ON THE DYNAMICAL ASYMPTOTIC DIMENSION OF A FREE \mathbb{Z}^{d}-ACTION ON THE CANTOR SET

ZHUANG NIU AND XIAOKUN ZHOU

Abstract

Consider an arbitrary extension of a free \mathbb{Z}^{d}-action on the Cantor set. It is shown that it has dynamical asymptotic dimension at most $3^{d}-1$.

1. Introduction

Dynamical Asymptotical Dimension is introduced by Guentner, Willett, and Yu in [2] to describe the complexity of a topological dynamical system:

Definition 1.1 (Definition 2.1 of [2]). Consider a group action $X \curvearrowleft \Gamma$, where X is a compact Hausdorff space and Γ is a discrete group. Its dynamical asymptotic dimension (DAD) is the smallest non-negative integer d such that for any finite set $\mathcal{F} \subseteq \Gamma$, there is an open cover $U_{0} \cup U_{1} \cup \cdots \cup U_{d}$ of X such that for each $U_{i}, 0 \leq i \leq d$, the set

$$
\left\{\begin{array}{l|l}
\gamma \in \Gamma & \begin{array}{l}
\text { there exists } x \in U_{i} \text { and } \gamma_{1}, \ldots, \gamma_{K} \in \mathcal{F} \\
\text { such that } \gamma=\gamma_{1} \gamma_{2} \cdots \gamma_{K} \text { and } \\
\text { for all } k \in\{1, \ldots, K\}, x \gamma_{1} \cdots \gamma_{k} \in U_{i}
\end{array}
\end{array}\right\}
$$

is finite.
If the action is free, the dynamical system $X \curvearrowleft \Gamma$ has dynamical asymptotic dimension at most d if, and only if, the following holds (see Remark 2.2(3) and Definition 1 of [2]): for any finite set $\mathcal{F} \subseteq \Gamma$ satisfying $\mathcal{F}=\mathcal{F}^{-1}$ and $e \in \mathcal{F}$, there exist an open cover $U_{0} \cup U_{1} \cup \cdots \cup U_{d}$ of X and $M>0$ such that for each $U_{i}, 0 \leq i \leq d$, each $x \in U_{i}$, the cardinality of the set

$$
\mathcal{O}_{x}:=\left\{y \in U_{i}: \exists \gamma_{1}, \ldots, \gamma_{K} \in \mathcal{F}, y=x \gamma_{1} \cdots \gamma_{K}, x \gamma_{1} \cdots \gamma_{k} \in U_{i}, 1 \leq k \leq K, K \in \mathbb{N}\right\}
$$

is at most M.
It is shown in [2] (Theorem 3.1) that the dynamical asymptotical dimension of any minimal \mathbb{Z}-action is at most 1 , regardless of the space X. It is also shown in [2] that for any discrete group Γ with asymptotic dimension at most d, there is a Γ-action on the Cantor set which has dynamical asymptotical dimension at most d. In this note, we estimate the dynamical asymptotical dimension of an arbitrary \mathbb{Z}^{d}-action on the Cantor set, and we show the following theorem:

Theorem (Theorem 2.8 and Corollary 2.10). Any extension of a free \mathbb{Z}^{d}-action on the Cantor set has dynamical asymptotic dimension at most $3^{d}-1$.

[^0]Key words and phrases. Dynamical asymptotic dimension, free \mathbb{Z}^{d}-actions, Cantor system.
The research is supported by an NSF grant (DMS-1800882).

2. Main Result and its proof

2.1. Quasi-tilings of \mathbb{Z}^{d}. Let us start with certain quasi-tilings (see 3]) of \mathbb{Z}^{d} by cubes:

Definition 2.1. Consider \mathbb{Z}^{d}. For any natural number l, denote by \square_{l} the cube

$$
\square_{l}=\{-l,-l+1, \ldots, l-1, l\}^{d} \subseteq \mathbb{Z}^{d}
$$

Let r, D, E be natural numbers. An (r, D, E)-tiling of \mathbb{Z}^{d}, denoted by \mathcal{T}, is a collection of $c_{i} \in \mathbb{Z}^{d}$ such that with

$$
\operatorname{Dom}(\mathcal{T})=\bigcup_{i}\left(c_{i}+\square_{D}\right)
$$

then,
(1) $\left(c_{i}+\square_{D}\right) \cap\left(c_{j}+\square_{D}\right)=\varnothing, i \neq j$,
(2) The (Euclidean) distance between $c_{i}+\square_{D}$ and $c_{j}+\square_{D}$ is at least r if $i \neq j$, and
(3) $\square_{E} \cap \operatorname{Dom}(\mathcal{T}) \neq \varnothing$.

In other words, an (r, D, E)-tiling of \mathbb{Z}^{d} is a quasi-tiling by cubes of size $2 D+1$, such that tiles are r-separated, but they almost cover 0 up to E.

It turns out that if $D \leq E \leq 2 D$, then there are $e_{0}=0, e_{1}, e_{2}, \ldots, e_{3^{d}-1} \in \mathbb{Z}^{d}$ such that for any (r, D, E)-tiling \mathcal{T}, one of $\mathcal{T}, \mathcal{T}+e_{1}, \ldots, \mathcal{T}+e_{3^{d}-1}$ actually covers 0 :

Lemma 2.2. For any natural number E, then there are $e_{1}, e_{2}, \ldots, e_{s} \in \mathbb{Z}^{d}$, where $s=3^{d}-1$, such that if \mathcal{T} is an (r, D, E)-tiling of \mathbb{Z}^{d} for some natural numbers r and D with $D \leq E \leq$ $2 D$, then

$$
0 \in \operatorname{Dom}(\mathcal{T}) \cup \operatorname{Dom}\left(\mathcal{T}+e_{1}\right) \cup \cdots \cup \operatorname{Dom}\left(\mathcal{T}+e_{s}\right)
$$

where $s=3^{d}-1$.
Proof. Set

$$
\left\{e_{0}, e_{1}, \ldots, e_{3^{d}-1}\right\}=\left\{\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: n_{i} \in\{0, \pm E\}\right\}
$$

with $e_{0}=(0, \ldots, 0)$. In order to prove the lemma, it is enough to show that if $0 \notin \operatorname{Dom}(\mathcal{T})$, then, at least one of

$$
e_{i}, \quad i=1, \ldots, 3^{d}-1
$$

is in $\operatorname{Dom}(\mathcal{T})$.
Assume none of e_{i} was inside $\operatorname{Dom}(\mathcal{T})$. Then one asserts that

$$
\square_{E} \cap \operatorname{Dom}(\mathcal{T})=\varnothing
$$

This contradicts Condition (3) and hence proves the lemma.
For the assertion, assume there is $c \in \mathbb{Z}^{d}$ with

$$
c+\square_{D} \subseteq \operatorname{Dom}(\mathcal{T}) \quad \text { and } \quad \square_{E} \cap\left(c+\square_{D}\right) \neq \varnothing
$$

Then there exist

$$
-E \leq n_{i} \leq E, \quad 1 \leq i \leq d
$$

such that

$$
\left(n_{1}, \ldots, n_{d}\right) \in c+\square_{D}
$$

Note that $\square_{E} \cap\left(c+\square_{D}\right) \neq \varnothing$ implies

$$
-D-E \leq c_{i} \leq D+E, \quad 1 \leq i \leq d, c=\left(c_{1}, c_{2}, \ldots, c_{d}\right)
$$

and also note

$$
c+\square_{D}=\left\{\left(c_{1}+s_{1}, c_{2}+s_{2}, \ldots, c_{d}+s_{d}\right):-D \leq s_{i} \leq D\right\} .
$$

For each c_{i}, if $\left|c_{i}\right| \geq E$, then choose $s_{i} \in[-D, D]$ such that $\left|c_{i}+s_{i}\right|=E$; if $\left|c_{i}\right| \leq D$, then choose $s_{i}=-c_{i}$ so that $c_{i}+s_{i}=0$; if $D \leq\left|c_{i}\right| \leq E$, then choose $s_{i} \in[-D, D]$ such that $\left|c_{i}+s_{i}\right|=E$ (note that one assumes $E \leq 2 D$). With this choice of s_{i}, one has that $c+\square_{D}$ contains at least one of e_{i}, and so such e_{i} is inside $\operatorname{Dom}(\mathcal{T})$. This contradicts the assumption, and proves the assertion.

2.2. Group actions and equivariant quasi-tilings. Recall

Definition 2.3. Let X be a topological space and let Γ be a discrete group. By a (right) Γ-action on X, denoted by $X \curvearrowleft \Gamma$, we mean a continuous map

$$
X \times \Gamma \ni(x, \gamma) \rightarrow x \gamma \in X
$$

such that

$$
x e=x \quad \text { and } \quad\left(x \gamma_{1}\right) \gamma_{2}=x\left(\gamma_{1} \gamma_{2}\right), \quad x \in X, \quad \gamma_{1} \gamma_{2} \in \Gamma .
$$

We say a Γ-action on X is free if $x \gamma=x$ for some $x \in X$ and $\gamma \in \Gamma$ implies $\gamma=e$.
Consider actions $X \curvearrowleft \Gamma$ and $Y \curvearrowleft \Gamma$. We say that $X \curvearrowleft \Gamma$ is an extension of $Y \curvearrowleft \Gamma$ (or $Y \curvearrowleft \Gamma$ is a factor of $X \curvearrowleft \Gamma$) if there is a quotient map $\pi: X \rightarrow Y$ such that

$$
\pi(x \gamma)=\pi(x) \gamma, \quad x \in X, \gamma \in \Gamma
$$

Definition 2.4. Consider an \mathbb{Z}^{d}-action on topological space X. A set-valued map

$$
X \ni x \mapsto \mathcal{T}(x) \in 2^{\mathbb{Z}^{d}}
$$

is said to be equivariant if

$$
\mathcal{T}(x n)=\mathcal{T}(x)-n,
$$

where $\mathcal{T}(x)-n$ is the translation of $\mathcal{T}(x)$ by $-n$.
The map $x \mapsto \mathcal{T}(x)$ is said to be continuous if for any $R>0$ and any $x \in X$, there is an open set $U \ni x$ such that

$$
\mathcal{T}(y) \cap B_{R}=\mathcal{T}(x) \cap B_{R}, \quad y \in U,
$$

where B_{R} is the ball in \mathbb{Z}^{d} with center 0 and radius R.
Lemma 2.5. Consider an \mathbb{Z}^{d}-action on a topological space X. Let $N \in \mathbb{N}$, and let $x \mapsto \mathcal{T}(x)$ be a continuous equivariant map with value ($r, D, E)$-tilings of \mathbb{Z}^{d} with $r>N \sqrt{d}$. Put

$$
\Omega=\{x \in X: 0 \in \operatorname{Dom}(\mathcal{T}(x))\} .
$$

Then, Ω is open. Moreover, for any $x \in X$, one has

$$
\begin{align*}
& \mid\left\{n \in \mathbb{Z}^{d}: n=n_{1}+\cdots+n_{K}, x\left(n_{1}+\cdots+n_{k}\right) \in \Omega,\left\|n_{k}\right\|_{\infty} \leq N,\right. \tag{2.1}\\
& 1 \leq k \leq K, K \in \mathbb{N}\} \mid \\
\leq & (2 D+1)^{d}
\end{align*}
$$

Proof. The openness of Ω follows directly from the continuity of the map $x \mapsto \mathcal{T}(x)$. Let us show the estimate (2.1).

Pick $x_{0} \in \Omega$, and write $c+\square_{D}$ to be the tile of $\mathcal{T}\left(x_{0}\right)$ containing 0 . Since the function $x \mapsto \mathcal{T}(x)$ is equivariant, one has that $\mathcal{T}(x n)=\mathcal{T}(x)-n$; hence, by Condition (2), for any $n \in \mathbb{Z}^{d}$ with $\|n\|_{\infty} \leq N$, one has that either 0 is in the tile $c+\square_{D}-n$ (therefore $x_{0} n \in \Omega$ and $c-n \in \square_{D}$) or $0 \notin \operatorname{Dom}\left(\mathcal{T}\left(x_{0} n\right)\right)$ (therefore $\left.x_{0} n \notin \Omega\right)$.

Thus, if there are $n_{1}, n_{2}, \ldots, n_{K} \in \mathbb{Z}^{d}$ with $\left\|n_{k}\right\|_{\infty} \leq N$ and

$$
n_{1} x_{0} \in \Omega, x_{0}\left(n_{1}+n_{2}\right) \in \Omega, \ldots, x_{0}\left(n_{1}+\cdots+n_{K}\right) \in \Omega
$$

one has

$$
c-n_{1} \in \square_{D}, c-n_{1}-n_{2} \in \square_{D}, \ldots, c-n_{1}-\cdots-n_{K} \in \square_{D},
$$

and hence

$$
n=n_{1}+\cdots+n_{K} \in c+\square_{D} .
$$

Since $\left|c+\square_{D}\right|=\left|\square_{D}\right|=(2 D+1)^{d}$, this proves the lemma.
2.3. Cantor systems and an estimate of dynamical asymptotic dimension. Let us focus on extensions of a free \mathbb{Z}^{d}-action on the Cantor set, which is the unique compact separable Hausdorff space that is totally disconnected and perfect.

First, for any free \mathbb{Z}^{d}-action on the Cantor set, equivariant continuous (r, D, E)-tilingvalued functions always exist:

Proposition 2.6. Consider a free \mathbb{Z}^{d}-action on X where X is the Cantor set, and let $N \in \mathbb{N}$ be arbitrary. Then, there are natural numbers r, D, E with $r>N \sqrt{d}$ and $D \leq E \leq 2 D$, and a continuous equivariant map $x \mapsto \mathcal{T}(x)$ on X such that each $\mathcal{T}(x)$ a (r, D, E)-tiling of \mathbb{Z}^{d}.

Proof. The construction is similar to that of Lemma 3.4 of [1].
Pick a natural number $r>N \sqrt{d}$, and then pick a natural number $L>2 r$. Since the action is free and X is the Cantor set, by a compactness argument, one obtains mutually disjoint clopen sets $U_{1}, U_{2}, \ldots, U_{s}$, such that

$$
X=U_{1} \cup U_{2} \cup \cdots \cup U_{s}
$$

and for each $U_{i}, 1 \leq i \leq s$, the open sets

$$
U_{i} n, \quad n \in \square_{2 L},
$$

are mutually disjoint.
Start with U_{1}. For each $x \in X$, put

$$
\begin{cases}\mathcal{C}_{1}(x)=\left\{n \in \mathbb{Z}^{d}: x n \in U_{1}\right\} \\ \cdots & \cdots \\ \mathcal{C}_{i}(x)=\mathcal{C}_{i-1}(x) \cup\left\{n \in \mathbb{Z}^{d}: x n \in U_{i},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{i-1}(x)+\square_{L}\right)=\varnothing\right\} \\ \cdots & \cdots \\ \mathcal{C}_{s}(x)= & \mathcal{C}_{s-1}(x) \cup\left\{n \in \mathbb{Z}^{d}: x n \in U_{s},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{s-1}(x)+\square_{L}\right)=\varnothing\right\} .\end{cases}
$$

Since U_{1} is clopen, the map $x \mapsto \mathcal{C}_{1}(x)$ is continuous in the sense that for any x and any $R>0$, there is a neighbourhood W of x such that

$$
\mathcal{C}_{1}(y) \cap B_{R}=\mathcal{C}_{1}(x) \cap B_{R}, \quad y \in W .
$$

Consider the map $x \mapsto \mathcal{C}_{2}(x)$. Fix $x \in X, R>0$. Since U_{2} is clopen, there is a neighbourhood W of x such that

$$
\left\{n \in \mathbb{Z}^{d}: x n \in U_{2}\right\} \cap B_{R}=\left\{n \in \mathbb{Z}^{d}: y n \in U_{2}\right\} \cap B_{R}, \quad y \in W .
$$

Note that $x \mapsto \mathcal{C}_{1}(x)$ is continuous, then the neighbourhood W can be chosen so that

$$
\left(\mathcal{C}_{1}(x)+\square_{L}\right) \cap B_{R}=\left(\mathcal{C}_{1}(x)+\square_{L}\right) \cap B_{R}, \quad y \in W
$$

and therefore for any $y \in W$,

$$
\begin{aligned}
& \left\{x n \in U_{2},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{1}(x)+\square_{L}\right)=\varnothing\right\} \cap B_{R} \\
= & \left\{y n \in U_{2},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{1}(y)+\square_{L}\right)=\varnothing\right\} \cap B_{R} .
\end{aligned}
$$

Together with the continuity of $x \mapsto \mathcal{C}_{1}(x)$, this shows that $x \mapsto \mathcal{C}_{2}(x)$ is continuous.
Repeat this argument, one shows that the map $x \mapsto \mathcal{C}_{s}(x)$ is continuous.
Let us show that the map $x \mapsto \mathcal{C}_{s}(x)$ is equivariant. Start with $x \mapsto \mathcal{C}_{1}(x)$. Let $n \in \mathbb{Z}^{d}$ and consider $x n$. Since $x m \in U_{1}$ if and only if $x(n+m-n) \in U_{1}$, one has

$$
\mathcal{C}_{1}(x n)=\mathcal{C}_{1}(x)-n .
$$

A similar argument shows that $\mathcal{C}_{2}(x), \ldots, \mathcal{C}_{s}(x)$ are equivariant.
One asserts that

$$
\left(c_{1}+\square_{L}\right) \cap\left(c_{2}+\square_{L}\right)=\varnothing, \quad c_{1} \neq c_{2}, c_{1}, c_{2} \in \mathcal{C}_{s}(x)
$$

Indeed, since $U_{1} n, n \in \square_{2 L}$, are mutually disjoint, one has that

$$
\left(c+\square_{2 L}\right) \cap \mathcal{C}_{1}(x)=c, \quad c \in \mathcal{C}_{1}(x)
$$

and thus

$$
\left(c_{1}+\square_{L}\right) \cap\left(c_{2}+\square_{L}\right)=\varnothing, \quad c_{1} \neq c_{2}, c_{1}, c_{2} \in \mathcal{C}_{1}(x)
$$

Now, pick

$$
c_{1}, c_{2} \in \mathcal{C}_{2}(x)=\mathcal{C}_{1}(x) \cup\left\{n \in \mathbb{Z}^{d}: x n \in U_{2}, \quad\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{1}(x)+\square_{L}\right)=\varnothing\right\}
$$

If $c_{1}, c_{2} \in \mathcal{C}_{1}(x)$, then as shown above,

$$
\left(c_{1}+\square_{L}\right) \cap\left(c_{2}+\square_{L}\right)=\varnothing
$$

Assume that

$$
c_{1}, c_{2} \in\left\{n \in \mathbb{Z}^{d}: x n \in U_{2},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{1}(x)+\square_{L}\right)=\varnothing\right\} \subseteq\left\{n \in \mathbb{Z}^{d}: x n \in U_{2}\right\}
$$

Then, since $U_{2} n, n \in \square_{2 L}$, are mutually disjoint, the same argument as that of $\mathcal{C}_{1}(x)$ shows that

$$
\left(c_{1}+\square_{L}\right) \cap\left(c_{2}+\square_{L}\right)=\varnothing
$$

Assume that $c_{1} \in \mathcal{C}_{1}$ and $c_{2} \in\left\{n \in \mathbb{Z}^{d}: x n \in U_{2},\left(n+\square_{L}\right) \cap\left(\mathcal{C}_{1}(x)+\square_{L}\right)=\varnothing\right\}$. Then the equation

$$
\left(c_{1}+\square_{L}\right) \cap\left(c_{2}+\square_{L}\right)=\varnothing
$$

just follows from the definition.
Repeat this argument for $\mathcal{C}_{3}(x), \ldots, \mathcal{C}_{s}(x)$, and this proves the assertion.

Note that for the given x, there exists a U_{i} containing x. Therefore, either

$$
\square_{L} \cap\left(\mathcal{C}_{i-1}(x)+\square_{L}\right) \neq \varnothing \quad \text { or } \quad 0 \in \mathcal{C}_{i}(x) .
$$

In particular, one always has that $\square_{L} \cap\left(\mathcal{C}_{i}(x)+\square_{L}\right) \neq \varnothing$, and hence

$$
\square_{L} \cap\left(\mathcal{C}_{s}(x)+\square_{L}\right) \neq \varnothing .
$$

To summarize, setting $\mathcal{C}(x)=\mathcal{C}_{s}(x)$, one obtains a continuous equivariant map $x \mapsto \mathcal{C}(x)$ satisfying
(1) $\left(c_{i}+\square_{L}\right) \cap\left(c_{j}+\square_{L}\right)=\varnothing, c_{i} \neq c_{j}, c_{i}, c_{j} \in \mathcal{C}_{s}(x)$ and
(2) $\square_{L} \cap\left(\mathcal{C}_{s}(x)+\square_{L}\right) \neq \varnothing$;
hence it satisfies
(3) $\left(c_{i}+\square_{L-r}\right) \cap\left(c_{j}+\square_{L-r}\right)=\varnothing, c_{i} \neq c_{j}, c_{i}, c_{j} \in \mathcal{C}_{s}(x)$,
(4) $\square_{L+r} \cap\left(\mathcal{C}_{s}(x)+\square_{L-r}\right) \neq \varnothing$;
and, moreover
(5) the (Euclidean) distance between $c_{i}+\square_{L-r}$ and $c_{j}+\square_{L-r}$ is at least r if $c_{i} \neq c_{j}$.

Thus, each $\mathcal{C}(x)$ is an $(r, L-r, L+r)$ tiling. Since $L>2 r$, one has $L+r<2(L-r)$, and this proves the statement of the proposition.

Corollary 2.7. Consider a free \mathbb{Z}^{d}-action on X where X is the Cantor set, and let $N \in \mathbb{N}$ be arbitrary. Then, there exist continuous equivariant maps

$$
x \mapsto \mathcal{T}_{i}(x), \quad i=0,1, \ldots, 3^{d}-1,
$$

with each $\mathcal{T}_{i}(x) a(r, D, E)$-tilings of \mathbb{Z}^{d} for some $r, D, E \in \mathbb{N}$ with $r>N \sqrt{d}$, such that, if put

$$
\Omega_{i}=\left\{x \in X: 0 \in \operatorname{Dom}\left(\mathcal{T}_{i}(x)\right)\right\}, \quad i=0,1, \ldots, 3^{d}-1,
$$

then

$$
\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \Omega_{3^{d}-1}=X
$$

Proof. It follows from Proposition 2.6 that there are natural numbers r, D, E with

$$
r>N \sqrt{d} \quad \text { and } \quad D \leq E \leq 2 D
$$

and a continuous equivariant map $x \mapsto \mathcal{T}_{0}(x)$ on X such that each $\mathcal{T}_{0}(x)$ a (r, D, E)-tiling of \mathbb{Z}^{d}.

Consider the translations of the function \mathcal{T}_{0} :

$$
\mathcal{T}_{1}=\mathcal{T}_{0}+e_{1}, \mathcal{T}_{2}=\mathcal{T}_{0}+e_{2}, \ldots, \mathcal{T}_{3^{d}-1}=\mathcal{T}_{0}+e_{3^{d}-1}
$$

where $e_{1}, \ldots, e_{3^{d}-1}$ are the vectors (with repect to E) obtained from Lemma 2.2. Since $D \leq E \leq 2 D$, it follows from Lemma 2.2 that for any $x \in X$, one has

$$
0 \in \operatorname{Dom}\left(\mathcal{T}_{0}(x)\right) \cup \operatorname{Dom}\left(\mathcal{T}_{1}(x)\right) \cup \cdots \cup \operatorname{Dom}\left(\mathcal{T}_{3^{d}-1}(x)\right)
$$

and thus

$$
\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \Omega_{3^{d}-1}=X
$$

as desired.

Theorem 2.8. The dynamical asymptotic dimension of any free \mathbb{Z}^{d}-action on the Cantor set is at most $3^{d}-1$.

Proof. Let $N \in \mathbb{N}$ be arbitrary. It follows from Corollary 2.7 that there exist continuous equivariant maps

$$
x \mapsto \mathcal{T}_{i}(x), \quad i=0,1, \ldots, 3^{d}-1,
$$

with each $\mathcal{T}_{i}(x)$ a (r, D, E)-tilings of \mathbb{Z}^{d} for some r, D, E with $r>N \sqrt{d}$ with

$$
\Omega_{0} \cup \Omega_{1} \cup \cdots \cup \Omega_{3^{d}-1}=X
$$

where

$$
\Omega_{i}=\left\{x \in X: 0 \in \operatorname{Dom}\left(\mathcal{T}_{i}(x)\right)\right\}, \quad i=0,1, \ldots, 3^{d}-1
$$

which is open.
Since $r>N \sqrt{d}$, by Lemma 2.5, for any $i=0,1, \ldots, 3^{d}$, one has

$$
\begin{aligned}
& \mid n \in \mathbb{Z}^{d}: n=n_{1}+\cdots+n_{K}, x\left(n_{1}+\cdots+n_{k}\right) \in \Omega_{i},\left\|n_{k}\right\|_{\infty} \leq N, \\
& 1 \leq k \leq K, K \in \mathbb{N}\} \mid \\
\leq & (2 D+1)^{d}<+\infty
\end{aligned}
$$

That is, the dynamical asymptotic dimension of $X \curvearrowleft \mathbb{Z}^{d}$ is at most $3^{d}-1$.
Lemma 2.9. Let $X \curvearrowleft \Gamma$ be an extension of a free action $Y \curvearrowleft \Gamma$. Then the dynamical asymptotic dimension of $X \curvearrowleft \Gamma$ is at most the dynamical asymptotic dimension of $Y \curvearrowleft \Gamma$.

Proof. Let $d \in \mathbb{Z}$ such that the dynamical asymptotical dimension of $Y \curvearrowleft \Gamma$ is at most d. Let $\Gamma_{0} \subseteq \Gamma$ be finite. Then, together with the freeness of $Y \curvearrowleft \Gamma$, there exist an open cover $U_{0} \cup U_{1} \cup \cdots \cup U_{d}$ of Y and $M>0$ such that for each $U_{i}, 0 \leq i \leq d, y_{0} \in U_{i}$, one has that

$$
\begin{equation*}
\left|\left\{\gamma_{1} \cdots \gamma_{K}: \exists \gamma_{1}, \ldots, \gamma_{K} \in \Gamma_{0}, y_{0} \gamma_{1} \cdots \gamma_{k} \in U_{i}, 1 \leq k \leq K, K \in \mathbb{N}\right\}\right| \leq M \tag{2.2}
\end{equation*}
$$

Consider the open sets

$$
\pi^{-1}\left(U_{0}\right), \pi^{-1}\left(U_{1}\right), \ldots, \pi^{-1}\left(U_{d}\right)
$$

where $\pi: X \rightarrow Y$ is the quotient map, and note that they form an open cover of X. For each $0 \leq i \leq d$, pick an arbitrary $x_{0} \in \pi^{-1}\left(U_{i}\right)$ and assume there are $\gamma_{1}, \ldots, \gamma_{K} \in \Gamma_{0}$ for some $K \in \mathbb{N}$ such that

$$
x_{0} \in \pi^{-1}\left(U_{i}\right), x_{0} \gamma_{1} \in \pi^{-1}\left(U_{i}\right), \ldots, x_{0} \gamma_{1} \gamma_{2} \cdots \gamma_{K} \in \pi^{-1}\left(U_{i}\right) .
$$

Applying the quotient map π, one has

$$
\pi\left(x_{0}\right) \in U_{i}, \pi\left(x_{0}\right) \gamma_{1} \in U_{i}, \ldots, \pi\left(x_{0}\right) \gamma_{1} \gamma_{2} \cdots \gamma_{K} \in U_{i}
$$

and, by (2.2), this implies

$$
\left|\left\{\gamma_{1} \cdots \gamma_{K}: \exists \gamma_{1}, \ldots, \gamma_{K} \in \Gamma_{0}, x_{0} \gamma_{1} \cdots \gamma_{k} \in \pi^{-1}\left(U_{i}\right), 1 \leq k \leq K, K \in \mathbb{N}\right\}\right| \leq M
$$

Thus, the dynamical asymptotic dimension of $X \curvearrowleft \Gamma$ is at most d.
Then, the following is a straightforward corollary of Theorem 2.8:
Corollary 2.10. The dynamical asymptotic dimension of any extension of a free \mathbb{Z}^{d}-action on the Cantor set is at most $3^{d}-1$.

References

[1] T. Downarowicz and D. Huczek. Dynamical quasitilings of amenable groups. Bull. Pol. Acad. Sci. Math., 66(1):45-55, 2018. URL: https://mathscinet.ams.org/mathscinet-getitem?mr=3782587, doi:10. 4064/ba8128-1-2018.
[2] E. Guentner, R. Willett, and G. Yu. Dynamic asymptotic dimension: relation to dynamics, topology, coarse geometry, and C^{*}-algebras. Math. Ann., 367(1-2):785-829, 2017. URL: https://mathscinet. ams.org/mathscinet-getitem?mr=3606454, doi:10.1007/s00208-016-1395-0
[3] D. S. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse Math., 48:1-141, 1987. URL:https://mathscinet.ams.org/mathscinet-getitem?mr=910005, doi:10.1007/BF02790325.

Department of Mathematics, University of Wyoming, Laramie, Wyoming, USA, 82071
Email address: zniu@uwyo.edu
Department of Mathematics, University of Wyoming, Laramie, Wyoming, USA, 82071
Email address: xzhou3@uwyo.edu

[^0]: Date: October 12, 2020.

