CW-complex and P a projection in Mn(C(X)) for some integer n ≥ 1. Let G ⊂ K0(C) be a

finitely generated subgroup. Write G = Zk ⊕ Tor(G) with Zk generated by

{x1 = [p1]− [q1], x2 = [p2]− [q2], ..., xk = [pk]− [qk]},

where pi, qi ∈Mm(C) (for some integer m ≥ 1) are projections, i = 1, ..., k.

Let A be a simple C*-algebra with TR(A) ≤ 1. Suppose that φ : C → A is a monomorphism.

Then, for any finite subsets F ⊆ C and P ⊆ K(C), any ε > 0 and γ > 0, any homomorphism

Γ : Zk → U0(A)/CU(A),

there is a unitary w ∈ A such that

‖[φ(f), w]‖ < ε ∀f ∈ F

Bott(φ,w)|P = 0,

and

dist(〈(1m − φ(pi) + φ(pi)w)(1m − φ(qi) + φ(qi)w∗〉,Γ(xi)) < γ, ∀1 ≤ i ≤ k,

where U0(A)/CU(A) is identified as U0(Mm(A))/CU(Mm(A)), and the distance above is under-

stood as the distance in U0(Mm(A))/CU(Mm(A)).

Theorem 4.4 (3.16 of [25]). Let C be an AH-algebra, and let A be a simple C*-algebra with

TR(A) ≤ 1. Suppose that h : C → A is a monomorphism. Then, for any ε > 0, any finite subset

F ⊆ C and any finite subset P ⊆ K(C), there is a C*-algebra C ′ ∼= PMn(C(X ′))P for some

finite CW-complex X ′ with K1(C ′) = Zk ⊕ Tor(K1(C ′)) and a homomorphism ι : C ′ → C with

P ⊆ [ι](K(C ′)), a finite subset Q ⊆ Zk ⊂ K1(C ′) and δ > 0 satisfying the following: Suppose

that κ ∈ HomΛ(K(C ′ ⊗ C(T)), K(A)) with

|ρA ◦ κ(β(x))(τ)| < δ, ∀x ∈ Q, ∀τ ∈ T(A).

Then there exists a unitary u ∈ A such that

‖[h(c), u]‖ < ε ∀c ∈ F and Bott(h ◦ ι, u) = κ ◦ β.
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Moreover, there is a sequence of C*-algebras Cn with the form Cn = PnMr(n)(C(Xn))Pn, where

each Xn is a finite CW-complex and Pn ∈Mr(n)(C(Xn)) a projection, such that C = lim−→(Cn, φn)

for a sequence of unital homomorphisms φn : Cn → Cn+1 and one may choose C ′ = Cn and

ι = φn for some integer n ≥ 1.

5. Approximately unitary equivalence

First we begin with the following lemma which is a simple combination of the uniqueness

theorem 2.10 and the proof of Theorem 4.2 in [23]. In what follows, if G is a subset of a group,

we will use G(P) for the subgroup generated by G.

Lemma 5.1. Let A be a simple C*-algebra with TR(A) ≤ 1, and let C be a unital AH-algebra.

If there are monomorphisms φ, ψ : C → A such that

[φ] = [ψ] in KL(C,A), φ] = ψ], and φ‡ = ψ‡,

then, for any 2 > ε > 0, any finite subset F ⊆ C, any finite subset of unitaries P ⊂ Un(C)

for some n ≥ 1, there exist a finite subset G ⊂ K1(C) with P ⊆ G (where P is the image of P
in K1(C)) and δ > 0 such that, for any map η : G(G) → Aff(T(A)) with |η(x)(τ)| < δ for all

τ ∈ T(A) and η(x)−Rφ,ψ(x) ∈ ρA(K0(A)) for all x ∈ G, there is a unitary u ∈ A such that

‖φ(f)− u∗ψ(f)u‖ < ε ∀f ∈ F ,

and τ( 1
2πi

log((φ⊗ idMn(x∗))(u⊗ 1Mn)∗(ψ ⊗ idMn(x))(u⊗ 1Mn))) = τ(η([x])) for all x ∈ P and

for all τ ∈ T(A).

Proof. Without loss of generality, one may assume that any element in F has norm at most one.

Let ε > 0. Choose ε > θ > 0 and a finite subset F ⊂ F0 ⊂ C satisfying the following: For all

x ∈ P , τ( 1
2πi

log(φ(x∗)w∗jψ(x)wj)) is well defined and

τ(
1

2πi
log(φ(x∗)w∗jψ(x)wj))(5.1)

= τ(
1

2πi
log(φ(x∗)v∗1ψ(x)v1) + · · ·+ τ(

1

2πi
log(φ(x∗)v∗jψ(x)vj)) for all τ ∈ T (A),(5.2)

whenever

‖φ(f)− v∗jψ(f)vj‖ < θ for all f ∈ F0,

where vj are unitaries in A and wj = v1 · · · vj, j = 1, 2, 3. In the above, if x ∈ Un(C), we denote

by φ and ψ the extended maps φ⊗ idMn and ψ⊗ idMn , and replace wj, and vj by diag(wj, ..., wj)

and diag(vj, ..., vj), respectively.

Let C ′, ι : C ′ → C, δ′ > 0 (in the place of δ) and G ′ ⊆ K1(C ′) (in the place of Q) the constant

and finite subset with respect to C (in the place of C), F0 (in the place of F), P (in the place

of P), and ψ (in the place of h) required by 4.4. Put δ = δ′/2.

Fix a decomposition (ι)∗1(C ′) = Zk ⊕ Tor((ι)∗1(C ′)) (for some integer k ≥ 0), and let G be a

set of standard generators of Zk. Let G ′′ ⊂ Um(C) be a finite subset containing a representative

for each element of G. Without loss of generality, one may assume that P ⊆ G ′′. By Theorem
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5.10 of [21], the maps φ and ψ are approximately unitary equivalent. Hence, for any finite subset

Q and any δ1, there is a unitary v ∈ A such that

‖φ(f)− v∗ψ(f)v‖ < δ1, ∀f ∈ Q.

By choosing Q ⊇ F0 sufficiently large and δ1 < η/2 sufficiently small, the map

[x] 7→ τ(
1

2πi
log(φ∗(x)v∗ψ(x)v)), x ∈ G ′′,

induces a homomorphism η1 : (ι)∗1(K1(C ′)) → Aff(T(A)) (note that η1(Tor((ι)∗1(K1(C ′)))) =

{0}), and moreover, ‖η1(x)‖ < δ for all x ∈ G.

By Lemma 3.8, the image of η1 − Rφ,ψ is in ρ(K0(A)). Since η(x)− Rφ,ψ(x) ∈ ρA(K0(A)) for

all x ∈ G, the image (η−η1)((ι)∗1(K1(C ′))) is also in ρA(K0(A)). Since η−η1 factors through Zk,
there is a map h : (ι)∗1(K1(C ′))→ K0(A) such that η−η1 = ρA◦h. Note that |τ(h(x))| < 2δ = δ′

for all τ ∈ T(A) and x ∈ G.

By the universal multi-coefficient theorem, there is κ ∈ HomΛ(K(C ′ ⊗ C(T)), K(A)) with

κ ◦ β|K1(C′) = h ◦ (ι)∗1.

Applying 4.4, there is a unitary w such that

‖[w,ψ(f)]‖ < θ/2, ∀f ∈ F0,

and Bott(w,ψ ◦ ι) = κ. In particular, bott1(w,ψ)(x) = h(x) for all x ∈ P .

Set u = wv. One then has

‖φ(f)− u∗ψ(f)u‖ < θ, ∀f ∈ F0,

and for any x ∈ P and any τ ∈ T(A),

τ(
1

2πi
log(φ(x∗)u∗ψ(x)u)) = τ(

1

2πi
log(φ(x)v∗w∗ψ(z)wv))

= τ(
1

2πi
log(φ(x∗)v∗ψ(x)vv∗ψ(x∗)w∗ψ(x)wv)

= τ(
1

2πi
log(φ(x∗)v∗ψ(x)v) + τ(

1

2πi
log(ψ(x∗)w∗ψ(x)w)

= η1([x])(τ) + h([x])(τ) = η([x])(τ).

�

Remark 5.2. In the case that TR(A) = 0, in fact one can apply Theorem 3.6 of [12] as the

uniqueness theorem in which case the condition φ‡ = ψ‡ is not needed, and moreover, one can

apply Corollary 17.9 of [13] (homotopy lemma). This special case of lemma is also observed by

H. Matui in [27].

Theorem 5.3. Let A be a simple C*-algebra with TR(A ⊗ Q) ≤ 1, and let C be a unital AH-

algebra. Suppose that there are two unital monomorphisms φ, ψ : C → A with

[φ] = [ψ] in KL(C,A), φ] = ψ] and φ‡ = ψ‡.
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Then, for any finite subset F ⊆ C, there exists a unitray u ∈ A⊗Z such that

‖φ(x)⊗ 1− u∗(ψ(x)⊗ 1)u‖ < ε, ∀x ∈ F .

Proof. We first note, by [24], that TR(A⊗Mr) ≤ 1 for any supernatural number.

Write C = limn→∞(Cn, φn), where each Cn has the form PnMm(n)(C(Xn))Pn, where Xn is a

finite CW-complex and Pn ∈ Mm(n)(C(Xn)) is a projection. Let F ⊆ C be a finite subset, and

let ε > 0. Without loss of generality, we may assume that F ⊆ φn,∞(Cn) for some integer n ≥ 1.

We may write φn,∞(Cn) = PMm(C(X))P, where X is a compact subset of a finite CW-complex.

Then, to simplify notation, without loss of generality, in the rest of the proof, we may assume that

C = PMm(C(X))P, where X is a compact subset of a finite CW complex and P ∈ Mm(C(X))

is a projection.

Fix a metric on X. For any a ∈ (0, 1), denote by

∆(a) = inf{µτ◦ψ(Oa); τ ∈ T (A), Oa an open ball of radius a in X}.

Since A is simple, one has that 0 < ∆(a) ≤ 1 and ∆(a)→ 0 as a→ 0.

Assume that every element in F has norm at most one. Let p and q be a pair of relatively

prime supernatural numbers of infinite type with Qp + Qq = Q. Denote by Mp and Mq the

UHF-algebras associated to p and q respectively.

Let δ > 0, γ > 0, d > 0 (in place of η), G ⊆ C a finite subset, P ⊆ K(C) a finite subset andQ =

{x1, ..., xk} ⊆ K0(C) which generates a free subgroup required by Theorem 4.2 corresponding to

F , ε/2 (in place of ε) and ∆. We may assume that xi = [pi] − [qi], where pi, qi ∈ Mn(C) are

projections and i = 1, 2, ..., k.

In the rest of of the proof, for a homomorphism h : C ′ → B′ (for any C*-algebras C ′ and B′),

we will use h instead of h⊗ idMn : Mn(C ′)→Mn(B′) when it is inconvenient.

Without loss of generality, we may assume that δ < ε/2 is small enough and G is large enough

so that for any homomorphism h : C → A, the maps Bott(h, uj) and Bott(h,wj) are well defined

and

Bott(h,wj) = Bott(h, u1) + · · ·+ Bott(h, uj)

on the subgroup generated by P , if uj is any unitaries with ‖[h(x), uj]‖ < δ for all x ∈ G, where

wj = u1 · · ·uj, j = 1, 2, 3, 4.

We may also assume that

‖h(pi), uj]‖ < 1/16 and ‖h(qi), uj]‖ < 1/16, 1 ≤ i ≤ k, j = 1, 2, 3, 4(5.3)

(by choosing larger G and smaller δ)

Let ır : A → A ⊗Mr be the embedding defined by ır(a) = a ⊗ 1 for all a ∈ A, where r is a

supernatural number. Define φr = ır ◦ φ and ψr = ır ◦ ψ.
For any supernatural number r = p, q, the C*-algebra A ⊗Mr has tracial rank at most one.

Denote by C ′ = P ′Mn(C(X ′))P ′, ı : C ′ → C, δr (in place of δ) and Qr ⊆ K1(C ′) (in place of

Q) which generates a free subgroup corresponding to δ/8 (in place of ε), G, P and ψr required

by Theorem 4.4. Let 0 < δ2 < min{δp, δq, ε, γ}, and let H ⊆ K(C ′) be a finite set of generators.

Denoted by H1 = H∩K1(C ′), we may assume that Qr ⊂ H1. Pick a finite subset U ⊂ Un(C) for
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some integer n ≥ 1 such that any element in ı∗1(H1) has a representative in U . Let S ⊂ C be a

finite subset such that, if u = (aij) ∈ U , then ai,j ∈ S.
Furthermore, one may assume that δ2 is sufficiently small such that for any unitaries z1, z2 in

a C*-algebra with tracial states, τ( 1
2πi

log(ziz
∗
j )) (i, j = 1, 2, 3) is well defined and

τ(
1

2πi
log(z1z

∗
2)) = τ(

1

2πi
log(z1z

∗
3)) + τ(

1

2πi
log(z3z

∗
2))

for any tracial state τ , whenever ‖z1 − z3‖ < δ2 and ‖z2 − z3‖ < δ2.

Let Q1 ⊂ K1(C) (in place of G) and δ3 (in place of δ) be the finite subset and constant of

Lemma 5.1 with respect to G ∪ S (in place of F), U (in place of P) and δ2/n
2 (in place of ε).

By Lemma 3.5, the image of Rφ,ψ is in the closure of ρA(K0(A)). Note that kernel of Rφ,ψ

contains Tor(G(Q1)) and G(Q1) is finitely generated. There exists a homomorphism η : Q1 →
Aff(T(A)) such that η(x) − Rφ,ψ(x) ∈ ρA(K0(A)) and ‖η(x)‖ < δ3 for all x ∈ Q1. Then the

image of (ıp)] ◦ η−Rφp,ψp is in ρA⊗Mp(K0(A⊗Mp))). The same holds for q. By Lemma 5.1 there

exist unitaries up and uq such that∥∥φp(g)− u∗pψp(g)up
∥∥ < δ2/n

2 and
∥∥φq(g)− u∗qψq(g)uq

∥∥ < δ2/n
2, ∀g ∈ G ∪ S.

Moreover,
τ(

1

2πi
log(φp(x

∗)u∗pψp(x)up)) = (ıp)] ◦ η([x])(τ) for all τ ∈ T(Ap) and

τ(
1

2πi
log(φq(x

∗)u∗qψq(x)uq)) = (ıq)] ◦ η([x])(τ) for all τ ∈ T(Aq)(5.4)

and for all x ∈ U , where we identify φ and ψ with φ⊗ idMn and φ⊗ idMn , and u with u⊗ 1Mn ,

respectively.

Let ∞ be the supernatural number associated with Q. Let ep : A ⊗Mp → A ⊗ Q and eq :

A⊗Mq → A⊗Q be the standard embeddings. Then, one computes that, for all x ∈ U , by the

Exel formula (see 2.13 ),

τ(bott1(ψ(x)⊗ 1, upu
∗
q)) = τ(

1

2πi
log(upu

∗
q(ψ(x)⊗ 1)uqu

∗
p(ψ(x∗)⊗ 1)))(5.5)

= τ(
1

2πi
log(u∗q(ψ(x)⊗ 1)uqu

∗
p(ψ(x∗)⊗ 1)up)(5.6)

= τ(
1

2πi
log(u∗q(ψ(x)⊗ 1)uq(φ(x∗)⊗ 1))(5.7)

+τ(
1

2πi
log((φ(x∗)⊗ 1)u∗p(ψ(x)⊗ 1)up)(5.8)

= −(eq)] ◦ (ıq)] ◦ η([x])(τ)+(ep)] ◦ (ıp)] ◦ η([x])(τ)(5.9)

= −(ı∞)] ◦ η([x])(τ)+(ı∞)] ◦ η([x])(τ) = 0(5.10)

for all τ ∈ T (A⊗Q), where we identify φ and ψ with φ⊗ idMn and ψ⊗ idMn , and up and uq with

up⊗1Mn and uq with uq⊗1Mn , respectively. Therefore, the image of the map bott1(ψ⊗1, upu
∗
q) is

in kerρA⊗Q. Note that K0(A⊗Q) ∼= K0(A)⊗Q is torsion free. Hence the map bott1(ψ⊗1, upu
∗
q)

factors through the torsion-free part of G(ı∗1(H1)). Since H1 is a set of generators of K1(C ′),

one may assume that the domain of the map bott1(ψ ⊗ 1, upu
∗
q) is ı∗1(K1(C ′)). Note that there
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is a short exact sequence

0 // ker ρA // K0(A)
ρA // ρA(K0(A)) // 0.

Since D := Q, Qp or Qq is flat, one has

0 // ker ρA ⊗D // K0(A)⊗D
ρA⊗idD// ρA(K0(A))⊗D // // 0.

Since the UHF-algebra R := Q, Mp or Mq have unique trace, the map ρA ⊗ idD is the same as

the map ρA⊗R if K0(A⊗R) is identified as K0(A)⊗D respectively.

Hence ker ρA⊗Q = ker ρA ⊗Q and ker ρA⊗Mr = (ker ρ)⊗Qr, r = p, or r = q. Moreover, since p

and q are relative prime, any rational number r can be written as r = rp + rq with rp ∈ Qp and

rq ∈ Qq (see 2.6). Since ker ρA⊗Q is torsion free, bott1((ψ ⊗ 1 ◦ ı) ⊗ 1, upu
∗
q) maps Tor(K1(C ′))

to zero. Write K1(C ′) = Zr ⊕ Tor(K1(C ′)) and let {e1, e2, ..., er} be a set of generators of Zr.
Suppose that bott1((ψ⊗1◦ı)⊗1, upu

∗
q) maps ei to

∑mi
j=1 xi,j⊗ri,j, where xi,j ∈ ker ρA and ri,j ∈ Q,

j = 1, 2, ...,mi and i = 1, 2, ..., r. There are ri,j,p ∈ Qp and ri,j,q ∈ Qq such that ri,j = ri,j,p − ri,j,q,
j = 1, 2, ...,mi and i = 1, 2, ..., r. Define two homomorphisms θp : K1(C ′) → ker ρA⊗Mp and

θq : K1(C ′)→ ker ρA⊗Mq as follows: (θr)|Tor(K1(C′)) = 0, r = p, q. Define θr(ei) =
∑mi

j=1 xi,j ⊗ ri,j,r
by regarding

∑mi
j=1 xi,j ⊗ ri,j,r as an element of K0(A⊗Mr)), r = p, q and i = 1, 2, ..., r. Then

bott1((ψ ⊗ 1 ◦ ı)⊗ 1, upu
∗
q) = (jp)∗0 ◦ θp − (jq)∗0 ◦ θq,

where jr : A⊗Mr → A⊗Q is the embedding. The same argument shows there are homomorphisms

αp : K0(C ′)→ K1(A⊗Mp) and αq : K0(C ′)→ K1(A⊗Mq) such that

bott0((ψ ◦ ı)⊗ 1, upu
∗
q) = (jp)∗1 ◦ αp − (jq)∗1 ◦ αq.

By the universal multi-coefficient theorem, there is κp ∈ HomΛ(K(C ′ ⊗ C(T)), K(A ⊗Mp))

such that

κp|β(K0(C′)) = −αp ◦ β−1 and κp|β(K1(C′)) = −θp ◦ β−1.(5.11)

Similarly, there is κq ∈ HomΛ(K(C ′ ⊗ C(C(T))), K(A⊗Mq)) such that

κq|β(K0(C′)) = −αq ◦ β−1 and κq|β(K1(C′)) = −θq ◦ β−1.(5.12)

To apply 4.4, we verify that

|ρA⊗Mp ◦ κp(β(x))| = 0 < δp for all x ∈ Qp and(5.13)

|ρA⊗Mq ◦ κp(β(x))| = 0 < δq for all x ∈ Qq.(5.14)

Then, by Theorem 4.4, there are unitaries wp ∈ A⊗Mp and wq ∈ A⊗Mq such that

‖[wp, ψp(g)]‖ < δ/8, ‖[wq, ψq(g)]‖ < δ/8,

for any g ∈ G, and

Bott(ψp ◦ ı, wp) = κp ◦ β and Bott(ψq ◦ ı, wq) = κq ◦ β.

Consider the unitaries wpup and wquq. One then has that∥∥φ(g)⊗ 1− u∗pw∗p(ψ(g)⊗ 1)wpup
∥∥ < δ/4 and

∥∥φ(g)⊗ 1− u∗qw∗q(ψ(g)⊗ 1)wquq
∥∥ < δ/4, ∀g ∈ G.
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Hence ∥∥[wpupu
∗
qw
∗
q , ψ(g)⊗ 1]

∥∥ < δ/2, ∀g ∈ G.
In the following computation, we use ψ⊗1 for the map from C to A⊗Q induced by ψ. We have,

by (5.11) and (5.12), that

bott0(ψ ⊗ 1, wpupu
∗
qw
∗
q)|K0(C)∩P(5.15)

= bott0(ψ ⊗ 1, wp)|K0(C)∩P + bott0(ψ ⊗ 1, upu
∗
q)|K0(C)∩P + bott0(ψ ⊗ 1, w∗q)|K0(C)∩P(5.16)

= −(jp)∗1 ◦ αp|K0(C)∩P + ((jp)∗1 ◦ αp − (jq)∗1 ◦ αq)|K0(C)∩P + (jq)∗1 ◦ αq|K0(C)∩P = 0.(5.17)

The same computation shows that

bott1(ψ ⊗ 1, wpupu
∗
qw
∗
q)|K1(C)∩P(5.18)

= bott1(ψ ⊗ 1, wp)|K1(C)∩P + bott1(ψ ⊗ 1, upu
∗
q)|K1(C)∩P + bott1(ψ ⊗ 1, w∗q)|K1(C)∩P(5.19)

= −(jp)∗0 ◦ θp|K1(C)∩P + ((jp)∗0 ◦ θp − (jq)∗0θq)|K1(C)∩P + (jq)∗0 ◦ θq|K1(C)∩P = 0.(5.20)

Since Ki(A⊗Q) is torsion free (i = 0, 1), the aboves imply that

Bott(ψ ⊗ 1, wpupu
∗
qw
∗
q)|P = 0.(5.21)

By the construction of ∆, it is clear that

µτ◦(ψ⊗1)(Oa) ≥ ∆(a)

for all a, where Oa is any open ball of X with radius a; in particular, it holds for all a ≥ d.

For each 1 ≤ i ≤ k, define (see (5.3))

Li,wpup = 〈(1n − ψ(pi)⊗ 1 + (ψ(pi)⊗ 1)wpup)(1n − ψ(qi)⊗ 1 + (ψ(qi)⊗ 1)u∗pw
∗
p)〉

and

Li,wquq = 〈(1n − ψ(pi)⊗ 1 + (ψ(pi)⊗ 1)wquq)(1n − ψ(qi)⊗ 1 + (ψ(qi)⊗ 1)u∗qw
∗
q)〉,

and define the map Γp : Zk → U(A ⊗ Mp)/CU(A ⊗ Mp) by Γp(xi) = Li,wpup and the map

Γq : Zk → U(A⊗Mq)/CU(A⊗Mq) by Γq(xi) = Li,wquq .

By Corollary 4.3, there are unitaries ζp ∈ A⊗Mp, ζq ∈ A⊗Mq such that∥∥[ζp, ψ(g)⊗ 1Mp ]
∥∥ < δ/4,

∥∥[ζq, ψ(g)⊗ 1Mq ]
∥∥ < δ/4, ∀g ∈ G

Bott(ψ ⊗ 1Mp , ζp)|P = 0, Bott(ψ ⊗ 1Mq , ζq)|P = 0,

and for any 1 ≤ i ≤ k,

dist(Li,ζ∗p ,Γp(xi)) ≤ γ/2 and dist(Li,ζ∗q ,Γq(xi)) ≤ γ/2,

where

Li,ζ∗p = 〈(1n − ψ(pi)⊗ 1Mp + (ψ(pi)⊗ 1Mp)ζ
∗
p )(1n − ψ(qi)⊗ 1Mp + (ψ(qi)⊗ 1Mp)ζp)〉,

and

Li,ζ∗q = 〈(1n − ψ(pi)⊗ 1Mq + (ψ(pi)⊗ 1Mq)ζ
∗
q )(1n − ψ(qi)⊗ 1Mq + (ψ(qi)⊗ 1Mq)ζq)〉.
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In particular, if denote by v0 = ζpwpupu
∗
qw
∗
qζ
∗
q , one has that for any 1 ≤ i ≤ k,

dist(〈(1n − ψ(pi)⊗ 1Q + (ψ(pi)⊗ 1Q)v0)(1n − ψ(qi)⊗ 1Q + (ψ(qi)⊗ 1Q)v∗0)〉, 1n) < γ.

Then, by Theorem 4.2, there is a continuous path of unitaries v(t) in A⊗Q such that v(1) = 1

and v(0) = v0, and

‖[v(t), ψ(x)⊗ 1Q]‖ < ε/2 ∀x ∈ F , ∀t ∈ [0, 1].

Consider the unitary u(t) = v(t)ζqwquq ∈ A⊗Zp,q, and it has the property

‖φ(f)⊗ 1− u∗(ψ(f)⊗ 1)u‖ < ε, ∀f ∈ F .

One then embeds Zp,q into Z to get the desired conclusion. �

Recall that C is the class of all simple separable C*-algebras A for which TR(A⊗Mr) ≤ 1

form some UHF-algebra Mr, where r is a supernatural number of infinite type.

Corollary 5.4. Let C be a unital AH-algebra and let A be a unital separable simple Z-stable

C*-algebra in C. Let φ, ψ : C → A be two unital monomorphisms. Then there exists a sequence

of unitaries {un} ⊂ A such that

lim
n→∞

u∗nψ(c)un = φ(c) for all c ∈ C,

if and only if

[φ] = [ψ] in KL(C,A), φ] = ψ] and φ‡ = ψ‡.

Proof. We only show the “if” part. Suppose that φ and ψ satisfy the condition. Let ε > 0, and

let F ⊂ C be a finite subset. Then, by 5.3, there exists a unitary v ∈ A⊗Z such that

‖v∗(ψ(a)⊗ 1)v − φ(a)⊗ 1‖ < ε/3 for all a ∈ F .(5.22)

Let ı : A→ A⊗Z be defined by ı(a) = a⊗1 for a ∈ A. There exists an isomorphism j : A⊗Z → A

such that j ◦ ı is approximately inner. So there is a unitaries w ∈ A such that

‖j(ψ(a)⊗ 1)− w∗ψ(a)w‖ < ε/3 and ‖w∗φ(a)w − j(φ(a)⊗ 1)‖ < ε/3(5.23)

for all a ∈ F . Let u = wj(v)w∗ ∈ A; then, for a ∈ F ,

‖u∗ψ(a)u− φ(a)‖ = ‖wj(v)∗w∗ψ(a)wj(v)w∗ − φ(a)‖(5.24)

≤ ‖wj(v)∗w∗ψ(a)wj(v)w∗ − wj(v)∗(j(ψ(a)⊗ 1)j(v)w∗‖(5.25)

+‖wj(v)∗(j(ψ(a)⊗ 1)j(v)w∗ − w(j(φ(a)⊗ 1)w∗‖(5.26)

+‖w(j(φ(a)⊗ 1)w∗ − φ(a)‖(5.27)

< ε/3 + ε/3 + ε/3 = ε for all a ∈ F .(5.28)

�

A version of the following is also obtained by H. Matui.
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Corollary 5.5. Let C be a unital AH-algebra and let A be a unital separable simple C*-algebra

in C0 which is Z-stable. Suppose that φ, ψ : C → A are two unital monomorphisms. Then there

exists a sequence of unitaries {un} ⊂ A such that

lim
n→∞

u∗nφ(c)un = ψ(c) for all c ∈ C,

if and only if

[φ] = [ψ] in KL(C,A), φ] = ψ] and φ‡ = ψ‡.

Proof. The proof is exactly the same as that of 5.3 and 5.4. At where Theorem 2.10 is applied,

one applies Theorem 3.6 of [12] instead. One also uses Remark 5.2. �

Lemma 5.6. Let A be a unital C*-algebra such that A⊗Mr is an AH-algebra for any supernatural

number r of infinite type. Let B ∈ C be a unital separable C*-algebra, and let φ, ψ : A → B be

two unital monomorphisms. Suppose that

[φ] = [ψ] in KL(A,B),(5.29)

φ] = ψ] and φ‡ = ψ‡.(5.30)

Let p and q be two relatively prime supernatural numbers of infinite type with Mp ⊗Mq = Q.

Then, for any ε > 0 and any finite subset F ⊂ A⊗Zp,q, there exists a unitary v ∈ B⊗Zp,q such

that

‖v∗((φ⊗ id)(a))v − (ψ ⊗ id)(a)‖ < ε for all a ∈ F .(5.31)

The proof of this lemma will be lengthy and technical in nature. However, the outline is the

same as that of Theorem 5.3, that is, using homotopy lemmas, one could find a certain path

of unitaries in B ⊗ Q such that it implements the approximate equivalence above when it is

regarded as a unitary in B ⊗ Zp,q. But since the domain C*-algebra A is only assumed to be

rational tracial rank at most one, in order to apply the homotopy lemmas, one also needs to

interpolate paths in A⊗Zp,q, and this increases the technical difficulty of the proof.

Proof. Let r be a supernatural number. Denote by ır : A → A ⊗Mr the embedding defined by

ır(a) = a⊗ 1 for all a ∈ A. Denote by jr : B → B ⊗Mr the embedding defined by jr(b) = b⊗ 1

for all b ∈ B. Without loss of generality, one may assume that F = F1 ⊗F2, where F1 ⊆ A and

F2 ⊆ Zp,q are finite subsets and 1A ∈ F and 1Zp,q ∈ F2. Moreover, one may assume that any

element in F1 or F2 has norm at most one.

Let 0 = t0 < t1 < · · · < tm = 1 be a partition of [0, 1] such that

(5.32) ‖b(t)− b(ti)‖ < ε/4 ∀b ∈ F2, ∀t ∈ [ti−1, ti], i = 1, ...,m.

Consider

E = {a⊗ b(ti); a ∈ F1, b ∈ F2, i = 0, ...,m} ⊆ A⊗Q,
Ep = {a⊗ b(t0); a ∈ F1, b ∈ F2} ⊆ A⊗Mp ⊂ A⊗Q and(5.33)

Eq = {a⊗ b(tm); a ∈ F1, b ∈ F2} ⊆ A⊗Mq ⊂ A⊗Q.(5.34)

Since A⊗Q is an AH-algebra, without loss of generality, one may assume that the finite subset

E is in a C*-subalgebra of A⊗Q which is isomorphic to C := PMn(C(X))P (for some n ≥ 1) for
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some compact metric space X. Since PMn(C(X))P = limm→∞(PmMn(C(Xm))Pm), where Xm

are closed subspaces of finite CW-complexes, then, without loss of generality, one may assume

further that X is a closed subset of a finite CW-complex.

Fix a metric on X, and for any a ∈ (0, 1), denote by

∆(a) = inf{µτ◦(φ⊗id)(Oa); τ ∈ T (B), Oa an open ball of radius a in X}.

Since B is simple, one has that 0 < ∆(a) ≤ 1.

Let H ⊂ C, P ⊆ K(C), Q = {x1, x2, ..., xm} ⊂ K0(C) which generates a free subgroup of

K0(C), δ > 0, γ > 0, and d > 0 (in the place of η) be the constants of Theorem 4.2 with respect

to E , ε/8, and ∆. We may assume that xi = [pi] − [qi], where pi, qi ∈ Mn(C) are projections

(for some integer n ≥ 1), i = 1, 2, ...,m. Moreover, we may assume that γ < 1.

Denote by ∞ the supernatural number associated with Q. Let Pi = P ∩Ki(A⊗Q), i = 0, 1.

There is a finitely generated free subgroup G(P)i,0 ⊂ Ki(A) such that if one sets

G(P)i,∞,0 = G({gr : g ∈ (ı∞)∗i(G(P)i,0) and r ∈ D0}),(5.35)

where 1 ∈ D0 ⊂ Q is a finite subset, then G(P)i,∞,0 contains the subgroup generated by Pi,
i = 0, 1. Moreover, we may assume that, if r = k/m, where k and m are nonzero integers, and

r ∈ D0, then 1/m ∈ D0. Let P ′i ⊂ Ki(A) be a finite subset which generates G(P)i,0, i = 0, 1.Also

denote by P ′ = P ′0 ∪ P ′1.

Denote by j : C → A⊗Q the embedding.

Write the subgroup generated by the image of Q in K0(A⊗Q) as Zk (for some integer k ≥ 1).

Choose {x′1, ..., x′k} ⊆ K0(A) and {rij; 1 ≤ i ≤ m, 1 ≤ j ≤ k} ⊆ Q such that

j∗0(xi) =
k∑
j=1

rijx
′
j, 1 ≤ i ≤ m, 1 ≤ j ≤ k,

and moreover, {x′1, ..., x′k} generates a free subgroup of K0(A) of rank k. Choose projections

p′j, q
′
j ∈ Mn(A) such that x′j = [p′j] − [q′j], 1 ≤ j ≤ k. Choose an integer M such that Mrij are

integers for 1 ≤ i ≤ m and 1 ≤ j ≤ k. In particular Mxi is the linear combination of x′j with

integer coefficients.

Also noting that the subgroup of K0(A ⊗ Q) generated by {(ı∞)∗0(x′1), ..., (ı∞)∗0(x′k)} is iso-

morphic to Zk and the subgroup of K0(A⊗Mr) generated by {(ır)∗0(x′1), ..., (ır)∗0(x′k)} has to be

isomorphic to Zk, where r = p or r = q.

Since A⊗Mr is an AH-algebra, one can choose a C∗-subalgebra Cr of A⊗Mr which is isomorphic

to PrMnr(C(Xr))Pr (for some nr ≥ 1) such that Er ⊆ Cr and projections {p′1,r, ..., p′k,r, q′1,r, ..., q′k,r} ⊆
Mn(Cr) such that for any 1 ≤ j ≤ k,

(5.36)
∥∥p′j ⊗ 1Mr − p′j,r

∥∥ < γ/(32(1 +
∑
i,j′

|Mrij′|)) < 1

and

(5.37)
∥∥q′j ⊗ 1Mr − q′j,r

∥∥ < γ/(32(1 +
∑
i,j′

|Mrij′ |)) < 1,

where Xr is a closed subset of a finite CW-complex, and r = p or r = q.
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Denote by x′j,r = [p′j,τ ]− [q′j,r], 1 ≤ j ≤ k, and denote by Gr the subgroup of K0(Cr) generated

by {x′1,r, ..., x′k,r}, and write Gr = Zr ⊕ Tor(Gr). Since Gr is generated by k elements, one has

that r ≤ k and r = k if and only if Gr is torsion free. Note that the image of Gr in K0(A⊗Mr)

is the group generated by {[p′1⊗ 1Mr ]− [q′1⊗ 1Mr ], ..., [p
′
k⊗ 1Mr ]− [q′k⊗ 1Mr ]}, which is isomorphic

to Zk (with {[p′j ⊗ 1Mr ]− [q′j ⊗ 1Mr ]; 1 ≤ j ≤ k} as the standard generators). Hence Gr is torsion

free and r = k.

Without loss of generality, one may assume that ır(P ′) ⊆ K(Cr). Assume that H is sufficiently

large and δ is sufficiently small such that for any homomorphism h from A⊗Q to B⊗Q and any

unitary zj (j = 1, 2, 3, 4), the map Bott(h, zj) and Bott(h,wj) are well defined on the subgroup

generated by P and

Bott(h,wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by P , if ‖[h(x), zj]‖ < δ for any x ∈ H, where wj = z1 · · · zj,
j = 1, 2, 3, 4.

By choosing larger H and smaller δ, one may also assume that

‖h(pi), zj]‖ < 1/16 and ‖h(qi), zj]‖ < 1/16, 1 ≤ i ≤ m, j = 1, 2, 3, 4,(5.38)

and for any 1 ≤ i ≤ m,

(5.39) dist(ζMi,z1 ,
k∏
j=1

(ζ ′j,z1)
Mrij) < γ/8,

where

ζi,z1 = 〈(1n − h(pi) + h(pi))z1)(1n − h(qi) + h(qi))z∗1)〉,
and

ζ ′j,z1 = 〈(1n − h(p′j ⊗ 1A⊗Q) + h(p′j ⊗ 1A⊗Q))z1)(1n − h(q′j ⊗ 1A⊗Q) + h(q′j ⊗ 1A⊗Q))z∗1)〉.

By choosing even smaller δ, without loss of generality, we may assume that

H = H0 ⊗Hp ⊗Hq,

where H0 ⊂ A, Hp ⊂Mp and Hq ⊂Mq are finite subsets, and 1 ∈ H0, 1 ∈ Hp and 1 ∈ Hq.

Moreover, chooseH0, Hp andHq even larger and δ even smaller so that for any homomorphism

hr : A⊗Mr → B ⊗Mr and unitaries z1, z2 ∈ B ⊗Mr with ‖hr(x), zi‖ < δ for any x ∈ H0 ⊗Hr,

one has

‖hr(p′i,r), zj]‖ < 1/16 and ‖hr(q′i,r), zj]‖ < 1/16, 1 ≤ i ≤ k, j = 1, 2,(5.40)

and

dist(ζi,z1z2 , (1B⊗Mr)n) < dist(ζi,z∗1 , ζi,z2) + γ/(32(1 +
∑
i′,j

|Mri′j|)),

where

ζi,z′ = 〈(1n − hr(p′i,r) + hr(p′i,r))z
′)(1n − hr(q′i,r) + hr(q′i,r))(z

′)∗)〉, z′ = z1z2, z
∗
1 , z2.
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Denote by C ′ = P ′Mn(C(X̃))P ′, ι : C ′ → A ⊗ Q, δ2 (in the place of δ) the constant, G ⊆
K1(C(X̃)) (in the place of Q) the finite subset in Theorem 4.4 with respect to A ⊗ Q (in the

place of C), B ⊗Q (in the place of A), φ⊗ idQ (in the place of h), δ/4 (in the place of ε), H (in

the place of F) and P . Note that X̃ is a finite CW-complex.

Let H′ ⊆ A ⊗ Q be a finite subset and assume that δ2 is small enough such that for any

homomorphism h from A⊗ Q to B ⊗ Q and any unitary zj (j = 1, 2, 3, 4), the map Bott(h, zj)

and Bott(h,wj) is well defined on the subgroup [ι](K(C ′)) and

Bott(h,wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup [ι](K(C ′)), if ‖[h(x), zj]‖ < δ2 for any x ∈ H′, where wj = z1 · · · zj, j = 1, 2, 3, 4.

Furthermore, as above, one may assume, without loss of generality, that

H′ = H0′ ⊗Hp′ ⊗Hq′ ,

where H0 ⊆ H0′ ⊂ A, Hp ⊆ Hp′ ∈Mq and Hq ⊆ Hq′ ⊂Mq are finite subsets.

Let δ′2 > 0 be a constant such that for any unitary with ‖u− 1‖ < δ′2, one has that ‖ log u‖ <
δ2/4. Without loss of generality, one may assume that δ′2 < δ2/4 < ε/4 and δ′2 < δ.

Let C ′r := PrMnC(X ′r)Pr (in the place of C ′), ι′r : Cr → A⊗Mr (in the place of ι), Rr ⊂ K1(C ′r))

(in the place of Q) and δr (in the place of δ) be the finite subset and constant of Theorem 4.4

with respect to A ⊗Mr (in the place of C), B ⊗Mr (in the place of A), φ ⊗ idMr (in the place

of h), H0′ ⊗Hr′ (in place of F) and (ır)∗0(P ′0) ∪ (ır)∗1(P ′1) (in the place of P) and δ′2/8 (in place

of ε) (r = p or r = q). Note that X ′r is a finite CW-complex with K1(C ′r) = Zkr ⊕ Tor(K1(C ′r)).

Let R(i)
r = (ι′r)∗i(Ki(C

′
r)), i = 0, 1. There is a finitely generated subgroup Gi,0,r ⊂ Ki(A) and a

finitely generated subgroup D0,r ⊆ Qr so that

G′i,0,r := G({gr : g ∈ (ır)∗i(Gi,0,r) and r ∈ D0,r})

contains the subgroup R(i)
r , i = 0, 1. Without loss of generality, one may assume that D0,p =

{ k
mp

; k ∈ Z} and D0,q = { k
mq

; k ∈ Z} for an integer mp divides p and an integer mq divides q.

Let R ⊂ K(A⊗Q) be a finite subset which generates a subgroup containing

1

mpmq

((ıp,∞)∗(G
′
0,0,p ∪G′1,0,p) ∪ (ıq,∞)∗(G

′
0,0,q ∪G′1,0,q))

in K(A⊗Q), where ır,∞ is the canonical embedding A⊗Mr → A⊗Q, r = p, q. Without loss of

generality, one may also assume that R ⊇ ι∗1(G). Let Hr ⊂ A⊗Mr be a finite subset and δ3 > 0

such that for any homomorphism h from A ⊗Mr to B ⊗Mr (r = p or r = q) any unitary zj
(j = 1, 2, 3, 4), the map Bott(h, zj) and Bott(h,wj) are well defined on the subgroup [ι′r](K(C ′r))

and

Bott(h,wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by [ι′r](K(C ′r)), if ‖[h(x), zj]‖ < δ3 for any x ∈ Hr, where wj = z1 · · · zj,
j = 1, 2, 3, 4. Without loss of generality, we assume that H0 ⊗ Hp ⊂ Hp and H0 ⊗ Hq ⊂ Hq.

Furthermore, we may also assume that

Hr = H0,0 ⊗H0,r
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for some finite subsets H0,0 and H0,r with H0′ ⊂ H0,0 ⊂ A, Hp′ ⊂ H0,p ⊂Mp and Hq′ ⊂ H0,q. In

addition, we may also assume that δ3 < δ2/2.

Furthermore, one may assume that δ3 is sufficiently small such that, for any unitaries z1, z2, z3

in a C*-algebra with tracial states, τ( 1
2πi

log(ziz
∗
j )) (i, j = 1, 2, 3) is well defined and

τ(
1

2πi
log(z1z

∗
2)) = τ(

1

2πi
log(z1z

∗
3)) + τ(

1

2πi
log(z3z

∗
2))

for any tracial state τ , whenever ‖z1 − z3‖ < δ3 and ‖z2 − z3‖ < δ3.

To simply notation, we also assume that, for any unitary zj, (j = 1, 2, 3, 4) the map Bott(h, zj)

and Bott(h,wj) are well defined on the subgroup generated by R and

Bott(h,wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by R, if ‖[h(x), zj]‖ < δ3 for any x ∈ H′′, where wj = z1 · · · zj,
j = 1, 2, ..., 4, and assume that

H′′ = H0,0 ⊗H0,p ⊗H0,q.

Let Ri = R∩Ki(A⊗Q). There is a finitely generated subgroup Gi,0 of Ki(A) and there is a

finite subset D′0 ⊂ Q such that

Gi,∞ := G({gr : g ∈ (ı∞)∗i(Gi,0)) and r ∈ D′0})

contains the subgroup generated by Ri, i = 0, 1. Without loss of generality, we may assume

that Gi,∞ is the subgroup generated by Ri. Note that we may also assume that Gi,0 ⊃ G(P)i,0
and 1 ∈ D′0 ⊃ D0. Moreover, we may assume that, if r = k/m, where m, k are relatively prime

non-zero integers, and r ∈ D′0, then 1/m ∈ D′0. We may also assume that Gi,0,r ⊆ Gi,0 for r = p, q

and i = 0, 1. Let Ri′ ⊂ Ki(A) be a finite subset which generates Gi,0, i = 0, 1. Choose a finite

subset U ⊂ Un(A) for some n such that for any element of R1′, there is a representative in U .

Let S be a finite subset of A such that if (zi,j) ∈ U , then zi,j ∈ S.

Denote by δ4 and Qr ⊂ K1(A ⊗Mr) ∼= K1(A) ⊗ Qr the constant and finite subset of Lemma

5.1 corresponding to Er ∪ Hr ⊗ 1 ∪ ır(S) (in the place of F), ır(U) (in the place of P) and
1
n2 min{δ′2/8, δ3/4} (in the place of ε) (r = p or r = q). We may assume that Qr = {x ⊗ r :

x ∈ Q′ and r ∈ D′′r }, where Q′ ⊂ K1(A) is a finite subset and D′′r ⊂ Qr is also a finite subset.

Let K = max{|r| : r ∈ D′′p ∪ D′′q}. Since [φ] = [ψ] in KL(A,B), φ] = ψ] and φ‡ = ψ‡, by

Lemma 3.5, Rφ,ψ(K1(A)) ⊆ ρB(K0(B)) ⊂ Aff(T(B)). Therefore, there is a map η : G(Q′) →
ρB(K0(B)) ⊂ Aff(T(B)) such that

(η −Rφ,ψ)([z]) ∈ ρB(K0(B)) and ‖η(z)‖ < δ4

1 +K
for all z ∈ Q′(5.41)

Consider the map φr = φ ⊗ idMr and ψr = ψ ⊗ idMr (r = p or r = q). Since η vanishes on

the torsion part of G(Q′), there is a homomorphism ηr : G((ır)∗1(Q′))→ ρB⊗Mr(K0(B ⊗Mr)) ⊂
Aff(T(B ⊗Mr)) such that

ηr ◦ (ır)∗1 = η.(5.42)

Since ρB⊗Mr(K0(B ⊗Mr)) = RρB(K0(B)) is divisible, one can extend ηr so it defines on K1(A)⊗
Qr. We will continue to use ηr for the extension. It follows from (5.41) that ηr(z)− Rφr,ψr(z) ∈
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ρB⊗Mr(K0(B ⊗ Mr)) and ‖ηr(z)‖ < δ4 for all z ∈ Qr. By Lemma 5.1, there exists a unitary

up ∈ B ⊗Mp such that

(5.43) ‖u∗p(φ⊗ idMp)(c)up − (ψ ⊗ idMp)(c)‖ <
1

n2
min{δ′2/8, δ3/4}, ∀c ∈ Ep ∪Hp ∪ ıp(S).

Note that

‖u∗p(φ⊗ idMp)(z)up − (ψ ⊗ idMp)(z)‖ < δ3 for any z ∈ U .

Therefore τ( 1
2πi

log(u∗p(φ⊗idp)(z)up(ψ ⊗ idp)(z
∗))) = ηp([z])(τ) for all z ∈ ıp(U), where we identify

φ and ψ with φ⊗ idMn and ψ ⊗ idMn , and up with up ⊗ 1Mn , respectively.

The same argument shows that there is a unitary uq ∈ B ⊗Mq such that

(5.44) ‖u∗q(φ⊗ idMq)(c)uq − (ψ ⊗ idMq)(c)‖ <
1

n2
min{δ′2/8, δ3/4}, ∀c ∈ Eq ∪Hq∪ıp(S),

and τ( 1
2πi

log(u∗q(φ ⊗ idq)(z)uq(ψ ⊗ idq)(z
∗))) = ηq([z])(τ) for all z ∈ ıq(U), where we identify φ

and ψ with φ⊗ idMn and ψ ⊗ idMn , and uq with uq ⊗ 1Mn , respectively. We will also identify up
with up⊗ 1Mq and uq with uq⊗ 1Mp respectively. Then upu

∗
q ∈ A⊗Q and one estimates that for

any c ∈ H00 ⊗H0,p ⊗Hq,

‖uqu∗p(φ⊗ 1Q(c))upu
∗
q − (φ⊗ 1Q)(c)‖ < δ3,(5.45)

and hence Bott(φ⊗ idQ, upu
∗
q)(z) is well defined on the subgroup generated by R. Moreover, for

any z ∈ U , by the Exel formula (see 2.13) and applying (5.42),

τ(bott1(φ⊗ idQ, upu
∗
q)((ı∞)∗1([z])))(5.46)

= τ(bott1(φ⊗ idQ, upu
∗
q)(ı∞(z)))(5.47)

= τ(
1

2πi
log(upu

∗
q(φ⊗ idQ)(ı∞(z)))uqu

∗
p(φ⊗ idQ)(ı∞(z))∗)(5.48)

= τ(
1

2πi
log(u∗q(φ⊗ idQ)(ı∞(z))))uq(ψ ⊗ idQ)(ı∞(z∗))))(5.49)

−τ(
1

2πi
log(u∗p(φ⊗ idQ)(ı∞(z))up(ψ ⊗ idQ)(ı∞(z∗))))(5.50)

= ηq((ıq)∗1([z]))(τ)− ηp((ıp)∗1([z]))(τ)(5.51)

= η([z])(τ)− η([z])(τ) = 0 for all τ ∈ T (B),(5.52)

where we identify φ and ψ with φ ⊗ idMn and ψ ⊗ idMn , and up and uq with up ⊗ 1Mn and uq
with uq ⊗ 1Mn , respectively.

Now suppose that g ∈ G1,∞. Then g = (k/m)(ı∞)∗1([z]) for some z ∈ U , where k,m are

non-zero integers. It follows that

τ(bott1(φ⊗ idQ, upu
∗
q)(mg)) = kτ(bott1(φ⊗ idQ, upu

∗
q)(([z])) = 0(5.53)

for all τ ∈ T(B). Since Aff(T(B)) is torsion free, it follows that

τ(bott1(φ⊗ idQ, upu
∗
q)(g) = 0(5.54)
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for all g ∈ G1,∞ and τ ∈ T(B). Therefore, the image of R1 under bott1(φ ⊗ idQ, upu
∗
q) is in

ker ρB⊗Q. One may write

G1,0 = Zr ⊕ Z/p1Z⊕ · · · ⊕ Z/psZ,

where r is a non-negative integer and p1, ..., ps are powers of primes numbers. Since p and q are

relatively prime, one then has the decomposition

G1,0 = Zr ⊕ Torp(G1,0)⊕ Torq(G1,0) ⊆ K1(A),

where Torp(G1,0) consists of the torsion-elements with their orders divide p and Torq(G1,0) consists

of the torsion-elements with their orders divide q. Fix this decomposition.

Note that the restriction of (ıp)∗1 to Zr⊕Torq(G1,0) is injective and the restriction to Torp(G1,0)

is zero, and the restriction of (ıq)∗1 to Zr⊕Torp(G1,0) is injective and the restriction to Torq(G1,0)

is zero.

Moreover, using the assumption that p and q are relatively prime again, for any element

k ∈ (ıq)∗1(Zr ⊕ Torp(G1,0)) and any nonzero integer q which divides q, the element k/q is well

defined in K1(A⊗Mq); that is, there is a unique element s ∈ K1(A⊗Mq) such that qs = k.

Denote by e1, ..., er the standard generators of Zr. It is also clear that

(ı∞)∗1(Torp(G1,0)) = (ı∞)∗1(Torq(G1,0)) = 0.

Recall that D0,p = {k/mp; k ∈ Z} ⊂ Qp and D0,q = {k/mq; k ∈ Z} ⊂ Qq for an integer mp

dividing p and an integer mq dividing q. Put m∞ = mpmq.

Consider 1
m∞

Zr ∈ K1(A⊗Q), and for each ei, 1 ≤ i ≤ r, consider

1

m∞
bott1(φ⊗ idQ, upu

∗
q)((ı∞)∗1(ei)) ∈ ker ρB⊗Q.

Since ker ρB⊗Q ∼= (ker ρB)⊗Q, ker ρB⊗Mp
∼= (ker ρB)⊗Qp, and ker ρB⊗Mq

∼= (ker ρB)⊗Qq, using

the same arguments as that of Theorem 5.3, there are gi,p ∈ ker ρB⊗Mp and gi,q ∈ ker ρB⊗Mq such

that

bott1(φ⊗ idQ, upu
∗
q)(

1

m∞
((ı∞)∗1(ei))) = (jp)∗0(gi,p) + (jq)∗0(gi,q),

where gi,p and gi,q are identified as their images in K0(A⊗Q).

Note that the subgroup (ıp)∗1(G1,0) in K0(A⊗Mp) is isomorphic to Zr⊕Torq and 1
mp

(Zr⊕Torq)

is well defined in K0(A ⊗ Mp), and the subgroup (ıq)∗1(G1,0) in K0(B ⊗ Mq) is isomorphic

to Zr ⊕ Torp and 1
mq

(Zr ⊕ Torp) is well defined in K0(A ⊗ Mq). One then defines the maps

θp : 1
mp

(ıp)∗1(G1,0)→ ker ρB⊗Mp and θq : 1
mq

(ıq)∗1(G1,0)→ ker ρB⊗Mq by

θp(
1

mp

(ιp)∗1(ei)) = mqgi,p and θq(
1

mq

(ιq)∗1(ei)) = mpgi,q

for 1 ≤ i ≤ r and

θp|Tor((ıp)∗1(G1,0)) = 0 and θq|Tor((ıq)∗1(G1,0)) = 0.
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Then, for each ei, one has

(jp)∗0 ◦ θp ◦ (ıp)∗1(ei) + (jq)∗0 ◦ θq ◦ (ıq)∗1(ei)

= mp(
1

mp

(jp)∗0 ◦ θp ◦ (ıp)∗1(ei)) +mq(
1

mq

(jq))∗0 ◦ θq ◦ (ıq)∗1(ei))

= mpmq((jp)∗0(gi,p) + (jq)∗0(gi,q))

= m∞bott1(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1(ei/m∞)

= bott1(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1(ei).

Since the restriction of θp ◦ (ıp)∗1, θq ◦ (ıq)∗1 and bott1(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1 to the torsion part

of G1,0 is zero, one has

bott1(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1 = (jp)∗0 ◦ θp ◦ (ıp)∗1 + (jq)∗0 ◦ θq ◦ (ıq)∗1.

The same argument shows that there also exist maps αp : 1
mp

((ıp)∗0(G0,0))→ K1(B⊗Mp) and

αq : 1
mq

((ıq)∗0(G0,0))→ K1(B ⊗Mq) such that

bott0(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗0 = (jp)∗1 ◦ αp ◦ (ıp)∗0 + (jq)∗1 ◦ αq ◦ (ıq)∗0

on G0,0.

Note that Gi,0,r ⊆ Gi,0, i = 0, 1, r = p, q. In particular, one has that (ır)∗i(Gi,0,r) ⊆ (ır)∗i(Gi,0),

and therefore G′1,0,p ⊆ 1
mp

(ıp)∗0(G1,0) and G′1,0,q ⊆ 1
mq

(ıq)∗0(G1,0). Then the maps θp and θq can

be restricted to G′1,0,p and G′1,0,q respectively. Since the group G′i,0,r contains (ι′r)∗i(Ki(C
′
r)), the

maps θp and θq can be restricted further to (ι′p)∗1(K1(C ′p)) and (ι′q)∗1(K1(C ′q)) respectively.

For the same reason, the maps αp and αq can be restricted to (ι′p)∗0(K0(C ′p)) and (ι′q)∗0(K0(C ′q))

respectively. We keep the same notation for the restrictions of these maps αp, αq, θp, and θq.

By the universal multi-coefficient theorem, there is κp ∈ HomΛ(K(C ′p ⊗ C(T)), K(B ⊗Mp))

such that

κp|β(K1(C′p)) = −θp ◦ (ι′p)∗1 ◦ β−1 and κp|β(K0(C′p)) = −αp ◦ (ι′p)∗0 ◦ β−1.

Similarly, there exists κq ∈ HomΛ(K(C ′q ⊗ C(T))), K(B ⊗Mq)) such that

κq|β(K1(C′q)) = −θq ◦ (ι′q)∗1 ◦ β−1 and κq|β(K0(C′q)) = −αq ◦ (ι′q)∗0 ◦ β−1.

Note that since gi,r ∈ kerρA⊗Mr , κr(β(K1(C ′r))) ⊆ ker ρB⊗Mr , r = p or r = q. By Theorem 4.4,

there exist unitaries wp ∈ B ⊗Mp and wq ∈ B ⊗Mq such that

‖[wp, (φ⊗ idMp)(x)]‖ < δ′2/8, ‖[wq, (φ⊗ idMq)(y)]‖ < δ′2/8,

for any x ∈ H0′ ⊗Hp′ and y ∈ H0′ ⊗Hq′ , and

Bott(φ⊗ idMp , wp) ◦ [ι′p] = κp ◦ β and Bott(φ⊗ idMq , wq) ◦ [ι′q] = κq ◦ β.

For r = p or r = q and each 1 ≤ j ≤ k, define

ζj,wrur =

〈(1n − (φ⊗ idMr)(p
′
j,r) + ((φ⊗ idMr)(p

′
j,r))wrur)(1n − (φ⊗ idMr)(q

′
j,r) + ((φ⊗ idMr)(q

′
j,r))u

∗
rw
∗
r )〉.
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It is an element in U(B ⊗Mr)/CU(B ⊗Mr).

Define the map Γr : Zk → U(B ⊗Mp)/CU(B ⊗Mp) by

Γr(x
′
j,r) = ζj,wrur , 1 ≤ j ≤ k.

Applying Corollary 4.3 to Cr (in the place of C), G(x′1,r, ..., x
′
k,r) (in the place of G), B ⊗Mr

(in the place of A), and (φ⊗ idMr)|Cr (in the place of φ), there is a unitary cr ∈ B⊗Mr such that

‖[cr, (φ⊗ idMr)(x)]‖ < δ′2/16

for any x ∈ H0′ ⊗Hr′ ,

Bott(φ⊗ idMr , cr)|ır(P ′) = 0,

and

(5.55) dist(ζj,c∗r ,Γr(xj,r)) ≤ γ/(32(1 +
∑
i,j

|Mrij|)), 1 ≤ j ≤ k,

where

ζj,c∗r = 〈(1n − (φ⊗ idMr)(p
′
j,r) + ((φ⊗ idMr)(p

′
j,r))c

∗
r )(1n − (φ⊗ idMr)(q

′
j,r) + ((φ⊗ idMr)(q

′
j,r))cr)〉.

Put vr = crwrur. Then, by (5.40) and (5.55), for 1 ≤ j ≤ k,

(5.56) dist(ζj,vr , (1B⊗Mr)n) < dist(ζj,c∗r , ζj,wrur)+γ/(32(1+
∑
i,j

|Mrij|)) < γ/(16(1+
∑
i,j

|Mrij|)),

where

ζj,vr = 〈(1n − (φ⊗ idMr)(p
′
j,r) + ((φ⊗ idMr)(p

′
j,r))vr)(1n − (φ⊗ idMr)(q

′
j,r) + ((φ⊗ idMr)(q

′
j,r))v

∗
r )〉.

Recall that [x′j] = [p′j]− [q′j]. Define

ζx′j ,vr = 〈(1n − φ(p′j)⊗ 1Mr + (φ(p′j)⊗ 1Mr)vr)(1n − φ(q′j)⊗ 1Mr + (φ(q′j)⊗ 1Mr)v
∗
r )〉.

By (5.36) and (5.37), one has

dist(ζx′j ,vr , ζj,vr) < γ/(16(1 +
∑
i,j′

|Mrij′|)),

and hence by (5.56),

dist(ζx′j ,vr , (1B⊗Mr)n) < γ/(8(1 +
∑
i,j′

|Mrij′ |)).

Regard ζx′j ,vr as its image in B ⊗Q, one has

dist(ζx′j ,vr , (1B⊗Q)n) < γ/(8(1 +
∑
i,j′

|Mrij′|)),

and hence for any 1 ≤ i ≤ m,

dist(
k∏
j=1

(ζx′j ,vr)
Mrij , (1B⊗Q)n) < γ/8.
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By (5.39), one has

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vr)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)v∗r )〉M , (1B⊗Q)n) < γ/4,

and then, by Theorem 6.10 (and Theorem 6.11) of [11],

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vr)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)v∗r )〉, (1B⊗Q)n)

< γ/(4M) < γ/4.

In particular,

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗p)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)vpv∗q )〉, (1B⊗Q)n)

≤ dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vq)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)v∗q)〉, (1B⊗Q)n)

+dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vp)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)v∗p)〉, (1B⊗Q)n)

< γ/2.

That is

(5.57) dist(ζi,vqv∗p , 1n) < γ/2,

where ζi,vqv∗p = 〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗p)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)vpv∗q )〉.
Moreover, one also has∥∥ψ ⊗ idQ(x)− v∗p(φ⊗ idQ(x))vp

∥∥ < δ′2/4, ∀x ∈ H0′ ⊗Hp′ ⊗Hq′ and∥∥ψ ⊗ idQ(x)− v∗q(φ⊗ idQ)(x)vq
∥∥ < δ′2/4, ∀x ∈ H0′ ⊗Hp′ ⊗Hq′ .

Hence ∥∥[vpv
∗
q , φ(x)⊗ 1Q]

∥∥ < δ′2/2 < δ2, ∀x ∈ H′.

Thus Bott(φ ⊗ idQ, vpv
∗
q) is well defined on the subgroup generated by P . Moreover, a direct

calculation shows that

bott1(φ⊗ idQ, vpv
∗
q) ◦ (ı∞)∗1(z)

= bott1(φ⊗ idQ, cp) ◦ (ı∞)∗1(z) + bott1(φ⊗ idQ, wp) ◦ (ı∞)∗1(z)

+bott(φ⊗ idQ, upu
∗
q)) ◦ (ı∞)∗1(z) + bott1(φ⊗ idQ, w

∗
q) ◦ (ı∞)∗1(z)

+bott1(φ⊗ idQ, c
∗
q) ◦ (ı∞)∗1(z)

= (jp)∗0 ◦ bott1(φ⊗ idMp , cp) ◦ (ıp)∗1(z) + (jp)∗0 ◦ bott1(φ⊗ idMp , wp) ◦ (ıp)∗1(z)

+bott(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1(z) + (jq)∗0◦bott1(φ⊗ idMq , w

∗
q) ◦ (ıq)∗1(z)

+(jq)∗0◦bott1(φ⊗ idMq , c
∗
q) ◦ (ıq)∗1(z)

= (jp)∗0◦bott1(φ⊗ idMp , wp) ◦ (ıp)∗1(z) + bott(φ⊗ idQ, upu
∗
q) ◦ (ı∞)∗1(z)

+(jq)∗0◦bott1(φ⊗ idMq , w
∗
q) ◦ (ıq)∗1(z)

= −(jp)∗0 ◦ θp ◦ (ıp)∗1(z) + ((jp)∗0 ◦ θp ◦ (ıp)∗1 + (jq)∗0 ◦ θq ◦ (ıq)∗1)− (jq)∗0 ◦ θq ◦ (ıq)∗1(z)

= 0 for all z ∈ G(P)1,0.
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The same argument shows that bott0(φ⊗ idQ, vpv
∗
q) = 0 on G(P)0,0. Now, for any g ∈ G(P)1,∞,0,

there is z ∈ G(P)1,0 and integers k,m such that (k/m)z = g. From the above,

bott1(φ⊗ idQ, vpv
∗
q)(mg) = kbott1(φ⊗ idQ, vpv

∗
q)(z) = 0.(5.58)

Since K0(B ⊗Q) is torsion free, it follows that

bott1(φ⊗ idQ, vpv
∗
q)(g) = 0

for all g ∈ G(P)1,∞,0. So it vanishes on P ∩K1(A⊗Q). Similarly,

bott0(φ⊗ idQ, vpv
∗
q)|P∩K0(A⊗Q) = 0

on P ∩K0(A⊗Q).

Since Ki(B ⊗Q,Z/mZ) = {0} for all m ≥ 2, we conclude that

Bott(φ⊗ idQ, vpv
∗
q)|P = 0

on the subgroup generated by P .

Since [φ] = [ψ] in KL(A,B), φ] = ψ] and φ‡ = ψ‡, one has that

[φ⊗ idQ] = [ψ ⊗ idQ] in KL(A⊗Q,B ⊗Q),(5.59)

(φ⊗ idQ)] = (ψ ⊗ idQ)] and (φ⊗ idQ)‡ = (ψ ⊗ idQ)‡.(5.60)

Therefore, by 5.10 of [21], φ⊗ idQ and ψ ⊗ idQ are approximately unitarily equivalent. Thus

there exists a unitary u ∈ B ⊗Q such that

‖u∗(φ⊗ idQ)(c)u− (ψ ⊗ idQ)(c)‖ < δ′2/8 for all c ∈ E ∪ H′.(5.61)

It follows that ∥∥uv∗p(φ(c)⊗ 1Q)vpu
∗ − ψ(c)⊗ 1Q

∥∥ < δ′2/2 + δ′2/8 ∀c ∈ G ′.

By the choice of δ′2 and H′, Bott(φ⊗ idQ, vpu
∗) is well defined on [ι](K(C ′)), and

|τ(bott1(φ⊗ idQ, vpu
∗)(z))| < δ2/2, ∀τ ∈ T(B), ∀z ∈ G.

By Theorem 4.4, there exists a unitary yp ∈ B ⊗Q such that

‖[yp, (φ⊗ idQ)(h)]‖ < δ/2, ∀h ∈ H,

and Bott(φ⊗ idQ, yp) = Bott(φ⊗ idQ, vpu
∗) on the subgroup generated by P .

For each 1 ≤ i ≤ m, define

ζi,ypuv∗p

= 〈(1n − (φ⊗ idQ)(pi) + ((φ⊗ idQ)(pi))ypuv∗p)(1n − (φ⊗ idQ)(qi) + ((φ⊗ idQ)(qi))vpu∗y∗p)〉,

and define the map Γ : Zm → U(B ⊗Q)/CU(B ⊗Q) by Γ(xi) = ζi,ypuv∗q .

Applying Corollary 4.3 to C and G(Q), there is a unitary c ∈ B ⊗Q such that

‖[c, (φ⊗ idQ)(h)]‖ < δ/4, ∀h ∈ H

Bott(φ⊗ idQ, c)|P = 0

and for any 1 ≤ i ≤ k,

dist(ζ ′i,c∗ ,Γ(xi)) ≤ γ/2,
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where

ζ ′i,c∗ = 〈(1n − (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)c∗)(1n − (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)c)〉.

Consider the unitary v = cypu, one has that

‖[v, (φ⊗ idQ)(h)]‖ < δ, for all h ∈ H and Bott(φ⊗ idQ, vv
∗
p) = 0

on the subgroup generated by P , and for any 1 ≤ i ≤ m,

(5.62) dist(ζi,vv∗p , 1n) < γ/2,

where

ζi,vv∗p = 〈(1n − (φ⊗ idQ)(pi) + ((φ⊗ idQ)(pi))vv∗p)(1n − (φ⊗ idQ)(qi) + ((φ⊗ idQ)(qi))vpv∗)〉.

By the construction of ∆, it is clear that

µτ◦(ψ⊗1)(Oa) ≥ ∆(a)

for all a, where Oa is any open ball of X with radius a; in particular, it holds for all a ≥ d.

Applying Theorem 4.2 to C and (φ⊗ idQ)|C , one obtains a continuous path of unitaries v(t) in

B ⊗Q such that v(0) = 1 and v(t1) = vv∗p , and

(5.63) ‖[zp(t), (φ⊗ idQ)(c)]‖ < ε/2 ∀x ∈ E , ∀t ∈ [0, t1].

Note that

Bott(φ⊗ idQ, vqv
∗) = Bott(φ⊗ idQ, vqv

∗
pvpv

∗)(5.64)

= Bott(φ⊗ idQ, vqv
∗
p) + Bott(φ⊗ idQ, vpv

∗)(5.65)

= 0 + 0 = 0(5.66)

on the subgroup generated by P , and for any 1 ≤ i ≤ m,

dist(ζi,vqv∗ , 1)(5.67)

≤ dist(ζi,vqv∗p , 1) + dist(ζi,vpv∗ , 1)(5.68)

= γ, (by (5.57) and (5.62))(5.69)

where

ζi,vqv∗ = 〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗)(1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)vv∗q)〉

Since

‖[vv∗q , (φ⊗ idQ)(c)]‖ < δ, ∀c ∈ H,

Theorem 4.2 implies that there is a path of unitaries zq(t) : [tm−1, 1] → U(A ⊗ Q) such that

zq(tm−1) = vv∗q , zq(1) = 1 and

(5.70) ‖[zq(t), φ⊗ idQ(c)]‖ < ε/8, ∀t ∈ [tm−1, 1], ∀c ∈ E .
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Consider the unitary

v(t) =


zp(t)vp, if 0 ≤ t ≤ t1,

v, if t1 ≤ t ≤ tm−1,

zq(t)vq, if tm−1 ≤ t ≤ tm.

Then, for any ti, 0 ≤ i ≤ m, one has that

(5.71) ‖v∗(ti)(φ⊗ idQ)(c)v(ti)− (ψ ⊗ idQ)(c)‖ < ε/2, ∀c ∈ E .

Then for any t ∈ [tj, tj+1] with 1 ≤ j ≤ m− 2, one has

‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ ⊗ id(a⊗ b(t))‖(5.72)

= ‖v∗(φ(a)⊗ b(t))v − ψ(a)⊗ b(t)‖(5.73)

< ‖v∗(φ(a)⊗ b(tj))v − ψ(a)⊗ b(tj)‖+ ε/4(5.74)

< ε/4 + ε/4 < ε/2.(5.75)

For any t ∈ [0, t1], one has that for any a ∈ F1 and b ∈ F2,

‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ ⊗ id(a⊗ b(t))‖(5.76)

= ‖v∗pz∗p(t)(φ(a)⊗ b(t))zp(t)vp − ψ(a)⊗ b(t)‖(5.77)

< ‖v∗pz∗p(t)(φ(a)⊗ b(t0))zp(t)vp − ψ(a)⊗ b(t0)‖+ ε/2(5.78)

< ‖v∗p(φ(a)⊗ b(t0))vp − ψ(a)⊗ b(t0)‖+ 3ε/4(5.79)

< 3ε/4 + ε/4 = ε.(5.80)

The same argument shows that for any t ∈ [tm−1, 1], one has that for any a ∈ F1 and b ∈ F2,

‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ ⊗ id(a⊗ b(t))‖ < ε.(5.81)

Therefore, one has

‖v(φ⊗ id(f))v − ψ ⊗ id(f)‖ < ε for all f ∈ F .

�

Remark 5.7. In fact, using the same argument as the lemma above, one has the following: Let

A and B be two unital stably finite C*-algebras. Assume that, for any UHF-algebra U of infinite

type,

(1) the approximately unitarily equivalence classes of the monomorphisms fromA⊗U toB⊗U
is classified by the induced elements in KL(A⊗ U,B ⊗ U), the induced maps on traces,

together with the induced maps from U∞(A⊗U)/CU∞(A⊗U) to U∞(B⊗U)/CU∞(B⊗U),

(2) B ⊗ U satisfies Theorem 4.4 with respect to any embedding of A⊗ U ,

(3) B ⊗ U satisfies a homotopy lemma, such as Theorem 4.2 or Lemma 8.4 of [17], for any

embedding of A⊗ U to B ⊗ U ,

then, for any monomorphisms φ, ψ : A→ B, the maps φ⊗ id and ψ⊗ id from A⊗Zp,q to B⊗Zp,q

are approximately unitarily equivalent if and only if

[φ] = [ψ] in KL(A,B), φ] = ψ] and φ‡ = ψ‡.(5.82)
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Theorem 5.8. Let A be a Z-stable C*-algebra such that A ⊗ Mr is an AH-algebra for any

supernatural number r of infinite type, and let B ∈ C be a unital separable Z-stable C*-algebras.

If φ and ψ are two monomorphisms from A to B with

[φ] = [ψ] in KL(A,B), φ] = ψ] and φ‡ = ψ‡,(5.83)

then, for any ε > 0 and any finite subset F ⊆ A, there exists a unitary u ∈ B such that

‖u∗φ(a)u− ψ(a)‖ < ε for all a ∈ F .(5.84)

Proof. Let α : A→ A⊗Z and β : Z → Z ⊗Z be isomorphisms. Consider the map

ΓA : A
α // A⊗Z

id⊗β // A⊗Z ⊗Z α−1⊗id// A⊗Z .

Then Γ is an isomorphism. However, since β is approximately unitarily equivalent to the map

Z 3 a 7→ a⊗ 1 ∈ Z ⊗ Z,

the map ΓA is approximately unitarily equivalent to the map

A 3 a 7→ a⊗ 1 ∈ A⊗Z.

Hence the map ΓB ◦φ ◦ΓA is approximately unitarily equivalent to φ⊗ idZ . The same argument

shows that ΓB ◦ψ ◦ ΓA is approximately unitarily equivalent to ψ⊗ idZ . Thus, in order to prove

the theorem, it is enough to show that φ⊗ idZ is approximately unitarily equivalent to ψ⊗ idZ .

Since Z is an inductive limit of C*-algebras Zp,q, it is enough to show that φ ⊗ idZp,q is

approximately unitarily equivalent to ψ ⊗ idZp,q , and this follows from Lemma 5.6. �

6. The range of approximate equivalence classes of homomorphisms

Now let A and B be two unital C*-algebras in N ∩ C. Theorem 5.8 states that two uni-

tal monomorphisms are approximately unitarily equivalent if they induce the same element in

KLTe(A,B)++ and the same map on U(A)/CU(A). In this section, we will discuss the fol-

lowing problem: Suppose that one has κ ∈ KLTe(A,B)++ and a continuous homomorphism

γ : U(A)/CU(A)→ U(B)/CU(B) which is compatible with κ. Is there always a unital monomor-

phism φ : A → B such that φ induces κ and φ‡ = γ? At least in the case that K1(A) is free,

Theorem 6.10 states that such φ always exists.

Lemma 6.1. Let A and B be two unital infinite dimensional separable stably finite C*-algebras

whose tracial simplexes are non-empty. Let γ : U∞(A)/CU∞(A) → U∞(B)/CU∞(B) be a

continuous homomorphism, hi : Ki(A) → Ki(B) (i = 0, 1) be homomorphisms for which

h0 is positive, and let λ : Aff(T(A)) → Aff(T(B)) be an affine map so that (h0, h1, λ, γ)

are compatible. Let p be a supernatural number. Then γ induces a unique homomorphism

γp : U∞(Ap)/CU∞(Ap) → U∞(Bp)/CU∞(Bp) which is compatible with (hp)i (i = 0, 1) and γp,

where Ap = A ⊗Mp and Bp = B ⊗Mp, and (hp)i : Ki(A) ⊗ Qp → Ki(B) ⊗ Qp is induced by hi
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(i = 0, 1). Moreover, the diagram

U∞(A)/CU∞(A)
γ→ U∞(B)/CU∞(B)

↓ı‡p ↓(ı′p)‡

U∞(Ap)/CU(Ap)
γp→ U∞(Bp)/CU∞(Bp)

commutes, where ıp : A→ Ap and ı′p : B → Bp are the maps induced by a 7→ a⊗1 and b 7→ b⊗1,

respectively.

Proof. Denote by A0 = A, Ap = A ⊗ Mp, B0 = B and Bp = B ⊗ Mp. By a result of K.

Thomsen ([31]), using the de la Harpe and Skandalis determinant, one has the following short

exact sequences:

0→ Aff(T(Ai))/ρA(K0(Ai))→ U∞(Ai)/CU∞(Ai)→ K1(Ai)→ 0, i = 0, p,

and

0→ Aff(T(Bi))/ρA(K0(Bi))→ U∞(Bi)/CU∞(Bi)→ K1(Bi)→ 0, i = 0, p.

Note that, in all these cases, Aff(T(Ai))/ρA(K0(Ai)) and Aff(T(Bi))/ρA(K0(Bi)) are divisible

groups, i = 0, p. Therefore the exact sequences above splits. Fix splitting maps si : K1(Ai) →
U∞(A)/CU∞(Ai) and s′i : K1(Bi) → U∞(Bi)/CU∞(Bi), i = 0, p, for the above two splitting

short exact sequences. Let ıp : A → Ap be the homomorphism defined by ıp(a) = a ⊗ 1 for

all a ∈ A and ı′p : B → Bp be the homomorphism defined by ı′p(b) = b ⊗ 1 for all b ∈ B. Let

ı‡p : U∞(A)/CU∞(A) → U∞(Ap)/CU∞(A) and (ı′p)
‡ : U∞(B)/CU∞(B) → U∞(Bp)/CU∞(Bp) be

the induced maps. The map ıp induces the following commutative diagram:

0→ Aff(T(A))/ρA(K0(A)) → U∞(A)/CU∞(A) → K1(A) → 0

↓(ıp)]
↓ı‡p ↓(ıp)∗1

0→ Aff(T(Ap))/ρA(K0(Ap)) → U∞(Ai)/CU∞(Ap) → K1(Ap) → 0.

Since there is only one tracial state on Mp, one may identify T(A) with T(Ap) and T(B)

with T(Bp). One may also identify ρAp(K0(Ap)) with RρA(K0(A)) which is the closure of those

elements r[̂p] with r ∈ R. Note that (hp)i : Ki(A ⊗ Mp) → Ki(B ⊗ Mp) (i = 0, 1) is given

by the Künneth formula. Since γ is compatible with λ, γ maps RρA(K0(A))/ρA(K0(A)) into

RρB(K0(B))/ρB(K0(B)). Note that

ker(ıp)∗1 = {x ∈ K1(A) : px = 0 for some factor p of p} and(6.1)

ker(ı′p)∗1 = {x ∈ K1(B) : px = 0 for some factor p of p}.(6.2)

Therefore

ker(ı‡p) = {x+ s0(y) : x ∈ RρA(K0(A))/ρA(K0(A)), y ∈ ker((ıp)∗1)} and(6.3)

ker(ı′p)
‡ = {x+ s′0(y) : x ∈ RρA(K0(B))/ρB(K0(B)), y ∈ ker((ı′p)∗1)}.(6.4)

If y ∈ ker((ıp)∗1), then, for some factor p of p, py = 0. It follows that pγ(s0(y)) = 0. Therefore

γ(s0(y)) must be in ker((ı′p)
‡). It follows that

γ(ker(ı‡p)) ⊂ ker((ı′p)
‡).(6.5)
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This implies that γ induces a unique homomorphism γp such that the following diagram com-

mutes:
U∞(A)/CU∞(A)

γ→ U∞(B)/CU∞(B)

↓ı‡p ↓(ı′p)‡

U∞(Ap)/CU∞(Ap)
γp→ U∞(Bp)/CU∞(Bp).

The lemma follows. �

Lemma 6.2. Let A and B be two unital infinite dimensional separable stably finite C*-algebras

whose tracial simplexes are non-empty. Let γ : U∞(A)/CU∞(A) → U∞(B)/CU∞(B) be a con-

tinuous homomorphism, hi : Ki(A)→ Ki(B) (i = 0, 1) be homomorphisms and λ : Aff(T(A))→
Aff(T(B)) be an affine homomorphism which are compatible. Let p and q be two relatively prime

supernatural numbers such that Mp⊗Mq = Q. Denote by ∞ the supernatural number associated

with the product p and q. Let EB : B → B ⊗ Zp,q be the embedding defined by EB(b) = b ⊗ 1,

∀b ∈ B. Then

(πt ◦ EB)‡ ◦ γ = γ∞ ◦ ı‡∞ for all t ∈ (0, 1),(6.6)

(π0 ◦ EB)‡ ◦ γ = γp ◦ ı‡p, and(6.7)

(π1 ◦ EB)‡ ◦ γ = γq ◦ ı‡q,(6.8)

with the notation of 6.1, where πt : Zp,q → Q is the point-evaluation at t.

Proof. Fix z ∈ U∞(B)/CU∞(B). Let u ∈ Un(B) for some integer n ≥ 1 such that u = z in

U∞(B)/CU∞(B). Then

E‡B(z) = u⊗ 1.(6.9)

In other words, E‡B(z) is represented by w(t) ∈Mn(B ⊗Zp,q) for which

w(t) = u⊗ 1 for all t ∈ [0, 1].(6.10)

Therefore, for any t ∈ (0, 1), πt ◦ E‡B(z) may be written as

πt ◦ E‡B(z) = u⊗ 1 in U∞(B ⊗Q)/CU∞(B ⊗Q).(6.11)

This implies that

πt ◦ E‡B(z) = (ı∞)‡(z) for all z ∈ U∞(B)/CU∞(B),(6.12)

where ı∞ : B → B ⊗Q is defined by ı∞(b) = b⊗ 1 for all b ∈ B. It follows from 6.1 that

(πt ◦ EB)‡ ◦ γ = γ∞ ◦ ı‡∞ for all t ∈ (0, 1).(6.13)

The identities (6.7) and (6.8) for end points exactly follow from the same arguments. �

The following is standard (see the proof of 9.6 of [18]).

Lemma 6.3. Let C and A be two unital separable stably finite C*-algebras, and let φ1, φ2, φ3 :

C → A be three unital homomorphisms. Suppose that

[φ1] = [φ2] = [φ3] in KL(C,A),(6.14)

(φ1)] = (φ2)] = (φ3)].(6.15)
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Then

Rφ1,φ3 = Rφ1,φ2 +Rφ2,φ3 .(6.16)

Lemma 6.4. (cf. Theorem 4.2 of [23]) Let A be a unital infintie dimensional separable simple

C*-algebra with T(A) ≤ 1, let C ⊂ A be a unital C∗-subalgebra which is a unital AH-algebra an

let ı : C → A be the embedding. For any λ ∈ Hom(K0(C), ρA(K0(A))), there exists φ ∈ Inn(C,A)

such that there are homomorphisms θi : Ki(C) → Ki(Mı,φ) with (π0)∗iθi = idKi(C), i = 0, 1, and

the rotation map Rı,φ : K1(C)→ Aff(T (A)) is given by

Rı,φ(x) = ρA(x− θ1((π0)∗1(x)) + λ ◦ (π0)∗1(x)) for all x ∈ K1(Mı,φ).(6.17)

In other words,

[φ] = [ı] in KK(C,A)(6.18)

and the rotation map Rφ,ψ : K1(Mı,ψ)→ Aff(T (A)) is given by

Rı,φ(a, b) = ρA(a) + λ(b)(6.19)

for some identification of K1(Mı,ψ) with K0(A)⊕K1(C).

Proof. This follows from the proof of Theorem 4.2 of [23]. In Theorem 4.2 of [23], it is assumed

that ρA(K0(A)) is dense in Aff(T (A)). However, in fact, it is the condition λ(K1(C)) ⊂ ρA(K0(A))

that is used. Note that, by Theorem 3.10 of [25], A has property (B1) and (B2) associated C

and a constant ∆C (3.6 and 3.8 of [23]) . Thus this lemma follows exactly the same proof. �

Lemma 6.5. Let A be a unital AH-algebra and let B be a unital separable simple amenable

C*-algebra with TR(B) ≤ 1. Suppose that φ1, φ2 : A→ B are two monomorphisms such that

[φ1] = [φ2] in KK(A,B), (φ1)] = (φ2)] and φ‡1 = φ‡2.(6.20)

Then there exists a monomorphism β : φ2(A) → B such that [β ◦ φ2] = [φ2] in KK(A,B),

(β ◦ φ2)] = φ2], (β ◦ φ2)‡ = φ‡2 and β ◦ φ2 is asymptotically unitarily equivalent to φ1. More-

over, if H1(K0(A), K1(B)) = K1(B), they are strongly asymptotically unitarily equivalent, where

H1(K0(A), K1(B)) = {x ∈ K1(B) : ψ([1A]) = x for some ψ ∈ Hom(K0(A), K1(B))}.

Proof. By Lemma 6.4, there is a monomorphism β ∈ Inn(φ2(A), B) such that [β] = [ı] in

KK(φ2(A), B) and

Rı,β = −Rφ1,φ2

where ı is the embedding of φ2(A) to B and Rı,β is viewed as a homomorphism from K1(A) =

K1(φ2(A)) to Aff(T(B)). In other words

Rφ2,β◦φ2 = −Rφ1,φ2 .(6.21)

One also has that

[φ2] = [β ◦ φ2] in KK(A,B),(6.22)

(β ◦ φ2)] = (φ2)] and (β ◦ φ2)‡ = φ‡2.(6.23)



HOMOMORPHISMS INTO SIMPLE Z-STABLE C∗-ALGEBRAS 37

Thus

[φ1] = [β ◦ φ2] in KK(A,B),(6.24)

(φ1)] = (β ◦ φ2)] and φ‡1 = (β ◦ φ2)‡.(6.25)

It follows from 6.3 and (6.21) that

Rφ1,β◦φ2 = Rφ1,φ2 +Rφ2,β◦φ2 = 0.

Therefore, it follows from Theorem 4.2 of [25] that the map φ1 and β ◦ φ2 are asymptotically

unitarily equivalent.

In the case that H1(K0(A), K1(B)) = K1(B), it follows from Theorem 4.4 of [25] that β ◦ φ2

and φ1 are strongly asymptotically unitarily equivalent. �

Lemma 6.6. Let C and A be two unital separable stably finite C*-algebras. Suppose that φ, ψ :

C → A are two unital monomorphisms such that

[φ] = [ψ] in KL(C,A), φ] = ψ] and Rφ,ψ = 0.(6.26)

Suppose that {U(t) : t ∈ [0, 1)} is a piecewise smooth and continuous path of unitaries in A with

U(0) = 1 such that

lim
t→1

U∗(t)φ(u)U(t) = ψ(u)(6.27)

for some u ∈ U(C) and suppose that there exists w ∈ U(A) such that ψ(u)w∗ ∈ U0(A). Let

Z = Z(t) = U∗(t)φ(u)U(t)w∗ if t ∈ [0, 1)

and Z(1) = ψ(u)w∗. Suppose also that there is a piecewise smooth continuous path of unitaries

{z(s) : s ∈ [0, 1]} in A such that z(0) = φ(u)w∗ and z(1) = 1. Then, for any piecewise smooth

continuous path {Z(t, s) : s ∈ [0, 1]|} ⊂ C([0, 1], A) of unitaries such that Z(t, 0) = Z(t) and

Z(t, 1) = 1, there is f ∈ ρA(K0(A)) such that

1

2π
√
−1

∫ 1

0

τ(
dZ(t, s)

ds
Z(t, s)∗)ds =

1

2π
√
−1

∫ 1

0

τ(
dz(s)

ds
z(s)∗)ds+ f(τ)(6.28)

for all t ∈ [0, 1] and τ ∈ T (A).

Proof. Define

Z1(t, s) =


U∗(t− 2s)φ(u)U(t− 2s)w∗ for s ∈ [0, t/2)

φ(u)w∗ for s ∈ [t/2, 1/2)

z(2s− 1) for s ∈ [1/2, 1]

(6.29)

for t ∈ [0, 1) and define

Z1(1, s) =


ψ(u)w∗ for s = 0

U∗(1− 2s)φ(u)U(1− 2s)w∗ for s ∈ (0, 1/2)

z(2s− 1) for s ∈ [1/2, 1].

(6.30)
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Thus {Z1(t, s) : s ∈ [0, 1]} ⊂ C([0, 1], A) is a piecewise smooth continuous path of unitaries such

that Z1(t, 0) = Z(t) and Z1(t, 1) = 1. Thus, there is an element f1 ∈ ρA(K0(A)), such that

f1(τ) =
1

2π
√
−1

∫ 1

0

τ(
dZ(t, s)

ds
Z(t, s)∗)ds− 1

2π
√
−1

∫ 1

0

τ(
dZ1(t, s)

ds
Z1(t, s)∗ds(6.31)

for all τ ∈ T (A) an for all t ∈ [0, 1].

On the other hand, let V (t) = U(t)∗φ(u)U(t) for t ∈ [0, 1) and V (1) = ψ(u). For any s ∈
[0, 1), since U(0) = 1, U(t) ∈ U(C([0, s], A))0 (for t ∈ [0, s]). There there are a1, a2, ..., ak ∈
U([0, s], A)s.a. such that

U(t) =
k∏
j=1

exp(iaj(t)) for all t ∈ [0, s]

Then a straightforward calculation shows that

(6.32)

∫ s

0

dV (t)

dt
V ∗(t)dt = 0.

We also have

1

2π
√
−1

∫ 1

0

τ(
dV (t)

dt
V ∗(t))dt = Rφ,ψ([V ])(τ) =: f(τ) ∈ ρA(K0(A))(6.33)

for all τ ∈ T (A).

Then

1

2π
√
−1

∫ 1/2

0

τ(
dZ1(1, s)

ds
Z1(1, s)∗)ds =

1

2π
√
−1

∫ 1/2

0

τ(
dV (2s− 1)

ds
V (2s− 1)∗)ds(6.34)

= Rφ,ψ([V ])(τ) = f(τ) for all τ ∈ T (A).(6.35)

One computes that, for any τ ∈ T (A) and for any t ∈ [0, 1), by applying (6.34),

1

2π
√
−1

∫ 1

0

τ(
dZ1(t, s)

ds
Z1(t, s)∗)ds(6.36)

=
1

2π
√
−1

[

∫ t/2

0

τ(
(d(U∗(t− 2s)φ(u)U(t− 2s)w∗)

ds
(U∗(t− 2s)φ(u)U(t− 2s)w∗)∗)ds+(6.37) ∫ 1/2

t/2

τ(
dZ1(t, s)

ds
Z1(t, s)∗)ds+

∫ 1

1/2

τ(
dz(s− 1)

ds
z(2s− 1)∗)ds](6.38)

=
1

2π
√
−1

[

∫ t/2

0

dV (t− 2s)

ds
V (t− 2s)∗ds+

∫ 1

1/2

τ(
dz(2s− 1)

ds
z(2s− 1)∗)ds](6.39)

= 0 +
1

2π
√
−1

∫ 1

1/2

τ(
dz(2s− 1)

ds
z(2s− 1)∗)ds(6.40)

=
1

2π
√
−1

∫ 1

0

τ(
dz(s)

ds
z(s)∗)ds.(6.41)
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It then follows from (6.34) that

1

2π
√
−1

∫ 1

0

τ(
dZ1(1, s)

ds
Z1(1, s)∗ds(6.42)

=
1

2π
√
−1

[

∫ 1/2

0

τ(
dZ1(1, s)

ds
Z1(1, s)∗ds+

∫ 1

1/2

τ(
dz(2s− 1)

ds
z(2s− 1)∗)ds](6.43)

= f(τ) +
1

2π
√
−1

∫ 1

0

τ(
dz(s)

ds
z(s)∗)ds(6.44)

The lemma follows. �

Remark 6.7. Note that the lemma 6.6 applies to Mn(C) and Mn(A) for all integer n ≥ 1. So it

works for all u ∈ Un(C).

Lemma 6.8. Let A be a unital C*-algebra satisfying that A ⊗ Mr is an AH-algebra for all

supernatural number r with infinite type (in particular, all AH-algebra satisfies this property),

and let B be a unital simple C*-algebra in N ∩ C. Let κ ∈ KLe(A,B)++ and λ : Aff(T(A)) →
Aff(T(B)) be an affine homomorphism which are compatible (see Definition 2.4). Then there

exists a unital homomorphism φ : A→ B such that

[φ] = κ and (φ)] = λ.

Moreover, if γ ∈ U∞(A)/CU∞(A)→ U∞(B)/CU∞(B) is a continuous homomorphism which is

compatible with κ and λ, then one may also require that

φ‡|U∞(A)0/CU∞(A) = γ|U∞(A)0/CU∞(A) and (φ)‡ ◦ s1 = γ ◦ s1 − h̄,(6.45)

where s1 : K1(A)→ U∞(A)/CU∞(A) is a splitting map (see 2.3), and

h̄ : K1(A)→ RρB(K0(B))/ρB(K0(B))

is a homomorphism.

Moreover,

(φ⊗ idZp,q)
‡ ◦ s1 = EB ◦ γ ◦ s1 − h̄,(6.46)

where EB is as defined in 6.2.

Proof. Let p and q be two relative prime supernatural numbers of infinite type such that Q =

Mp ⊗Mq. Let Ap = A ⊗Mp, Aq = A ⊗Mq, Bp = B ⊗Mp and Bq = B ⊗Mq. Then Ap and Aq

are AH-algebras, and TR(Bp) ≤ 1 and TR(Bq) ≤ 1. Let κp ∈ KL(Ap, Bp), κq ∈ KL(Ap, Bp), λp :

Aff(T(Ap))→ Aff(T(Bp)), λq : Aff(T(Aq))→ Aff(T(Bq)), γp : U(Ap)/CU(Ap)→ U(Bp)/CU(Bp)

and γq : U(Aq)/CU(Aq)→ U(Bq)/CU(Bq) be induced by κ, λ and γ, respectively. Note that Ap,

Aq, Bp and Bq are all unital AH-algebras. Moreover, since Mr
∼= Mr ⊕Mr, for any supernatural

number r of infinite type, Bp and Bq are unital simple AH-algebras of slow dimension growth. It

follows from Corollary 6.11 of [21] that there is a unital homomorphism φp : Ap → Bp such that

[φp] = κp in KL(Ap, Bp), (φp)
‡ = γp and (φp)] = λp.(6.47)
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For the same reason, there is also a unital homomorphism ψq : Aq → Bq such that

[ψq] = κq in KL(Aq, Bq), (ψq)
‡ = γq and (ψq)] = λq.(6.48)

Define φ = φp ⊗ idMq and ψ = ψq ⊗ idMp . From above, one has that

[φ] = [ψ] in KL(A⊗Q,B ⊗Q), φ] = ψ] and φ‡ = ψ‡.

Since both Ki(B ⊗Q) are divisible (i = 0, 1), one actually has

[φ] = [ψ] in KK(A⊗Q,B ⊗Q).

It follows from 6.5 that there is β0 ∈ Inn(ψ(A ⊗ Q), B ⊗ Q) such that if ıψ(A⊗Q) denotes the

embedding of ψ(A⊗Q) into B ⊗Q,

[β0] = [ıψ(A⊗Q)] in KK(ψ(A⊗Q), B ⊗Q),(6.49)

(β0)] = (ıψ(A⊗Q))] and (β0)‡ = (ıψ(A⊗Q))
‡(6.50)

such that φ and β0 ◦ ψ are strongly asymptotically unitarily equivalent (since in this case

H1(K0(A⊗Q), K1(B⊗Q)) = K1(B⊗Q)). Note that one may identify T (Bq), T (Bp) and T (B⊗Q).

Moreover,

ρB⊗Q(K0(B ⊗Q)) = RρB(K0(B)) = ρBq(K0(Bq)).

Denote by ıp : Bq → B ⊗Q the embedding a 7→ a⊗ 1Mp , and note that the image of ıp ◦ ψq is in

the image of ψ. Thus, by 3.5, Rβ0◦ıp◦ψq,ıp◦ψq is in Hom((K1(Mβ0◦ıp◦ψq,ıp◦ψq), ρBq(K0(Bq))). Note

that

[β0 ◦ ıp ◦ ψq] = [ıp ◦ ψq] in KK(Aq, Bq).

By 6.4, there exists α ∈ Inn(ψq(Aq), Bq) such that

[α] = [ıψq(Aq)] in KK(Bq, Bq),

where ıψq(Aq) is the embedding of ψq(Aq) into Bq, and

Rα,ıψq(Aq)
= −Rβ0◦ıp◦ψq,ıp◦ψq .

As computed in the proof of 6.5, one has that

[ıp ◦ α ◦ ψq] = [β0 ◦ ıp ◦ ψq] in KK(Aq, B ⊗Q),(6.51)

(ıp ◦ α ◦ ψq)] = (β0 ◦ ıp ◦ ψq)] and (ıp ◦ α ◦ ψq)‡ = (β0 ◦ ıp ◦ ψq)
‡,(6.52)

and

Rıp◦α◦ψq ,β0◦ıp◦ψq = 0.

It follows from 7.2 and Theorem 4.2 of [25] that ıp ◦ α ◦ ψq and β0 ◦ ıp ◦ ψq are strongly

asymptotically unitarily equivalent.

Consider maps

(β0 ◦ ıp ◦ ψq)⊗ idMp , ı ◦ β0 ◦ ψ : A⊗Mq ⊗Mp → (B ⊗Mq ⊗Mp)⊗Mp,

where ı : B ⊗Q→ (B ⊗Q)⊗Mp is the embedding b→ b⊗ 1Mp for all b ∈ B ⊗Q.
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Identify β0 ◦ψ(B⊗Mq⊗Mp)⊗Mp with β0 ◦ψ(B)⊗β0 ◦ψ(Mq)⊗β0 ◦ψ(Mp)⊗Mp, and consider

the automorphism θ on β0 ◦ ψ(B)⊗ β0 ◦ ψ(Mq)⊗ β0 ◦ ψ(Mp)⊗Mp defined by

θ : a⊗ b⊗ c⊗ d 7→ a⊗ b⊗ d⊗ c.

Then

[θ|β0(Mq)⊗β0(Mp)⊗Mp ] = [idβ0(Mq)⊗β0(Mp)⊗Mp ] in KK(β0(Mq)⊗β0(Mp)⊗Mp, β0(Mq)⊗β0(Mp)⊗Mp).

Since K1(β0(Mq)⊗β0(Mp)⊗Mp) = {0}, it follows from Theorem 4.2 of [25] that θ|β0(Mq)⊗β0(Mp)⊗Mp

is strongly asymptotically unitarily equivalent to the identity map. Therefore θ is strongly

asymptotically unitarily equivalent to the identity map. Note that for any a ∈ A, b ∈ Mq, and

c ∈Mp, one has

θ(((β0 ◦ ıp ◦ ψq)⊗ idMp)(a⊗ b⊗ c)) = θ(β0(ψq(a⊗ b)⊗ 1Mp)⊗ c)(6.53)

= β0(ψq(a⊗ b)⊗ c)⊗ 1Mp(6.54)

= ı ◦ β0 ◦ ψ(a⊗ b⊗ c).(6.55)

Thus, the map (β0 ◦ ıp ◦ ψq)⊗ idMp is strongly asymptotically unitarily equivalent to ı ◦ β0 ◦ ψ.

Define a map Ψq : A⊗Mq ⊗Mp → B ⊗Mq ⊗Mp ⊗Mp by

(6.56) Ψq : a⊗ b⊗ c 7→ α(ψq(a⊗ b))⊗ c⊗ 1Mp .

Note that for all a⊗ b⊗ c ∈ A⊗Mq ⊗Mp,

(6.57) ((ıp ◦ α ◦ ψq)⊗ idMp)(a⊗ b⊗ c) = α(ψq(a⊗ b))⊗ 1Mp ⊗ c

Then the same argument as above shows that Ψq is strongly asymptotically unitarily equivalent

to (ıp ◦ α ◦ ψq)⊗ idMp .

Since φ and β0◦ψ are strongly asymptotically unitarily equivalent, one has that the map ı◦φ is

strongly asymptotically unitarily equivalent to ı ◦ β0 ◦ψ, and hence strongly asymptotically uni-

tarily equivalent to (β0◦ ıp◦ψq)⊗ idMp , and therefore strongly asymptotically unitarily equivalent

to (ıp ◦α◦ψq)⊗ idMp . It follows that the map ı◦φ is strongly asymptotically unitarily equivalent

to Ψq. Thus there is a continuous path of unitaries {w(t) : t ∈ [0, 1)} in B ⊗Mq ⊗Mp ⊗Mp

with w(0) = 1 such that

lim
t→1

w∗(t)(ı ◦ φ(a))w(t) = Ψq(a), ∀a ∈ A⊗Q.

Pick an isomorphism χ′ : Mp⊗Mp →Mp, and consider the induced isomorphism χ : B⊗Mq⊗
Mp⊗Mp → B⊗Mq⊗Mp. Note that (χ′)−1 is strongly asymptotically unitarily equivalent to the

map ı′ : Mp →Mp⊗Mp defined by a 7→1⊗ a. Then, it is straightforward to verify that χ ◦ ı ◦φ is

strongly asymptotically unitarily equivalent to φ, and χ ◦Ψq is strongly asymptotically unitarily

equivalent to (α ◦ ψq)⊗ idMp . Thus, there is a continuous path of unitaries u(t) in B ⊗Mp ⊗Mq

(one can be made it into piecewise smooth—see Lemma 4.1 of [18]) such that u(0) = 1 and

lim
t→1

adu(t) ◦ φ(a) = (α ◦ ψq)⊗ idMp(a) for all a ∈ A⊗Q.(6.58)

This provides a unital homomorphism Φ : A⊗Zp,q → B ⊗Zp,q such that, for each t ∈ (0, 1),

πt ◦ Φ(a) = adu(t) ◦ φ(a(t)) for all a ∈ A⊗Zp,q.(6.59)
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Denote by ϑ a unital embedding Z → Zp,q, and let j : Zp,q → Z be a unital homomorphism

induced by the stationary inductive limit

Zp,q
ϑ→ Zp,q

ϑ→ Zp,q
ϑ→ · · · → Z

given by 3.4 of [29], where the map ϑ is regarded as its restriction to Zp,q.

As in the proof of 7.1 of [32] (note that it follows from the same proof that Proposition 4.6 of

[32] also works for homomorphisms which are not necessary being injective),

((idB ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ))∗i = κi, i = 0, 1,(6.60)

((idB ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ))] = λ.(6.61)

In fact, one has that

Φ](a⊗ b)(τ ⊗ µ) = γ(a(τ))µ(b) for all a ∈ As.a. and b ∈ (Zp,q)s.a..(6.62)

By considering ((idB⊗ j)◦Φ◦ (idA⊗ i))⊗ idC(Xk) : A⊗C(Xk)→ B⊗C(Xk) for some suitable

compact metric spaces Xk, the same argument shows that, in fact,

[(idB ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ)] = κ.(6.63)

Define the map H = (idB ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ). Then [H] = κ in KL(A,B) and H] = λ.

Note that it follows from (6.62) that

Φ‡|U(A)0/CU(A) = E‡B ◦ γ|U(A)0/CU(A).(6.64)

Let z ∈ U(A)/CU(A). Then, one has

H‡ = γ∞ = ı‡∞ ◦ γ.(6.65)

On the other hand, for each z ∈ U(A)/CU(A), there is a unitary w ∈ B ⊗Zp,q such that

πt(w) = πt′(w) for all t, t′ ∈ [0, 1] and E‡B ◦ γ(z) = w.(6.66)

Since πt(w) ∈ B is constant, one may use w for its evaluation at t. Let v0 ∈ U(A) be such that

v0 = z. For any t ∈ (0, 1), define

Z(t) = πt ◦ Φ(v0)w∗ = u(t)∗φ(v0)u(t)w∗.(6.67)

Let Z(t, s) be a piecewise smooth continuous path of unitaries in B⊗Zp,q such that Z(t, 0) = Z(t)

and Z(t, 1) = 1. Denote by τ0 the unique tracial state in T(Mr), where r is a supernatural number.

For each sµ ∈ T(Zp,q), one may write

sµ(a) =

∫ 1

0

τ0(a(t))dµ(t),

where µ is a probability Borel measure on [0, 1].
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Then, for τ ∈ T (B) and sµ ∈ T (Zp,q), by applying 6.6,

Det(Z)(τ ⊗ sµ) =
1

2π
√
−1

∫ 1

0

(τ ⊗ sµ)(
dZ(t, s)

ds
Z(t, s)∗)ds(6.68)

=
1

2π
√
−1

∫ 1

0

∫ 1

0

(τ ⊗ τ0)(
dZ(t, s)

ds
Z(t, s)∗)dµ(t)ds(6.69)

=

∫ 1

0

(
1

2π
√
−1

∫ 1

0

(τ ⊗ τ0)(
dZ(t, s)

ds
Z(t, s)∗))ds)dµ(t)(6.70)

=

∫ 1

0

Det(φ(v0)w∗)(τ)dµ(t) + f(τ) for some f ∈ ρB(K0(B)).(6.71)

By 6.2 and (6.59),

Det(Z)(τ ⊗ sµ) = Det(φ(v0)w∗)(τ) + f(τ) ∈ RρB(K0(B)) ⊆ Aff(T(B ⊗Zp,q).(6.72)

Thus, Φ‡(z)(EB◦λ(z)∗) defines a homomorphism from U(A)/CU(A) into RρB(K0(B))/ρB(K0(B))

which will be denoted by h. By (6.63),

h|U(A)0/CU(A) = 0.(6.73)

Thus h induces a homomorphism h̄ : K1(A)→ RρB(K0(B))/ρB(K0(B)). �

In [18], it was shown that, given two unital separable simple C*-algebras A and B in N ∩ C,
if there is an isomorphism on the Elliott invariant, i.e.,

(K0(A), K0(A)+, [1A], K1(A),T(A), rA) ∼= (K0(B), K0(B)+, [1B],T(B), rB),

then A ∼= B. The following corollary is a more general statement.

Corollary 6.9. Let A and B be two unital separable C*-algebras in N ∩C. Suppose that there is

a homomorphism κi : Ki(A) → Ki(B) such that κ0 is order preserving and κ0([1A]) ≤ [1B] and

there is a continuous affine map λ : Aff(T(A)) → Aff(T(B)) which is compatible with κ0. Then

there is a homomorphism φ : A→ B such that

(φ)∗i = κi, i = 0, 1 and φ] = λ.

Proof. Consider the splitting short exact sequence:

0→ ExtZ(K∗(A), K∗+1(B))→ KK(A,B)→ Hom(K∗(A), K∗(B))→ 0.

There exists an element κ ∈ KK(A,B) such that the image of κ in Hom(K∗(A), K∗(B)) is

exactly the same as that κ∗. Let κ̄ in KL(A,B) be the image of κ. There is a projection p ∈ B
such that [p] = κ0([1A]). Let B1 = pBp. Then κ̄ ∈ KLe(A,B1)++ and λ and κ̄ are compatible.

It follows from 6.8 that there is a unital homomorphism φ : A→ B1 ⊂ B such that

[φ] = κ̄ and φ] = λ.

�
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Theorem 6.10. Let C be a unital C*-algebra such that C⊗Mr is an AH-algebra for all supernatu-

ral number r with infinite type, and let A be a unital simple C*-algebra in N∩C which is Z-stable.

Then, for any κ ∈ KLT e(C,A)++ and a continuous homomorphism γ : U∞(C)/CU∞(C) →
U∞(A)/CU∞(A) which are compatible, there is a unital monomorphism φ : C → A such that

([φ], φ]) = κ and φ‡ = γ,

provided that

(1) K1(C) is a free group, or

(2) RρA(K0(A))/ρA(K0(A)) = {0}, or

(3) RρA(K0(A))/ρA(K0(A)) is torsion free and K1(C) is finitely generated.

Proof. It follows from 6.8 that there is a unital monomorphism ψ : C → A such that

(ψ, ψ]) = κ, ψ‡|U(C)0/CU(C) = λ|U(C)0/CU(C) and (ψ ⊗ idZp,q)
‡ ◦ s1 = E‡B ◦ γ ◦ s1 − h̄,(6.74)

where h̄ : K1(C)→ RρA(K0(A))/ρA(K0(A)) is a homomorphism. If K1(C) is free, there exists a

homomorphism h1 : K1(C)→ RρA(K0(A)) which induces h1. In the case that RρA(K0(A))/ρA(K0(A))

is torsion free and K1(C) is finitely generated, then one also obtains a such h1. Since RρA(K0(A))

is torsion free, h1 induces a homomorphism h̄1 : K1(C)/(Tor(K1(C)))→ RρA(K0(A)). Since the

map from K1(C)/(Tor(K1(C)))→ (K1(A)/(Tor(K1(A)))⊗Qp is injective, one obtains a homo-

morphism h1,p : K1(C ⊗Mp)→ RρA(K0(A)) such that

h1 = h1,p ◦ (ıp)∗1,(6.75)

where ır : A→ A⊗Mr is the embedding so that ır(a) = a⊗ 1 for all a ∈ A (r is a supernatural

number). Similarly, there is a homomorphism h1,q : K1(C ⊗Mq)→ RρA(K0(A)) such that

h1 = h1,q ◦ (ıq)∗1.(6.76)

Put C ′r = (ψ ⊗ idMr)(C ⊗Mr)), where r is a supernatural number. It follows from 6.4 that

there is a monomorphism β0 ∈ Inn(C ′p, Ap) such that

(6.77) [β0] = [ıC′p ] in KK(C ′p, Ap), (β0)] = ıC′p ], β
‡
0 = ıC′p

‡ and Rψ⊗idMp ,β0◦(ψ⊗idMp ) = h1,p,

where ıC′p is the embedding of C ′p.

Similarly, there is a monomorphism β1 ∈ Inn(C ′q, Aq) such that

(6.78) [β1] = [ıC′q ] in KK(C ′q, Aq), (β1)] = ıC′q ], β
‡
1 = ıC′q

‡ and Rψ⊗idMq ,β1◦(ψ⊗idMq ) = h1,q,

where ıC′q is the embedding of C ′q.

As in the proof of 6.8, by applying 6.5 and its proof, one has a monomorphism β2 ∈ Inn(β1 ◦
(ψ ⊗ idMq)(Cq), Aq) and a piecewise smooth continuous path of unitaries {U(t) : t ∈ [0, 1)} of

A⊗Q such that U(0) = 1 and

(6.79) [β2 ◦ β1 ◦ (ψ ⊗ idMq))] = [β0 ◦ (ψ ⊗ idMp)] in KK(Cq, Aq),

(6.80) (β2 ◦ β1 ◦ (ψ ⊗ idMq)))] = (β0 ◦ (ψ ⊗ idMp))]



HOMOMORPHISMS INTO SIMPLE Z-STABLE C∗-ALGEBRAS 45

and

(6.81) (β2 ◦ β1 ◦ (ψ ⊗ idMq)))
‡ = (β0 ◦ (ψ ⊗ idMp))

‡.

Moreover, if denote by ψ0 = β0 ◦ (ψ ⊗ idMp) and ψ1 = β2 ◦ β1 ◦ (ψ ⊗ idMq)), one has that

(6.82) lim
t→1

U(t)∗(ψ0 ⊗ idMq)(a)U(t) = (ψ1 ⊗ idMp)(a)

for all a ∈ A⊗Q. In particular,

Rψ0⊗idMq ,ψ1⊗idMp
= 0.(6.83)

Let Φ : A⊗Zp,q → A⊗Zp,q be defined by

Φ(a⊗ b)(t) = U∗(t)((ψ0 ⊗ idMq(a⊗ b(t))U(t) for all t ∈ [0, 1) and(6.84)

Φ(a⊗ b)(1) = ψ1 ⊗ idMp(a⊗ b(1)),(6.85)

for all a⊗ b ∈ A⊗Zp,q.

We claim that

Φ‡ ◦ (EA ◦ ψ)‡ ◦ s1 = (EA)‡ ◦ γ ◦ s1.(6.86)

To compute Φ‡, let x ∈ s1(K1(C)) and v0 ∈ U(C) such that v0 = x. There is w ∈ U(A ⊗
Zp,q)/CU(A⊗Zp,q) such that w(t) = w(t′) for all t, t′ ∈ [0, 1] and

E‡A ◦ γ ◦ s1(x) = w.(6.87)

Let Z = (Φ ◦ (ψ⊗ idZp,q)(v0))w∗ ∈ A⊗Zp,q. Note that Z ∈ U(A⊗Zp,q)0. Suppose that there is a

piecewise smooth continuous path {Z(t, s) : s ∈ [0, 1]} ⊂ A ⊗ Zp,q such that Z(t, 0) = Z(t) and

Z(t, 1) = 1. Then

Det(Z(t, s))(6.88)

= Det(Φ ◦ ((ψ ⊗ idZp,q)(v0))(ψ ⊗ idZp,q(v0)∗) + Det((ψ ⊗ idZp,q)(v0)w∗)(6.89)

= Det(Φ ◦ ((ψ ⊗ idZp,q)(v0))(ψ ⊗ idZp,q(v0)∗) + h̄ ◦ s1(x).(6.90)

It follows from 6.6 that

Det(Φ ◦ ((ψ ⊗ idZp,q)(v0))(ψ ⊗ idZp,q(v0)∗) = Det(β0 ◦ ψ(v0)ψ(v0)∗) + ρA(K0(A))(6.91)

= Rβ0◦ψ,ψ([v0]) + ρA(K0(A))(6.92)

= −h1,p ◦ s1(x) + ρA(K0(A)).(6.93)

Therefore, by (6.75) and by (6.88),

Det(Z(t, s))(τ ⊗ sµ) ∈ ρA(K0(A)).

This proves the claim.

Regard ψ as a map to A ⊗ Z. Denote by j : Zp,q → Z the unital homomorphism induced

by the stationary inductive limit decomposition of Z, and denote by ϑ : Z → Zp.q the unital

embedding induced by tensoring Z (Zp,q is Z-stable). Consider

φ = (idA ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ) ◦ ψ.
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One then checks that

[ψ] = [φ] in KL(C,A), φ] = ψ] and φ‡ = γ.

�

Remark 6.11. It follows from Proposition 3.6 of [19] that, if TR(A) ≤ 1, then

RρA(K0(A))/ρA(K0(A)) = {0}.

So Theorem 6.10 recovers a version of Theorem 8.6 of [18].

Now suppose that in 6.10,

U∞(C)/CU∞(C) = U∞(C)0/CU∞(C)⊕G1 ⊕ Tor(K1(C)),

where G1 is identified with a free subgroup of K1(C). From the proof of Theorem 6.10, we see

that, if κ ∈ KLTe(C,A)++ and γ : U∞(C)/CU∞(C) → U(A)/CU(A) which is compatible to κ

are given, there is a unital monomorphism φ : C → A such that ([φ], φ]) = κ and

φ|U∞(C)0/CU∞(C)⊕G1 = γ|U∞(C)0/CU∞(C)⊕G1

and

φ‡(z)−γ(z) ∈ RρA(K0(A))/ρA(K0(A))

for all z ∈ Tor(K1(C)).
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