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Abstract. Let A be a simple separable unital C*-algebra satisfying the UCT, and assume that

A has finite decomposition rank. Let Q denote the UHF algebra with K0(Q) = Q. Then A⊗Q

can be tracially approximated by unital Elliott-Thomsen algebras, and therefore A ⊗ Z is an

ASH algebra (hence classifiable), where Z is the Jiang-Su algebra.

1. Introduction

Let us consider simple separable unital C*-algebras which have finite decomposition rank. We

shall show that these C*-algebras can be rationally tracially approximated by unital Elliott-

Thomsen algebras (assuming the UCT), and hence are ASH algebras by the classification result

of [14] if they absorb the Jiang-Su algebra tensorially. More precisly, denoting by C0 the class of

unital Elliott-Thomsen algebras with trivial K1-group, one has

Theorem 1.1. Let A be a separable unital simple C*-algebra satisfying the UCT. Assume that

dr(A⊗Q) < +∞. Then A⊗Q ∈ TAC0. In particular, A⊗Z is classifiable.

Let A be a simple unital separable locally ASH algebra. By Theorem A of [12], the decom-

position rank of A ⊗ Z is at most 2 (in fact the decomposition rank of A ⊗ Q is at most 1).

Therefore, Theorem 1.1 gives another proof of the main result of [10]; that is,

Corollary 1.2 (Theorem 5.9 of [10]). Let A be a simple unital separable locally ASH algebra.

Then A⊗Q ∈ TAC0. In particular, A⊗Z is classifiable.

2. Main theorem and the proof

The idea in the proof of the main theorem is the same as that of [11]. Given an abstract C*-

algebra A, a Q-stable Elliott-Thomsen algebra C, and a linear map γ : Aff(T(A))→ Aff(T(A)),

we shall lift the trace map approximately to an almost homomorphism from A to C. Since all

traces of A are quasi-diagonal, the trace map can be approximately lifted to maps from A to the

fibre of C (considered as a continuous field with fibre direct sums of Q).

However, in order to piece together these fibre maps to get a map from A to C, one requires

that these maps to induce the same K0-classes on certain projections of a matrix algebras of A

(this condition is automatically satisfied if K0(A)⊗Q ∼= Q, as seen in [11]).
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If the spectrum of C is just several intervals, one then can perturb each fibre maps with the

next lemma (Lemma 2.1) to smooth out the induced K0-classes, and thus obtains the main

theorem in the case that K0(A⊗Q) is a weakly unperforated Riesze group and the pairing map

preserves extreme points.

For a general Elliott-Thomsen algebra C, recall that it is given by

C ∼= {(a, f) ∈ F1 ⊕ C([0, 1], F2) : f(0) = ψ0(a), f(1) = ψ1(a)},

where

F1 := Q⊕ · · · ⊕Q︸ ︷︷ ︸
p

, F2 := Q⊕ · · · ⊕Q︸ ︷︷ ︸
l

,

for some p, l ∈ N ∪ {0} and ψ0, ψ1 : F1 → F2 are unital homomorphisms. Before perturbing

the maps to the fibre on the (open) interval, one first needs to perturb the maps to the fibre at

infinity (from A to F1) so that the induced K0-classed is in ker([ψ0] − [ψ1]). This perturbation

indeed can be obtained by another application of Lemma 2.1.

Let us first consider the lemma.

Lemma 2.1. Let A be a simple unital separable quasi-diagonal C*-algebra satisfying the UCT.

Assume that A ∼= A ⊗ Q. Let a finite subset G ⊆ A and ε1, ε2 > 0 be given. Let p1, p2, ..., ps ∈
Proj∞(A) be projections such that [1]0, [p1]0, [p2]0, ..., [ps]0 ∈ K0(A) are Q-independent. Then

there are a G-ε1-multiplicative c.p.c. (completely positive contractive) map σ : A → Q ⊗ K with

σ(1) a projection satisfying

tr(σ(1)) < ε2,

and a δ > 0, such that, for any r1, r2, ..., rs ∈ Q with

|ri| < δ, i = 1, ..., s,

there is a G-ε1-multiplicative c.p.c. map µ : A→ Q⊗K such that

[σ(pi)]0 − [µ(pi)]0 = ri, i = 1, ..., s,

and σ(1) = µ(1).

Proof. Let us agree that σ and µ are also understood to be required to be sufficiently multiplica-

tive on p1, p2, ..., ps that the classes [σ(pi)]0 and [µ(pi)]0 make sense. (Similarly for other c.p.c. ap-

proximately multiplicative maps, to be introduced below.) Since the classes [1], [p1], [p2], ..., [ps] ∈
K0(A) are Q-independent, for each i = 1, ..., s, there is a homomorphism αi : K0(A) → Q ∼=
K0(Q) such that

αi([pi]) = 1, αi([1]) = 0, αi([pj]) = 0, j 6= i.

Noting that by the multicoefficient UCT ([8]), KL(A,Q) = Hom(K0(A),Q), one may regard αi
as an element of KL(A,Q).

Since A is quasidiagonal, by Theorem 5.5 of [7], there are c.p.c. maps σi, µi : A→ Q⊗K such

that σi and µi are G-ε1-multiplicative, σi(1) and µi(1) are projections, and

[σi]− [µi] = αi on {1, p1, p2, ..., ps}.
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Note that since αi([1]) = 0, one has that [σi(1)]0 = [µi(1)]0, and therefore by applying a unitary

conjugacy, one may assume that σi(1) = µi(1) = Pi for a projection Pi. (If A is assumed to be

nuclear, then the existence of σi and µi also follows from Corollary 5.1 of [2], Proposition 6.1.6

of [1], and Theorem 5.9 of [18].)

Consider the projection

P :=
s⊕
i=1

(Pi ⊕ Pi),

and the unital G-ε1-multiplicative unital c.p. map
s⊕
i=1

(σi ⊕ µi) : A→ P (Q⊗K)P.

Note that P (Q⊗K)P ∼= Q. Choose a projection R ∈ Q⊗K with 0 < tr(R) < ε2 and a rescaling

S : Q⊗K → Q⊗K, P 7→ R.

Define

σ := S ◦ (
s⊕
i=1

(σi ⊕ µi)) : A→ Q

and the strictly positive number

δ :=
tr(R)

tr(P )
.

(Here, tr denotes the tensor product of the traces on Q and K, normalized in the usual way.)

Let us show that σ and δ satisfy the condition of the lemma.

Let r1, r2, ..., rs ∈ Q be given and satisfy

|ri| < δ, i = 1, ..., s.

For each ri, choose a projection Ri ∈ Q⊗K with tr(Ri) = |ri|, and choose a rescaling

Si : Q⊗K → Q⊗K, 1⊗ e 7→ Ri,

where e as before is a minimal non-zero projection of K. Consider the maps

Si ◦ σi, Si ◦ µi : A→ Q⊗K.

This pair then satisfies, for each i = 1, ..., s,
[Si ◦ σi(pi)]− [Si ◦ µi(pi)] = |ri| ,
[Si ◦ σi(1)]− [Si ◦ µi(1)] = 0,

[Si ◦ σi(pj)]− [Si ◦ µi(pj)] = 0, j 6= i.

Consider the direct sum maps

σ̃ := (
⊕
ri>0

Si ◦ σi)⊕ (
⊕
ri<0

Si ◦ µi)

and

µ̃ := (
⊕
ri>0

Si ◦ µi)⊕ (
⊕
ri<0

Si ◦ σi).

Then

[σ̃(pi)]− [µ̃(pi)] = ri, i = 1, ..., s.
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Note that

(2.1) σ = S ◦ (
s⊕
i=1

(σi ⊕ µi)) =
s⊕
i=1

((S ◦ σi)⊕ (S ◦ µi)).

For each Si, since

tr(Si(P )) = tr(P ) · tr(Si(1⊗ e)) = tr(P ) · tr(Ri) = tr(P ) |ri| < tr(P )δ = tr(R) = tr(S(P )),

there is a rescaling Ti : Q⊗K → Q⊗K such that

S = Si ⊕ Ti.

Therefore, by (2.1),

σ =
s⊕
i=1

(((Si ⊕ Ti) ◦ σi)⊕ ((Si ⊕ Ti) ◦ µi))

=
s⊕
i=1

((Si ◦ σi)⊕ (Ti ◦ σi))⊕
s⊕
i=1

((Si ◦ µi)⊕ (Ti ◦ µi))

= (
⊕
ri>0

((Si ◦ σi)⊕ (Ti ◦ σi)))⊕ (
⊕
ri≤0

((Si ◦ σi)⊕ (Ti ◦ σi)))

⊕(
⊕
ri<0

((Si ◦ µi)⊕ (Ti ◦ µi)))⊕ (
⊕
ri≥0

((Si ◦ µi)⊕ (Ti ◦ µi)))

= σ̃ ⊕ γ,

where

γ = (
⊕
ri>0

(Ti ◦ σi))⊕ (
⊕
ri≤0

((Si ◦ σi)⊕ (Ti ◦ σi)))⊕ (
⊕
ri<0

(Ti ◦ µi))⊕ (
⊕
ri≥0

((Si ◦ µi)⊕ (Ti ◦ µi))).

Consider the c.p.c. map

µ := µ̃⊕ γ.
One then has

[σ(pi)]− [µ(pi)] = [σ̃(pi)]− [µ̃(pi)] = ri, i = 1, ..., s,

as desired. �

Before we prove the main theorem, let us sketch how Lemma 2.1 is used to smooth out the

K0-classed induced by the maps at the fibre (then the rest of the argument is exact the same as

that of Theorem 2.9 of [11]).

Let us start with two unital approximate homomorphisms φ0, φ1 : A → Q such that the K0

difference [φ1]0− [φ0]1 is small. Then, by Lemma 2.1, there are two approximate homomorphisms

σ and µ with very small trace such that [σ]− [µ] = [φ1]− [φ0]. Then replace φ0 by the rescaling

of φ0 ⊕ σ, and replace φ1 by the rescaling of φ1 + µ. Then they have the same K0 class. Since σ

and µ have very small trace, this will not change the trace map very much.

Of course, in this example, we do not need the full strength of Lemma 2.1. But, if the algebra

C, in order to deal with all middle points, we need that the map σ to be independent of the K0

difference so that the perturbation by σ of the map at one end point works for all middle points,

and that is exactly the point of Lemma 2.1. In fact, this argument also works well for a general
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Elliott-Thomsen algebra if the K-theory of the maps at infinity is matched (just compared the

infinity points to any middle point, and apply the argument above).

So, for an general Elliott-Thomsen algebra, the problem is reduced to the points at infinity.

What we do have are approximate homomorphism to the algebra at infinity (finite direct sum of

Q), some projections at the abstract algebra A, and some projections at infinity, such that the

trace of the image of each those projections of A is very close to the image of the corresponding

projection at infinity. Our goal is to perturb the maps at infinity so that the image of those

projections of A under the new maps satisfy the boundary condition. Of course the projections

at infinity satisfy the condition (they come from projections in the point-line algebra), and these

projections serve as goalposts. If we perturb the maps so that the induced K0-class are exact the

class of the projections at the infinity, then we reach the goal; but it is not clear if it is possible.

So, we will move the goalposts slightly.

The way to move it is another application of Lemma 2.1. Similar as the interval algebras case,

just compare the K0-class induced by these maps and the K0-class of the projections at infinity.

Then Lemma 2.1 allows us to compensate the map to each point at infinity by a map µ (may

depend on which point at the infinity, but it has very small trace) and compensate the projection

at the corresponding point at the infinity by a map σ (which is independent of the points at

the infinity), such that the new maps have the same K-class as the projection at infinity plus

sigma—moving the goalposts. This movement is allowed, because we move the K-class of each

projection at infinity by a multiple of σ, which always satisfy the boundary condition. Therefore,

the K-class of the new map also satisfy the boundary condition.

Theorem 2.2. Let A be a separable unital simple exact Q-stable C*-algebra satisfying the UCT.

Assume that T(A) = Tqd(A). Then, for any finite subset F ⊆ A and any ε > 0, there are unital

c.p. maps φ : A→ C and ψ : C → A, where C ∈ C0, such that

(1) φ is F-δ-multiplicative, ψ is an embedding, and

(2) |τ(φ ◦ ψ(a)− a)| < ε, a ∈ F , τ ∈ T(A).

Proof. One may assume that T(A) 6= Ø. Applying Corollary 2.4 of [11] to A with respect to

(F · F , ε/4), one obtains n and (P ,G, δ). Write

P = {1, p1, p2, ..., ps}.

Without loss of generality, one may assume that [1], [p1], [p2], ..., [ps] are Q-independent.

Applying Lemma 2.1 to the C*-algebra A with respect to G, ε1 = δ, ε2 = min{ε/8, 1/4n},
and {p1, p2, ..., ps}, one obtains a G-δ-multiplicative c.p.c. map σ : A→ Q and a constant δ1 > 0

which satisfy the condition of Lemma 2.1. Without loss of generality, one may assume that

δ1 < ε.

Applying Lemma 2.1 again to A with respect to G, ε1 = δ, ε′2 = min{ε/4, δ1/16, 1/4n}, and

{p1, p2, ..., ps}, one obtains a G-δ-multiplicative c.p.c. map σ′ : A → Q and a constant δ2 > 0

which satisfies the condition of Lemma 2.1. Without loss of generality, one may assume that

δ2 < ε.

By [9], since A ∼= A⊗Q, there is a unital inductive limit C = lim−→(Ci, ιi) such that each Ci is

isomorphic to a tensor product of a unital Elliott-Thomsen algebra and Q, with K1(Ci) = {0},
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and there is an isomorphism

Ξ : ((K0(A),K+
0 (A), [1A]),Aff(T(A)), ρA) ∼= ((K0(C),K+

0 (C), [1C ]),Aff(T(C)), ρC).

Moreover, the maps ιi may be chosen to be injective.

By Lemma 2.7 of [11], there is an approximate factorization, by means of unital positive maps,

Aff(T(A))
% // Rm θ // Aff(T(A)),

such that

‖θ(%(f̂))− f̂‖∞ < min{ε/16, δ1/16, δ2/16}, f ∈ F ∪ P .
Therefore, by Lemma 2.8 of [11], after discarding finitely many terms of the sequence (Ci, ιi),

there is a unital positive linear map

γ : Aff(T(A))
% // Rm // Aff(T(C1))

such that

(2.2) ‖(ι1,∞)∗(γ(f̂))− Ξ(f̂)‖∞ < min{ε/8, δ1/8, δ2/8}, f ∈ F ∪ P .

Moreover, after discarding more terms, using continuity of K0 as well as AffT, there are p′1, ..., p
′
k ∈

Proj∞(C1) such that

(2.3) ‖ρC1(p
′
i)− γ(“pi)‖∞ < min{δ1/4, δ2/4}, 1 ≤ i ≤ s.

Since C1 is the tensor product of a unital Elliott-Thomsen algebra and Q, there are

F1 := Q⊕ · · · ⊕Q︸ ︷︷ ︸
p

, F2 := Q⊕ · · · ⊕Q︸ ︷︷ ︸
l

,

and unital homomorphisms ψ0, ψ1 : F1 → F2 such that

C1
∼= {(a, f) ∈ F1 ⊕ C([0, 1], F2) : f(0) = ψ0(a), f(1) = ψ1(a)}.

Denote by π : C1 → F1 the canonical homomorphism π((a, f)) = a. Let us also use [0, 1]j to

denote the interval in the spectrum of C([0, 1], Q) corresponding to the jth copy of Q.

Consider the corresponding multiplicity matrices

[ψ0] =

Ö
λ0,1,1 · · · λ0,1,p
· · · · · · · · ·
λ0,l,1 · · · λ0,l,p

è
and [ψ1] =

Ö
λ1,1,1 · · · λ1,1,p
· · · · · · · · ·
λ1,l,1 · · · λ1,l,p

è
,

where λ0,i,j, λ1,i,j ∈ Q ∩ [0, 1]. Note that since ψ0 and ψ1 are unital, the sum of each row of [ψ0]

or [ψ1] is equal to 1.

Denote by γ∗ : T(C1)→ T(A) the affine map induced by γ on tracial simplices. Since γ factors

through Rm (so that γ∗ factors through a finite dimensional simplex), there are τ1, ..., τm ∈ T(A)

and continuous functions cj,1, cj,2, ..., cj,m : [0, 1]j → [0, 1] such that

(2.4) γ∗(τt) = cj,1(t)τ1 + cj,2(t)τ2 + · · ·+ cj,m(t)τm, t ∈ [0, 1]j,

and

cj,1(t) + cj,2(t) + · · ·+ cj,m(t) = 1, t ∈ [0, 1]j,
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where τt ∈ T(C1) is determined by the Dirac measure concentrated at t ∈ [0, 1]j.

Denote by tre, e = 1, ..., p, the trace of C1 induced by the eth copy of Q in F1, and write

(2.5) γ∗(tre) = αe,1τ1 + αe,2τ2 + · · ·+ αe,mτm, e = 1, ..., p,

for some αe,1, ..., αe,m ∈ [0, 1]. Since

τ0j = λ0,j,1 · tr1 + · · ·+ λ0,j,p · trp and τ1j = λ1,j,1 · tr1 + · · ·+ λ1,j,p · trp, j = 1, ..., l,

one has

cj,1(0j)τ1 + cj,2(0j)τ2 + · · ·+ cj,m(0j)τm = γ∗(τ0j) = γ∗(λ0,j,1 · tr1 + · · ·+ λ0,j,p · trp)(2.6)

= (
p∑
e=1

λ0,j,e · αe,1)τ1 + (
p∑
e=1

λ0,j,e · αe,2)τ2 + · · ·+ (
p∑
e=1

λ0,j,e · αi,m)τm.

Therefore, putting

C(0) :=

Ö
c1,1(01) · · · c1,m(01)

· · · · · · · · ·
cl,1(0l) · · · cl,m(0l)

è
and Θ :=

Ö
α1,1 · · · α1,m

· · · · · · · · ·
αp,1 · · · αp,m

è
,

one has

(2.7) C(0) = [ψ0] ·Θ.

The same argument shows that

(2.8) C(1) = [ψ1] ·Θ,

where C(1) is defined in a way similar to C(0), with 0j replaced by 1j, j = 1, ..., l.

Since τ1, τ2, ..., τm ∈ Tqd(A), there are c.p.c. maps φk : A→ Q, k = 1, ...,m, such that each φk
is G-δ-multiplicative, and

(2.9) |tr(φk(f))− τk(f)| < min{δ1/16m, δ2/16m}, f ∈ F ∪ P .

For each t ∈ [0, 1]j, there is a open neighbourhood U such that for any s ∈ U , one has

|cj,k(s)− cj,k(t)| < 1/8mn.

Since [0, 1]j is compact, there is a partition 0 = t0 < t1 < · · · < th−1 < th = 1 such that

(2.10) |cj,k(s)− cj,k(ti)| < 1/8mn, s ∈ [ti−1, ti].

Moreover, we may assume that this partition is fine enough that

(2.11)
∣∣∣γ(f̂)(τt)− γ(f̂)(τti)

∣∣∣ < ε/8, f ∈ F ∪ P , t ∈ [ti−1, ti],

and

(2.12)
π

h− 2
<
ε

4
.

For each αe,k, e = 1, ..., p, k = 1, ...,m, pick a rational number r̃e,k such that

r̃e,1 + r̃e,2 + · · ·+ r̃e,m = 1,
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and

(2.13) |r̃e,k − αe,k| < min{δ1/32m, δ2/32m, 1/16mn}, k = 1, ...,m.

For each i = 1, 2, ..., h− 1, pick rational numbers ri,1,j, ri,2,j, ..., ri,m,j ∈ [0, 1] such that

ri,1,j + · · ·+ ri,m,j = 1,

and

(2.14) |ri,k,j − cj,k(ti)| < min{δ1/16m, δ2/16m, 1/8mn}, k = 1, ...,m.

(The cases i = 0 and i = h will be considered later, based on {r̃e,k : e = 1, ..., p, k = 1, ...,m}.)
Consider the maps

ϕ̂e := r̃e,1φ1 ⊕ · · · ⊕ r̃e,mφm : A→ Q, e = 1, ..., p,

and

ϕ̃i,j := ri,1,jφ1 ⊕ · · · ⊕ ri,m,jφm : A→ Q, i = 1, ..., h− 1, j = 1, ..., l.

Note that it follows from (2.4), (2.9), and (2.14) that

(2.15) |tr(ϕ̃i,j(f))− γ∗(τti)(f)| < min{δ1/4, δ2/4} < ε/4, f ∈ F ∪ P , i = 1, ..., h− 1,

and it follows from (2.5), (2.9), and (2.13) that

(2.16) |tr(ϕ̂e(f))− γ∗(tre)(f)| < min{δ1/4, δ2/4} < ε/4, f ∈ F ∪ P , e = 1, ..., p.

Set

ϕ̂ := ϕ̂1 ⊕ · · · ⊕ ϕ̂p,
and consider the quantities

de(pi) := tr([ϕ̂e(pi)])− tr([πe(p
′
i)]) ∈ Q, e = 1, ..., p,

where πe is the canonical quotient map from C1 to the eth copy of Q in F1. One has that for

any 1 ≤ i ≤ s,

|de(pi)| < |γ∗(tre)(pi)− tr([πe(p
′
i)])|+ δ2/4 (by (2.16))

< |tr(πe(p′i))− tr([πe(p
′
i)])|+ δ2/4 + δ2/4 (by (2.3))

< δ2.

Therefore, by Lemma 2.1, there are G-δ-multiplicative c.p.c. maps µ1, ..., µp : A→ Q such that

σ′(1A) = µe(1A) = q, e = 1, ..., p,

for a projection q ∈ Q⊗K with

(2.17) tr(q) < ε′2

and

(2.18) [σ′(pi)]− [µe(pi)] = de(pi) = [ϕ̂e(pi)]− [πe(pi)], e = 1, ..., p.

Define

µ := µ1 ⊕ · · · ⊕ µp : A→ F1
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and consider the direct sum map

µ⊕ ϕ̂ : A→ (1 + µ(1A))F1 ⊗K(1 + µ(1A)).

By (2.18), one has

(2.19) [µ⊕ ϕ̂](pi) = [π](pi) + ([σ′](pi), ..., [σ
′](pi)) ∈ ker([ψ0]− [ψ1]) ⊆ Qp.

(Note that ([σ′](pi), ..., [σ
′](pi)) is always in ker([ψ0]− [ψ1]).)

Rescaling each µe ⊕ ϕ̂e, e = 1, ..., p, into a unital mapÛϕe :=
1

1 + tr(q)
(µe ⊕ ϕ̂e),

consider the direct sum Ûϕ = Ûϕ1 ⊕ · · · ⊕ Ûϕp : A→ F1.

Since µ1(1A) = µ2(1A) = · · · = µp(1A) = q, by (2.19), one still has

(2.20) [ Ûφ(pi)] ∈ ker([ψ0]− [ψ1]), i = 1, ..., s.

For each 1 ≤ j ≤ l, define

ϕ̃0,j = λ0,j,1 Ûϕ1 ⊕ · · · ⊕ λ0,j,p Ûϕp,
and

ϕ̃h,j = λ1,j,1 Ûϕ1 ⊕ · · · ⊕ λ1,j,p Ûϕp.
By (2.20), one has that

(2.21) [ϕ̃0,j(p)] = [ϕ̃h,j(p)], p ∈ P .

The maps ϕ̃0,j and ϕ̃h,j have the following decompositions:

ϕ̃0,j =
1

1 + tr(q)
(µ0,j ⊕ (

p∑
e=1

λ0,j,er̃e,1)φ1 ⊕ · · · ⊕ (
p∑
e=1

λ0,j,er̃e,m)φm)

and

ϕ̃h,j =
1

1 + tr(q)
(µ1,j ⊕ (

p∑
e=1

λ1,j,er̃e,1)φ1 ⊕ · · · ⊕ (
p∑
e=1

λ1,j,er̃e,m)φm),

respectively, where

µ0,j = λ0,j,1µ1 ⊕ · · · ⊕ λ0,j,pµp
and

µ1,j = λ1,j,1µ1 ⊕ · · · ⊕ λ1,j,pµp.
Put

r0,k,j :=
1

1 + tr(q)

p∑
e=1

λ0,j,er̃e,k and r1,k,j :=
1

1 + tr(q)

p∑
e=1

λ1,j,er̃e,k.

Then

ϕ̃0,j =
µ0,j

1 + tr(q)
⊕ r0,1,jφ1 ⊕ · · · ⊕ r0,m,jφm

and

ϕ̃h,j =
µ1,j

1 + tr(q)
⊕ r1,1,jφ1 ⊕ · · · ⊕ r1,1,jφm.
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Note that by (2.13), (2.7), and (2.17), one has

|r0,k,j − cj,k(0j)| <

∣∣∣∣∣
p∑
e=1

λ0,j,er̃e,k − cj,k(0j)
∣∣∣∣∣+ cj,k(0j)

tr(q)

1 + tr(q)
(2.22)

< min{δ1/32m, 1/16mn}+ cj,k(0j)ε
′
2,

and, for the same reason (by (2.13), (2.8), and (2.17)), one has

|rh,k,j − cj,k(1j)| < min{δ1/32m, 1/16mn}+ cj,k(1j)ε
′
2.(2.23)

Since tr(q) < ε′2, by (2.13) and (2.6), one has∣∣∣tr(ϕ̃0,j(f))− γ∗(τ0j)(f)
∣∣∣(2.24)

<

∣∣∣∣∣∣tr(
m∑
k=1

(
p∑
e=1

λ0,j,er̃e,k)φk(f))− γ∗(τti)(f)

∣∣∣∣∣∣+ ε′2

<

∣∣∣∣∣∣tr(
m∑
k=1

(
p∑
e=1

λ0,j,eαe,k)φk(f))− γ∗(τti)(f)

∣∣∣∣∣∣+ ε′2 + δ1/16

= ε′2 + δ1/16 < δ1/4 < ε/4.

Then, for each p ∈ P ,

|tr([ϕ̃i,j(p)])− tr([ϕ̃0,j(p)])| <
∣∣∣γ∗(τti)(p)− γ∗(τ0j)(p)∣∣∣+ δ1/2 (by (2.15), (2.24))

=
∣∣∣γ(p̂)(τti)− γ(p̂)(τ0j)

∣∣∣+ δ1/2

<
∣∣∣τti(p′)− τ0j(p′)∣∣∣+ δ1/2 + δ1/2 (by (2.3))

= δ1.

Define

di,j(p) := tr([ϕ̃i,j(p)])− tr([ϕ̃0,j(p)]), p ∈ P .
Then, by Lemma 2.1, there is a G-δ-multiplicative c.p.c. map µi,j : A→ Q such that

(2.25) [σ(p)]− [µi,j(p)] = di,j(p), p ∈ P ,

and

σ(1A) = µi,j(1A) = θ, 1 ≤ i ≤ h− 1, 1 ≤ j ≤ l,

for a projection θ ∈ Q⊗K satisfying

(2.26) tr(θ) < ε2 = min{ε/8, 1/4n}.

Consider the various direct sum maps

ϕ̄e := σ ⊕ Ûϕe : A→ (1 + θ)(Q⊗K)(1 + θ),

ϕ̄∞ := ϕ̄1 ⊕ · · · ⊕ ϕ̄p,
ϕ̄0,j := λ0,j,1ϕ̄1 ⊕ · · · ⊕ λ0,j,pϕ̄p = σ ⊕ ϕ̃0,j : A→ (1 + θ)(Q⊗K)(1 + θ),

ϕ̄h,j := λh,j,1ϕ̄1 ⊕ · · · ⊕ λh,j,pϕ̄p = σ ⊕ ϕ̃h,j : A→ (1 + θ)(Q⊗K)(1 + θ),

and

ϕ̄i,j := µi,j ⊕ ϕ̃i,j : A→ (1 + θ)(Q⊗K)(1 + θ).
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Then, by (2.25), one has that for any p ∈ P and 1 ≤ i ≤ h− 1,

tr([ϕ̄i,j(p)])− tr([ϕ̄0,j(p)]) = ([σ(p)]− [µi,j(p)])− ([ϕ̃i,j(p)]− [ϕ̃0,j(p)]) = 0.

It also follows from (2.21) that

tr[ϕ̄h,j(p)]− tr[ϕ̄0,j(p)] = tr[ϕ̃h,j(p)]− tr[ϕ̃0,j(p)] = 0, p ∈ P .

Therefore,

tr([ϕ̄i1,j(p)]) = tr([ϕ̄i2,j(p)]), p ∈ P , 0 ≤ i1, i2 ≤ h.

Note that one also has

(2.27) πj ◦ ψ0 ◦ ϕ̄∞ = λ0,j,1ϕ̄1 ⊕ · · · ⊕ λ0,j,pϕ̄p = ϕ̄0,j

and

(2.28) πj ◦ ψ1 ◦ ϕ̄∞ = λ1,j,1ϕ̄1 ⊕ · · · ⊕ λ1,j,pϕ̄p = ϕ̄h,j.

Renormalize each ϕ̄i,j, i = 0, ..., l into a unital homomorphism and denote it still by ϕ̄i,j.

Equations (2.27) and (2.28) still hold, and one still has

(2.29) tr([ϕ̄i1,j(p)]) = tr([ϕ̄i2,j(p)]), p ∈ P , 0 ≤ i1, i2 ≤ h,

so that by (2.15) and (2.26) and the construction of ϕ̄i,j, one has

|tr(ϕ̄i,j(f)− γ∗(τti)(f))| ≤ |tr(ϕ̃i,j(f)− γ∗(τti)(f))|+ 2tr(θ) < ε/2.(2.30)

Note that one has the decomposition

ϕ̄i,j =
1

1 + tr(θ)
νi,j ⊕

ri,1,j
1 + tr(θ)

φ1 ⊕ · · · ⊕
ri,m,j

1 + tr(θ)
φm : A→ Q,

where

ν0,j := σ ⊕ µ0,j

1 + tr(q)
, νh,j := σ ⊕ µ1,j

1 + tr(q)
,

and

νi,j := µi,j

otherwise.

For each i = 0, ..., l − 1, compare the two maps

ϕ̄i,j :=
1

1 + tr(θ)
νi,j ⊕

ri,1,j
1 + tr(θ)

φ1 ⊕ · · · ⊕
ri,m,j

1 + tr(θ)
φm : A→ Q,

and

ϕ̄i+1,j :=
1

1 + tr(θ)
νi+1,j ⊕

ri+1,1,j

1 + tr(θ)
φ1 ⊕ · · · ⊕

ri+1,m,j

1 + tr(θ)
φm : A→ Q,

and define

ψi,j = 0⊕ min{ri,1,j, ri+1,1,j}
1 + tr(θ)

φ1 ⊕ · · · ⊕
min{ri,m,j, ri+1,m,j}

1 + tr(θ)
φm : A→ Q.
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By (2.26), (2.10), (2.22), (2.23), and (2.14), one has

|tr(1− ψi,j(1))|(2.31)

< tr(q) + tr(θ) + |ri,1,j − ri+1,1,j|+ · · ·+ |ri,m,j − ri+1,m,j|

< ε2 + 2ε′2 +
1

4n
<

1

n
.

On the other hand, by (2.29), for any p ∈ P , one has

(2.32) [(ϕ̄i,j 	 ψj)(p)] = [ϕ̄i,j(p)]− [(ψi,j(p))] = [ϕ̄i+1,j(p)]− [(ψi,j(p))] = [(φj+1 	 ψj)(p)].

By (2.31) and (2.32), the hypothesis of Corollary 2.5 of [11] is satisfied. Therefore, by the

conclusion of Corollary 2.5 of [11], there is a unitary ui+1,j ∈ Q such that∥∥∥ϕ̄i,j(f)− u∗i+1,jϕ̄i+1,j(f)ui+1,j

∥∥∥ < ε/4, f ∈ F · F , 0 ≤ j ≤ h− 1.

Define v0,j = 1, and set

ui,jui−1,j · · ·u1,j = vi,j, i = 1, ..., h.

Then, for any 0 ≤ i ≤ h− 1 and any f ∈ F · F , one has

‖Ad(vi,j) ◦ ϕ̄i,j(f)− Ad(vi+1,j) ◦ ϕ̄i+1,j(f)‖
= ‖(ui,j · · ·u1,j)∗ϕ̄i,j(f)(ui,j · · ·u1,j)− (ui+1,j · · ·u1,j)∗ϕ̄j+1(f)(ui+1,j · · ·u1,j)‖
=

∥∥∥ϕ̄i,j(f)− u∗i+1,jϕ̄i+1,j(f)ui+1,j

∥∥∥ < ε/4.

Replacing each homomorphism ϕ̄i,j by Ad(vi,j) ◦ ϕ̄i,j for i = 1, ..., h− 1, and still denoting it by

ϕ̄i,j, one has

‖ϕ̄i,j(f)− ϕ̄i+1,j(f)‖ < ε/4, f ∈ F · F , 0 ≤ i ≤ h− 2.

Note that

‖(uh,jvh−1,j)ϕ̄h−1,j(f)(v∗h−1,ju
∗
h,j)− ϕ̄h,j(f)‖ < ε/4, f ∈ F · F .

Since Q is AF, the exponential length of Q is at most π, and hence there are unitaries

1 = z1, z2, ..., zh−2, zh−1 = uh,jvh−1,j

such that (by (2.12))

‖zi − zi−1‖ < π/(h− 2) < ε/4.

Replacing each homomorphism ϕ̄i,j by Ad(z∗i ) ◦ ϕ̄i,j for i = 1, ..., h− 1, and still denoting it by

ϕ̄i,j, one then has

‖ϕ̄i,j(f)− ϕ̄i+1,j(f)‖ < ε/2, f ∈ F · F , 0 ≤ i ≤ h− 1.

Define φc : A→ C([0, 1], F2) by

φc(f)(t) :=
ti+1 − t
ti+1 − ti

ϕ̄i,j(f) +
t− ti
ti+1 − ti

ϕ̄i+1,j(f), if t ∈ [ti, ti+1]j,

and define φ : A→ C1 by

φ(f) := (ϕ̄∞(f), φc(f)).
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The map φ is well defined. Indeed, by (2.27) and (2.28), for any f ∈ A,

φc(f)(0j) = ϕ̄0,j(f) = λ0,j,1ϕ̄1(f)⊕ · · · ⊕ λ0,j,pϕ̄p(f) = πj ◦ ψ0(ϕ̄∞(f))

and

φc(f)(1j) = ϕ̄h,j(f) = λ1,j,1ϕ̄1(f)⊕ · · · ⊕ λ1,j,pϕ̄p(f) = πj ◦ ψ1(ϕ̄∞(f)).

The map φ is F -ε-multiplicative. By (2.30) and (2.11), one has

(2.33) ‖φ∗(f̂)− γ(f̂)‖∞ < ε/2, f ∈ F .

Note that A and C have cancellation for projections, and, also, K+
0 (A) ∼= K+

0 (C) (unital

identification) and Aff(T(A)) ∼= Aff(T(C)) (in a way compatible with the K0-pairing). By

Theorem 4.4 and Corollary 6.8 of [13] (see also Theorem 2.6 of [6] and Theorem 5.5 of [5],

expressed in terms of W instead of Cu), it follows that the Cuntz semigroup of A and the Cuntz

semigroup of C are isomorphic. Applied to the canonical unital map Cu(C1)→ Cu(C) ∼= Cu(A),

Theorem 1 of [20] (applicable as K1(C1) = {0}, A has stable rank one, and C1 is unital and has

stable rank one—by Theorem 5 (i) of [20], the functor Cu∼ classifies homomorphisms from C1

if and only if Cu classifies homomorphisms from C1, and by Theorem 1 of [20], the functor Cu∼

classifies homomorphisms from C1) implies that there is a unital homomorphism ψ : C1 → A

giving rise to this map, and in particular such that

(2.34) ψ∗ = Ξ−1 ◦ (ι1,∞)∗ on Aff(T(C1)).

Since the ideal of Cu(C1) killed by the map Cu(C1) → Cu(C) ∼= Cu(A) is zero, as the map

C1 → C is an embedding, it follows that the map C1 → A is also an embedding. By (2.33),

(2.34), and (2.2), one then has

‖ψ∗ ◦ φ∗(f̂)− f̂‖∞ < ε, f ∈ F ,

as desired. �

Theorem 2.3. Let A be a separable unital simple C*-algebra satisfying the UCT. Assume that

T(A) = Tqd(A), and that A ⊗ Q has finite nuclear dimension. Then A ⊗ Z is classifiable.

Moreover, if T(A) 6= Ø, one has that A⊗Q ∈ TAC0.

Proof. If T(A) = Ø, then A⊗ Z is purely infinite, and hence is classifiable by the classification

theorem of Kirchberg and Phillips ([16], [19])

If T(A) 6= Ø, then it follows from Theorem 2.2 above and Theorem 2.2 of [21] that A ⊗ Q ∈
TAC0. Then, by [14], A⊗Z is classifiable. �

Proof of Theorem 1.1. By Proposition 8.5 of [4], as A⊗Q has finite decomposition rank, T(A⊗
Q) = Tqd(A ⊗ Q). Furthermore, by [17], A ⊗ Q is stably finite and nuclear and so by [3] and

[15], T(A) 6= Ø. Then the statement follows from Theorem 2.3. �

Remark 2.4. By the classification result, it follows that the class of Theorem 1.1 (finite decompo-

sition rank) coincides with the class of Theorem 2.3 (assuming T(A) 6= Ø). Namely, as pointed

out in the proof of Theorem 1.1, the class of Theorem 1.1 is contained in the class of Theorem

2.3. Conversely, an algebra in the class of Theorem 2.3 is, as shown in [14], is isomorphic to an
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ASH algebra with decomposition rank at most three (in fact, it has decomposition rank at most

two by Theorem A of [12]), and so belongs to the class of Theorem 1.1.

Together with Theorem 7.5 of [4], one has

Corollary 2.5. Let A be a simple separable unital Z-stable nuclear C*-algebra such that T(A)

is a Bauer simplex. If T(A) = Tqd(A) and if A satisfies the UCT, A is classifiable.

Proof. One may assume that T(A) 6= Ø. It then follows from Theorem 7.5 of [4] that dr(A) ≤ 1,

and hence A is classifiable by Theorem 1.1. �
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