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Abstract. Let A be a simple separable unital locally approximately subhomogeneous C*-

algebra (locally ASH algebra). It is shown that A ⊗ Q can be tracially approximated by unital

Elliott-Thomsen algebras with trivial K1-group, where Q is the universal UHF algebra. In par-

ticular, it follows that A is classifiable by the Elliott invariant if A is Jiang-Su stable.

1. Introduction

Recently, several major steps have been taken in the classification of what might be called “well

behaved” separable amenable simple unital C*-algebras. The phenomenon of well behavedness

itself was explicitly noticed only relatively recently, by Toms and Winter (see [7]) who conjectured

that within this class of C*-algebras several properties were equivalent, and that the algebras in

this robust subclass (and only these) were the ones that could be classified by means of what

might be called the naive Elliott invariants—the ordered K0-group together with the class of the

unit, the simplex of tracial states paired naturally with it, and the K1-group. (Other invariants,

such as the Cuntz semigroup, might then be helpful for more general classes of amenable C*-

algebras.) Breakthroughs in the understanding of the robustness of this class were made by

Matui and Sato in [20] and [21].

Perhaps the most striking development in the direction of actually proving isomorphism has

been the technique—sometimes referred to as the Winter deformation technique—introduced

by Winter in [33] (with refinements by Lin in [17] and Lin and Niu in [19]), through which a

class of (separable, amenable, simple unital) C*-algebras which are well behaved in the sense

of absorbing tensorially the Jiang-Su algebra Z, and are also known to satisfy the UCT, can

be classified in terms of the (naive) Elliott invariant if this is true for the subclass of algebras

absorbing the universal Glimm UHF C*-algebra Q.

Using this, Gong, Lin, and Niu, in [9]—following on earlier work in this direction (see e.g.

[14], [22], [23], [24], [15], [33], [17], [19], [16])—have achieved a classification of finite algebras in

this well behaved class which is close to being definitive—it is simple to describe and it exhausts

completely the possible values of the invariant. (The complementary class, the infinite algebras

in the well behaved class under consideration, were dealt with some time ago by Kirchberg and

Phillips—[11], [12], [25].)

Unfortunately, while it is believed that all well behaved finite separable amenable simple

unital C*-algebras may be ASH algebras (inductive limits of subalgebras of full matrix algebras

over commutative C*-algebras)—and, indeed, that the algebra need not be assumed to be well
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behaved if in addition matrix algebras over it are also finite in the Murray-von Neumann sense

(i.e., if the algebra is stably finite)—the class considered by Gong, Lin, and Niu does not on the

face of it include the class of all well behaved—“Jiang-Su stable”—simple unital ASH algebras.

Using the recent result of Santiago, Tikuisis, and the present authors ([5]) that any Jiang-Su

stable simple unital ASH algebra has finite nuclear dimension (one of the Toms-Winter well

behavedness properties—the important concept of nuclear dimension was introduced by Winter

and Zacharias in [34])—and also using the notion of non-commutative cell complex introduced

in [5] in the proof of this result—, the present note shows that indeed such an algebra (Jiang-Su

stable simple unital ASH) belongs to the class dealt with by Gong, Lin, and Niu. (Even if the

ASH algebra has slow dimension growth, so that by [28] and [31] it is indeed Jiang-Su stable,

it is not known to belong to the class studied by Gong, Lin, and Niu—the class of rationally

tracially approximately point–line algebras—see below.)
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supported by an NSF Grant, the research of H. L. was supported by an NSF Grant, and the
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2. Noncommutative cell complexes

Definition 2.1 (Definition 2.1 of [5]). The class of noncommutative cell complexes (NCCC) is

the smallest class C of C*-algebras such that

(1) every finite dimensional algebra is in C; and

(2) if B ∈ C, n ∈ N, ϕ : B → Mk(C(Sn−1)) is a unital homomorphism, and A is given by the

pullback diagram

A //

��

Mk(C(Dn))

f→f |Sn−1

��
B

ϕ
// Mk(C(Sn−1)),

then A ∈ C.

The reason we consider NCCCs is as follows:

Theorem 2.2 (Theorem 2.15 of [5]). Let A be a unital subhomogeneous C*-algebra. Then A

can be locally approximated by sub-C*-algebras which are NCCCs.

Definition 2.3. Let A be an NCCC, and fix an NC cell complex decomposition of A with

length l (in the sense that A is built from a finite dimensional C*-algebra A0 by attaching l

noncommutative cells). Assume that A0 = Ms1(C) ⊕ · · · ⊕Msr(C) for some natural number r,

and denote the attached cell at the i-th step by Mki(C(Dni)).

Consider the spaces

{pt}, ..., {pt}︸ ︷︷ ︸
r

, Dn1 , ..., Dnl ,
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and denote them by X1, X2, ..., Xm, where m = r + l. Denote the matrix orders of the corre-

sponding C*-algebras by

d1, ..., dr, dr+1, ..., dm.

Then there is a standard embedding

Π : A→
m⊕
i=1

Mdi(C(Xi)).

Denote by Πi : A→ Mdi(C(Xi)), i = 1, ...,m, the projection of Π onto the i-th direct summand.

Lemma 2.4. Let A = B⊕Mk(C(Sn−1)) Mk(C(Dn)) be an NCCC, and let τ ∈ T(A). Then there is

a decomposition

τ(fB, fD) = ατB(fB) + β

∫
Dn\Sn−1

tr(fD(x))dµ(x), (fB, fD) ∈ A,

where τD ∈ T(B), µ is a probability measure on Dn \ Sn−1, tr is the standard trace of Mk(C),

and α, β ∈ [0, 1] with α+ β = 1. Moreover, α and β are unique and τB (or µ) is unique if α (or

β) is not zero.

Proof. The uniqueness part of the lemma is clear. Let us show the existence part.

Consider the restriction of τ to I := Mk(C0(Dn \ Sn−1)) ⊆ A. Then it is a trace with norm at

most one, and thus there is β ∈ [0, 1] and a probability measure µ on Dn \ Sn−1 such that

τ((0, g)) = β

∫
Dn\Sn−1

tr(g(x))dµ(x), g ∈ Mk(C0(Dn \ Sn−1)).

Define a linear map τ̃ : A→ C by

τ̃((f, g)) = τ(f, g)− β
∫
Dn\Sn−1

tr(g(x))dµ(x), (f, g) ∈ A.

For each g ∈ Mk(C(Dn)) and any η ∈ (0, 1), define

χη : [0, 1] 3 x 7→


1, x ∈ [1− η/2, 1],

linear, x ∈ [1− η, 1− η/2],

0, x ∈ [0, 1− η];

and

gη(x) = g(x)χη(‖x‖).
Then a direct calculation shows that

(2.1) τ̃(f, g) = τ̃(f, gη), (f, g) ∈ A, η ∈ (0, 1).

It is clear that τ̃ is self-adjoint; let us show that it is positive. Let (f, g) ∈ A be positive.

Define

δ = inf{τ(f, gη) : η ∈ (0, 1)}.
If δ = 0, let us show that τ̃(f, g) = 0. Indeed, in this case, one has

τ((f, g)) = τ(f, gη) + τ(0, g − gη)
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and hence

(2.2) τ((f, g)) = sup{τ(0, g − gη) : η ∈ (0, 1)} = sup{β
∫
Dn\Sn−1

trx(g − gη)dµ(x) : η ∈ (0, 1)}.

Note that for any η ∈ (0, 1).

τ̃((f, g)) = τ(f, g)− β
∫
Dn\Sn−1

tr(g(x))dµ(x)

= τ(f, g)− β
∫
Dn\Sn−1

trx(g − gη)dµ(x)

+β

∫
Dn\Sn−1

tr(gη(x))dµ(x),

and since µ is a probability measure, the integral β
∫
Dn\Sn−1 tr(gη(x))dµ(x) is arbitrarily small if

η is small enough. By (2.2), one has that τ̃((f, g)) = 0.

If δ > 0, since µ is a probability measure, there is η ∈ (0, 1) such that

β

∫
Dn\Sn−1

tr(gη(x))dµ(x) < δ/2,

and therefore

τ̃((f, g)) = τ̃((f, gη)) = τ(f, gη)− β
∫
Dn\Sn−1

tr(gη(x))dµ(x) ≥ −δ/2 = δ/2 > 0.

Therefore, one always has τ̃((f, g)) ≥ 0, and so τ̃ is a positive linear functional. Therefore τ̃

is a (positive) trace of A. Note that τ̃(I) = 0, and therefore τ̃ factors through A/I ∼= B, and

hence in fact is a trace of B. Therefore, there are α ∈ [0, 1] and τB ∈ T(B) such that

τ(f, g)− β
∫
Dn\Sn−1

tr(g(x))dµ(x) = τ̃(f, g) = ατB(f), (a, b) ∈ A,

as desired. �

Corollary 2.5. Let A be an NCCC with a given decomposition with length l. Then any trace τ

of A has a decomposition

τ = α1τ1 + α1µ1 + · · ·+ αmµm,

where m = rank(K0(A0)) + l, µi is a probability measure on Dni \ Sni−1 if Xi = Dni, and µi is

the Dirac measure if Xi consists of a point, αi ∈ [0, 1] and α1 + α2 + · · · + αm = 1. Moreover,

the coefficients αi are unique.

Definition 2.6. Let A be an NCCC with a given decomposition, and let τ ∈ T(A). Referring

to Corollary 2.5, define

αi(τ) = αi.

Lemma 2.7. Let A be a noncommutative cell complex (NCCC). Then the K-groups of A are

finitely generated (as abelian groups).



THE CLASSIFICATION OF SIMPLE SEPARABLE UNITAL LOCALLY ASH ALGEBRAS 5

Proof. The statement is true if A is finite dimensional. Assume the statement is true for non-

commutative complexes with length at most l.

Let A be a noncommutative complex with length l + 1. Write

A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)),

where B is a noncommutative complex with length l. Then there is a short exact sequence

0 // Mk(C0(Rn)) // A // B // 0,

and the corresponding six-term exact sequence is

K0(C0(Rn)) // K0(A) // K0(B)

��
K1(B)

OO

K1(A)oo K1(C0(Rn)).oo

If n is odd, one has

0 // K0(A) // K0(B) // · · · ,

and

0 // Z/mZ // K1(A) // K1(B) // 0,

for some positive integer m. By the inductive hypothesis, the groups K0(B) and K1(B) are

finitely generated, and therefore the groups K0(A) and K1(A) are finitely generated.

If n is even, a similar argument shows that K0(A) and K1(A) are finitely generated. Therefore,

the K-groups of A are always finitely generated. Hence by induction, the statement holds for all

noncommutative cell complexes. �

In general, the positive cone of K0(A) might not be finitely generated; for instance, the positive

cone of K0(C(S2)) is

{(m,n) ∈ Z2 : m > 0} ∪ {(0, 0)},

which is not finitely generated. (On the other hand, consider the image

G := ρ(K0(A)) ⊆ Aff(T(A)),

with respect to the canonical map ρ, with the induced order from Aff(T(A)) (i.e., an element

g ∈ G is positive if and only if g is positive in Aff(T(A))), is isomorphic to Z and so the positive

cone of G is finitely generated.)

The following lemma was stated and proved in [9] for the K0-group of an Elliott-Thomsen

algebra. The argument in fact shows the following (for the reader’s convenience, we include the

proof). (In fact the ordered groups arising are the same.)

Lemma 2.8 (Theorem 3.14 of [9]). Consider (Zl, (Zl)+) with the standard (direct sum) order.

Let G be a subgroup of Zm, and put G+ = G ∩ (Zm)+. Then the positive cone G+ is finitely

generated (as a semigroup).
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Proof. Let us first show that G+ \ {0} has only finitely many minimal elements. Suppose,

otherwise, that {qn} is an infinite set of minimal elements of G+ \ {0}. Write

qn = (m(1, n),m(2, n), ...,m(j, n)) ∈ Zm+ ,

where m(i, n) are positive integers (including zero), i = 1, 2, ...,m and n = 1, 2, .... If there is

an integer M ≥ 1 such that m(i, n) ≤ M for all i and n, then {qn} is a finite set. So we may

assume that {m(i, n)} is unbounded for some 1 ≤ i ≤ m. Passing to a subsequence of {nk}
such that limk→∞m(i, nk) = +∞, we may assume that limn→∞m(i, n) = +∞. We may assume

that, for some j, {m(j, n)} is bounded. Otherwise, by passing to a subsequence, we may assume

that limn→∞m(i, n) = +∞ for all i ∈ {1, 2, ...,m}. Therefore limn→∞m(i, n) −m(i, 1) = +∞.
It follows that, for some n ≥ 1, m(i, n) > m(i, 1) for all i ∈ {1, 2, ...,m}. Therefore, qn > q1,

which contradicts the fact that qn is minimal. By passing to a subsequence, we may write

{1, 2, ...,m} = N t B such that limn→∞m(i, n) = +∞ if i ∈ N and {m(i, n)} is bounded if

i ∈ B. Therefore, {m(j, n)} has only finitely many different values if j ∈ B. Thus, by passing

to a subsequence again, we may assume that m(j, n) = m(j, 1) if j ∈ B. Therefore, for some

n > 1, m(i, n) > m(i, 1) for all n if i ∈ N , and m(j, n) = m(j, 1) for all n if j ∈ B. It follows

that qn ≥ q1. This is impossible, since qn is minimal. This shows that G+ has only finitely many

minimal elements.

To show that G+ is generated by these minimal elements, fix an element q ∈ G+ \ {0}. It

suffices to show that q is a finite sum of minimal elements in G+. If q is not minimal, consider

the set of all elements in G+ \ {0} which are (strictly) smaller than q. This set is finite. Choose

one which is minimal among them, say p1. Then p1 is minimal element in G+ \ {0}, as otherwise

there is one smaller than p1. Since q is not minimal, q 6= p1. Consider q− p1 ∈ G+ \ {0}. If q− p1

is minimal, then q = p1 + (q− p1). Otherwise, we repeat the same argument to obtain a minimal

element p2 ≤ q − p1. If q − p1 − p2 is minimal, then q = p1 + p2 + (q − p1 − p2). Otherwise we

repeat the same argument. This process is finite. Therefore q is a finite sum of minimal elements

in G+ \ {0}. �

With Lemma 2.8, one has

Lemma 2.9. Let A be an NCCC. Then the ordered group

(ρA(K0(A)), ρA(K0(A)) ∩ Aff+(T(A)))

is finitely generated (as an ordered group). (In other words, the positive cone is finitely generated

as a semigroup.)

Proof. With the fixed NC cell complex decomposition of A, consider the standard embedding

Π : A→
m⊕
i=1

Mdi(C(Xi)).

Define

ρ : K0(A) 3 [p] 7→ (rank(Π1(p)), ..., rank(Πm(p))) ∈ Zm.
Clearly, the map ρ is positive.
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Define

G = ρ(K0(A)) and G+ = ρ(K0(A)) ∩ (Zm)+.

It follows from Lemma 2.8 that the cone (G,G+) is a finitely generated ordered group. In order

to prove the lemma, one only has to show that there is an isomorphism

(G,G+) ∼= (ρA(K0(A)), ρA(K0(A)) ∩ Aff+(T(A))).

Define

θ : ρ(K0(A)) 3 (x1, x2, ..., xm) 7→ (τ 7→
m∑
i=1

xi
di
αi(τ)) ∈ Aff(T(A)).

Then θ is injective. Note that for any τ ∈ T(A) with the decomposition

τ = α1µ0 + α2µ2 + · · ·+ αmµm,

one has

ρA(p)(τ) =
m∑
i=1

αi

∫
Xi

tri(Πi(p)(x))dµi(x)

=
m∑
i=1

αi

∫
Xi

rank(Πi(p))

di
dµi,j

=
m∑
i=1

αi
rank(Πi(p))

di
= θ(ρ(p)),

and therefore

θ(ρ(K0(A))) = θ(G) = ρA(K0(A)).

It is clear that θ(G+) ⊆ ρA(K0(A)) ∩ Aff+(T(A)). Moreover, if θ(x1, ..., xm) ∈ Aff+(T(A)),

then the affine map τ 7→
∑m

i=1
xi
di
αi(τ) is positive, and hence each xi must be positive; that

is, θ induces an order isomorphism between (G,G+) and ρA(K0(A)), ρ(K0(A)) ∩ Aff+(T(A)), as

desired. �

Lemma 2.10. Let A be an NCCC. Then, for any finite set F ⊆ Aff(T(A)) and any ε > 0, there

are positive continuous affine maps θ1 : Aff(T(A)) → Rs and θ2 : Rs → Aff(T(A)) for some

s ∈ N such that

‖θ2 ◦ θ1(f)− f‖∞ < ε, f ∈ F .

Proof. The statement clearly holds for A a finite dimensional C*-algebra. Assume that

A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)),

and suppose that the statement holds for B.

Let (F , ε) be given. Note that Aff(T(A)) is the pullback of Aff(T(B)) and CR(Dn) in the same

manner as A. For each f ∈ F , write it as f = (fB, fD), where fB ∈ Aff(T(B)) and fD ∈ CR(Dn).

Denote by FB the set of fB’s.

Since B satisfies the statement, there are continuous positive affine maps θB,1 : Aff(T(B))→
RsB and θB,2 : RSB → Aff(T(B)) such that

(2.3) ‖θB,2 ◦ θB,1(fB)− fB‖∞ < ε/3, f ∈ F .
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Choose γ ∈ (0, 1) such that

‖fD(x)− fD(y)‖ < ε/3, f ∈ F ,

provided dist(x, y) < γ.

Define

gγ : [0, 1] 3 x 7→


1, x ∈ [0, 1− γ],

linear, x ∈ [1− γ, 1− γ/2],

0, x ∈ [1− γ/2, 1];

and consider the linear map

χγ : C(Sn−1) 3 f 7→ (x 7→ (1− gγ(‖x‖)) · f(
x

‖x‖
)) ∈ C(Dn).

Then χγ is a positive affine map from Aff(T(Mk(C(Sn−1)))) to Aff(T(Mk(C(Dn)))). Note that

(2.4) ‖fDgγ − (fD − χγ(fD|Sn−1))‖∞ = sup{(1− gγ(‖x‖))(fD(x)− fD(
x

‖x‖
)) : x ∈ Dn} < ε/3

for any f ∈ F .

Pick an open cover U of Dn such that the variation of the function fDgγ on any open subset

in U is at most ε/3 for any f ∈ F . Moreover, one requires that the diameter of each open set in

U should be at most γ/4. Choose {φU : U ∈ U} to be a partition of unity subordinated to U ,

and fix xU ∈ U for each U ∈ U .

Put

Uγ = {Ui : U ∩ Sn−1 = Ø},
and write Uγ = {U1, U2, ..., U|Uγ |}.

Since the diameter of each Ui ∈ U is at most γ/4, one has that if U /∈ Uγ, then gγ(xU) = 0,

and hence∥∥∥∥∥∥fDgγ −
∑
U∈Uγ

(fDgγ)(xU)φU

∥∥∥∥∥∥ =

∥∥∥∥∥∥fDgγ −
∑
U∈Uγ

(fDgγ)(xU)φU −
∑
U /∈Uγ

(fDgγ)(xU)φU

∥∥∥∥∥∥(2.5)

=

∥∥∥∥∥fDgγ −∑
U∈U

(fDgγ)(xU)φU

∥∥∥∥∥ ≤ ε/3.

Define

θ1 : Aff(T(A)) 3 (f, g) 7→ θB,1(f)⊕ ((ggγ)(xUi)) ∈ RsB ⊕ R|Uγ |,
and

θ2 : RsB ⊕ R|Uγ | 3 ((ξ1, ..., ξsB), (η1, ..., η|Uγ |))

7→ (θB,2((ξ1, ..., ξsB)), χγ(ϕ(θB,2((ξ1, ..., ξsB)))) +

|Uγ |∑
i=1

ηiφUi) ∈ Aff(T(A)).

Then, a straightforward calculation shows that

θ2 ◦ θ1((fB, fD)) = (θB,2(θB,1(fB)), χγ(ϕ(θB,2(θB,1(fB)))) +

|Uγ |∑
i=1

(fDgγ)(xUi)φUi)
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By the inductive assumption, one has that for any f ∈ F ,

‖fB − θB,2(θB,1(fB))‖ < ε/3 < ε,

and ∥∥∥∥∥∥fD − (χγ(ϕ(θB,2(θB,1(fB)))) +

|Uγ |∑
i=1

(fDgγ)(xUi)φUi)

∥∥∥∥∥∥
∞

<

∥∥∥∥∥∥fD − (χγ(fD|Sn−1) +

|Uγ |∑
i=1

(fDgγ)(xUi)φUi)

∥∥∥∥∥∥
∞

+ ε/3 (by (2.3))

=

∥∥∥∥∥∥(fD − χγ(fD|Sn−1)−
|Uγ |∑
i=1

(fDgγ)(xUi)φUi)

∥∥∥∥∥∥
∞

+ ε/3

≤
∥∥∥gγfD −∑(fDgγ)(xp)φp

∥∥∥
∞

+ 2ε/3 (by (2.4))

≤ ε (by (2.5)).

Therefore

‖θ2 ◦ θ1(f)− f‖ < ε, f ∈ F ,
as desired. �

Remark 2.11. In fact, as shown in [4] (Lemma 2.6), the statement of Lemma 2.10 always holds

if T(A) is replaced by an arbitrary compact metrizable Choquet simplex.

3. An existence theorem

Let A be an NCCC. The main result in this section (Theorem 3.7) is that any almost compatible

pair (κ, γ) from an NCCC to Q can be lifted to an algebra homomorphism, where κ : K0(A)→ Q
and γ : Aff(T(A))→ Aff(T(Q)) ∼= R.

Lemma 3.1. Let P be an m× n matrix with integer entries, and let ξ ∈ Rm with each entry a

positive number (including zero). Assume that each entry of Pξ is rational. Then, for any ε > 0,

there is ζ ∈ Qm with positive entries (including zero) such that

(1) Pξ = Pζ, and

(2) ‖ξ − ζ‖∞ < ε.

Proof. By deleting the columns of P corresponding to the 0’s of ξ, one may assume that each

entry of ξ is strictly positive.

Let us show that

kerP = kerP ∩Qm.

It is clear that kerP ⊇ Qm ∩ kerP . Note that P is rational, so that one can choose a basis of

kerP (as a real vector space) consisting of rational vectors, from which it follows that

dimR(kerP ) ≤ dimQ(kerP ∩Qm),



THE CLASSIFICATION OF SIMPLE SEPARABLE UNITAL LOCALLY ASH ALGEBRAS 10

and hence dimR(kerP ) ≤ dimR(kerP ∩Qm). This forces kerP = Qm ∩ kerP .

Again by the rationality of P , there is a vector η ∈ Qm such that

Pη = Pξ,

and hence

P−1({Pξ}) = P−1({Pη}) = η + kerP = η + Qm ∩ kerP = η + Qm ∩ kerP .

It is clear that

ξ ∈ η + Qm ∩ kerP .

On noting that any entry of ξ is strictly positive, and all vectors in η + Qm ∩ kerP are rational,

for any ε > 0, it follows that there is ζ ∈ η + Qm ∩ kerP such that

‖ζ − ξ‖∞ < ε

and each entry of ζ is positive. �

Lemma 3.2. Let A be a unital subhomogeneous C*-algebra such that Primd(A) has finitely

many connected components for each d. Let (F , ε) be given. Then, for any compatible pair (κ, γ)

satisfying, where κ : K0(A) → Q = K0(Q) and γ : Aff(T(A)) → R = Aff(T(A)), there is a

homomorphism φ : A→ Q such that

(1) [φ]0 = κ, and

(2) |γ(f̃)(tr)− tr(φ(f))| < ε, f ∈ F ,
where tr is the canonical trace of Q. Moreover, φ can be chosen to have finite dimensional range.

Proof. Without loss of generality, one may assume that F is inside the unit ball. Since Q has

unique trace, it is enough to show that for any κ : K0(A)→ Q and τ ∈ T(A) with

τ(p) = κ(p), p ∈ K0(A),

there is a homomorphism φ : A→ Q such that [φ]0 = κ and

|τ(f)− tr(φ(f))| < ε, f ∈ F .

By Corollary 2.5, there is a probability measure µi on each Xi, and αi ∈ [0, 1] with

m∑
i=1

αi = 1

such that

τ(a) =
m∑
i=1

αi

∫
Xi

tri(Πi(a))dµi, a ∈ A,

where tri is the canonical trace of Mki(C).
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Note that for each projection p ∈ A⊗K, one has

τ(p) =
m∑
i=1

αi

∫
Xi

rank(Πi(p))

di
dµi

=
m∑
i=1

αi
rank(Πi(p))

di
.(3.1)

Since K0(A) is finitely generated, there are p1, p2, ..., pr ∈ K0(A) which generate K0(A). Con-

sider the matrix

P =


rank(Π1(p1)) rank(Π2(p1)) · · · rank(Πm(p1))

rank(Π1(p2)) rank(Π2(p2)) · · · rank(Πm(p2))
...

...
...

...

rank(Π1(pr)) rank(Π2(pr)) · · · rank(Πm(pr))

d1 d2 · · · dm

 ,

and the vector

ξ = (
α1

d1

,
α2

d2

, ...,
αm
dm

)T.

By (3.1), one has

Pξ = (τ(p1), τ(p2), ..., τ(pr), 1)T = (κ(p1), κ(p2), ..., κ(pr), 1)T ∈ Qr+1.

Then, by Lemma 3.1, there is a positive rational vector ξ ∈ Qm such that

(3.2) Pξ = Pζ and ‖ξ − η‖∞ < ε/2l(k1 + · · ·+ kl).

Write

ζ = (
β1

d1

,
β2

d2

, ...,
βm
dm

)T.

By (3.2), one has that

(3.3) |αi − βi| < ε/2m, 1 ≤ i ≤ m.

Since Pξ = Pζ, one has

m∑
i=1

βi
rank(πx(pj))

di
=

m∑
i=1

αi
rank(πx(pj))

di
, j = 1, ..., r.

Since p1, p2, ..., pl generate K0(A), one has

(3.4)
m∑
i=1

βi
rank(πx(p))

di
=

m∑
i=1

αi
rank(πx(p))

di
, p ∈ K0(A).

It also follows from Pξ = Pζ that β1 + · · ·+ βm = 1.

Consider τ ′ ∈ T(A) defined by

τ ′(a) =
m∑
i=1

βi

∫
Xi

tri(Πi(a))dµi, a ∈ A.
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Then, by (3.4) and (3.3), one has

τ ′(p) = τ(p), p ∈ K0(A),

and

|τ(f)− τ ′(f)| < ε/2, f ∈ F .
Consider each probability measure µi, and choose a discrete measure µ̃i such that∣∣∣∣∫

Xi

tri(Πi(f))dµi −
∫
Xi

tri(Πi(f))dµ̃i

∣∣∣∣ < ε/2, f ∈ F .

Write

µ̃i =
1

li

li∑
k=1

δxik ,

for some xik ∈ Xi, where δxik is the Dirac measure concentrated at xik. Without loss of generality,

one may assume that all li are the same and equal to l for some l.

Define

τ̃(a) =
m∑
i=1

βi

∫
Xi

tri(Πi(a))dµ̃i, a ∈ A.

One then has

τ̃(p) = τ(p), p ∈ K0(A),

and

|τ(f)− τ̃(f)| < ε, f ∈ F .
Write βi = qi/q for natural numbers qi ≤ q. Since

∑
βi = 1, one has that∑

qi = q.

Define a unital homomorphism by

φ : A 3 a 7→
m⊕
i=1

l⊕
k=1

(πxik(a)⊕ · · · ⊕ πxik(a)︸ ︷︷ ︸
d1···di−1di+1···dmqi

) ∈ MN(C),

where N = d1 · · · dmlq. Then

tr(φ(a)) =

∑m
i=1

∑l
k=1(d1 · · · di−1di+1 · · · dmqi)Tr(πxik(a))

d1 · · · dnql

=
m∑
i=1

d1 · · · di−1di+1 · · · dmdi
d1 · · · dnq

qi
1

l

l∑
k=1

tri(πxik(a))

=
m∑
i=1

qi
q

(
1

l

l∑
k=1

tri(πxik(a))) = τ̃(a).

Let ι : MN(C)→ Q be an unital embedding. Then the homomorphism ι◦φ satisfies the condition

of the lemma. �
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Lemma 3.3. Let A be a NCCC. For any finite set F ⊆ A and any ε > 0, there is a finite set

H ⊆ A+ such that for any σ > 0, there is δ > 0 such that if τ ∈ T(A) satisfies

τ(h) > σ, h ∈ H,

there exists τ ′ ∈ T(A) such that

(1) τ ′(p) = τ(p), p ∈ K0(A),

(2) |τ ′(f)− τ(f)| < ε, f ∈ F , and

(3) αi(τ
′) > δ, all i.

Moreover, one may require that δ depends only on σ.

Proof. If A = Mn1(C)⊕ · · · ⊕Mnk(C). Then H = {1Mni (C) : 1 ≤ i ≤ k} satisfies the lemma with

δ = σ for any given σ (in fact, one has that τ ′ = τ in this case).

Let

A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)),

where B is NCCC, and assume that the lemma holds for B.

Let F ⊆ A, ε > 0 be given. For each f ∈ A, write f = (fB, fD) for fB ∈ B and fD ∈
Mk(C(Dn)). Since B is assumed to satisfy the lemma, there is HB such that for any σ, there is

δB(σ) > 0 such that if τB ∈ T(B) satisfies

τB(h) > σ, h ∈ HB,

there is τ ′B ∈ T(A) such that

τ ′B(p) = τB(p), p ∈ K0(B),

|τ ′B(fB)− τB(fB)| < ε/2, f ∈ F ,
and

αi(τ
′
B) > δB(σ), all i.

Choose γ > 0 such that

‖fD(x)− fD(y)‖ < ε/2, f ∈ F ,
if dist(x, y) < γ.

Define

gγ : [0, 1] 3 x 7→


1, x ∈ [1− γ/2, 1],

linear, x ∈ [1− γ, 1− γ/2],

0, x ∈ [0, 1− γ/2];

similarly, define gγ/2 and g2γ.

For each h ∈ HB define hD ∈ Mk(C(Dn)) by

hD(x) =


0, ‖x‖ ∈ [0, 1− γ/2],
4‖x‖+2γ−4

γ
ϕ(h)( x

‖x‖), ‖x‖ ∈ [1− γ/2, 1− γ/4],

ϕ(h)( x
‖x‖), ‖x‖ ∈ [1− γ/4, 1],

where ϕ : B → Mk(C(Sn−1)) is the gluing map.

For each h ∈ HB, define

h̃ = (h, hD) ∈ A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)).



THE CLASSIFICATION OF SIMPLE SEPARABLE UNITAL LOCALLY ASH ALGEBRAS 14

Also define g̃2γ = (0, g2γ1Mk(C)), g̃γ/2 = (0, gγ/21Mk(C)) ∈ A.

Then

H = {h̃, g̃2γ, 1− g̃γ/2 : h ∈ HB}
satisfies the condition of the lemma.

Indeed, for any σ > 0, set

δ = σδB(σ).

Let τ ∈ T(A) be such that

τ(h) > σ, h ∈ H.
Without loss of generality, one may assume that

τ((f, g)) = ατB(f) + β

∫
Dn\Sn−1

gdµ,

where µ is a discrete probability measure of Dn \ Sn−1. Since τ(g̃γ) > σ, one has

β > σ.

Write µ =
∑

i βiδxi . For each xi with ‖xi‖ ≥ γ
2
, define τB,xi ∈ T(B) by

τB,xi(f) =
1

k
Tr(ϕ(f)(

xi
‖xi‖

)).

Then define the trace

τ̃((f, g)) = ατB(f) + β(
∑
‖xi‖≥ γ2

βiτB,xi(f)) + β(
∑
‖xi‖< γ

2

βi)

∫
(Dn)◦

gd(
1∑

‖xi‖< γ
2
βi

∑
‖xi‖< γ

2

βiδxi)

= α′τ̃B(f) + β′
∫

(Dn)◦
gdµ′,

where

τ̃B(f) =
ατB(f) + β(

∑
‖xi‖≥ γ2

βiτB,xi(f))

α +
∑
‖xi‖≥ γ2

ββi
, α′ = α +

∑
‖xi‖≥ γ2

ββi,

and

µ′ =
1∑

‖xi‖< γ
2
βi

∑
‖xi‖< γ

2

βiδxi , β′ = β(
∑
‖xi‖< γ

2

βi).

Note that

(3.5) τ(p) = τ̃(p), p ∈ K0(A).

By the choice of γ, one has

(3.6) |τ̃(f)− τ(f)| < ε/2, f ∈ F .

Noting that

τ̃(g̃2γ) = τ(g̃2γ) and τ̃(1− g̃γ/2) ≥ τ(1− g̃γ/2),

one has

τ̃(g̃2γ) > σ and τ̃(1− g̃γ/2) > σ.
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A straightforward calculation shows that

β′ ≥ τ̃(g̃2γ) and α′ = τ̃(1− g̃γ/2),

and therefore

(3.7) β′ > σ and α′ > σ.

Also noting that for any h ∈ HB, one has

τ̃(h̃) ≥ τ(h̃) > σ,

and

τ̃(h̃) = α′τ̃B(h).

Therefore,

τ̃B(h) > σ/α′ > σ, h ∈ HB.

By the inductive assumption, there is τ ′B ∈ T(B) such that

(3.8) τ ′B(p) = τB(p), p ∈ K0(B),

(3.9) |τ ′B(fB)− τ̃B(fB)| < ε/2, f ∈ F ,

and

(3.10) αi(τ
′
B) > δB(σ), all i.

Then the trace

τ ′(f, g) = α′τ ′B(f) + β′
∫

(Dn)◦
gdµ′

satisfies the condition of the lemma. By (3.5) and (3.8), one has

τ ′(p) = τ(p), p ∈ K0(A),

Indeed, by (3.6) and (3.9), one has

(3.11) |τ ′(f)− τ(f)| < ε, f ∈ F .

By (3.7) and (3.10), one has

αi(τ
′) > σδB(σ), all i,

as desired. �

Lemma 3.4. Let P be a m × n matrix. Assume that m ≥ n and rank(P ) = n. Let σ > 0 be

given. Then, for any ε > 0, there is δ > 0 such that for any vectors ξ ∈ Rm and κ ∈ Rn with

(1) ξi > σ, i = 1, ...,m, and

(2) ‖κ− Pξ‖∞ < δ,

there is ζ ∈ Rm with ζi ≥ 0, i = 1, ...,m such that

(3) Pζ = κ, and

(4) ‖ξ − ζ‖∞ < ε.
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Proof. Regard P as a linear map from Rm → Rn. Since rank(P ) = n, one has that P is surjective.

Therefore, for the given ε < σ, there is δ > 0 such that

(3.12) B‖·‖∞(0, δ) ⊆ P (B‖·‖∞(0, ε)).

Then the δ satisfies the condition of the lemma. Indeed, let ξ ∈ Rm and κ ∈ Rn be given, and

satisfy

‖κ− Pξ‖∞ < δ.

Then

κ− P (ξ) ∈ B‖·‖∞(0, δ) ⊆ Rn.

By (3.12), there is θ ∈ B‖·‖∞(0, ε) ⊆ Rm such that

P (θ) = κ− P (ξ),

and hence

P (ξ + θ) = κ.

Since each entries of ξ is at least σ > ε, one has that

ξ + θ ∈ (R+)m,

and therefore

ζ = ξ + θ

is the desired vector. �

Remark 3.5. Let A be an NCCC, and let κ : K0(A) → Q be a positive map. Since A is of type

I, it is exact; therefore, κ (regarded as a state of K0(A)) is induced by a trace. That is, there is

τ ∈ T(A) such that

κ(p) = τ(p), p ∈ K0(A).

In particular, this implies that κ factors through ρA(K0(A)).

Lemma 3.6. Let A be an NCCC. Let (F , ε) be given. Let p1, p2, ..., pn ∈ K0(A) be such that

{p1, ..., pn} is a set of generators for ρA(K0(A)) (as an abelian group) (still use the same notation

for the image of pi). Then, there is a finite set H ⊆ A+ such that for any σ > 0, there is δ > 0

such that if κ : K0(A)→ Q and τ ∈ T(A) satisfy

(1) τ(h) > σ, h ∈ H, and

(2) |τ(pi)− κ(pi)| < δ, i = 1, ..., n,

then there is τ ′ ∈ T(A) such that

(3) |τ ′(f)− τ(f)| < ε, f ∈ F , and

(4) τ ′(pi) = κ(pi), i = 1, ..., n.

Proof. Without loss of generality, one may assume that F is contained in the unit ball of A. One

may also assume that p1, p1, ..., pn ∈ ρA(K0(A)) are Q-independent.

Let H ⊆ A+ be the subset of Lemma 3.3 with respect to A, F , and ε/2. Then H satisfies the

lemma.
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In fact, for any σ > 0, let δ′ be the constant of Lemma 3.3 with respect to σ. Consider the

m× n matrix

P =


rank(Π1(p1))

d1

rank(Π2(p1))
d2

· · · rank(Πm(p1))
dm

rank(Π1(p2))
d1

rank(Π2(p2))
d2

· · · rank(Πm(p2))
dm

...
...

...
...

rank(Π1(pn))
d1

rank(Π2(pn))
d2

· · · rank(Πm(pn))
dm

 .

Since p1, p1, ..., pn ∈ ρA(K0(A)) are Q-independent, the matrix P has rank n and it satisfies the

assumptions of Lemma 3.4. Applying Lemma 3.4 to δ′ (in the place of σ) and ε/2m, one obtains

δ.

Let (κ, τ) be a pair satisfies

|τ(pi)− κ(pi)| < δ, i = 1, ..., n,

and

(3.13) τ(h) > σ, h ∈ H.

By (3.13) and Lemma 3.3, there is τ ′ ∈ T(A) such that

(3.14) τ ′(pi) = τ(pi), i = 1, ..., n,

|τ ′(f)− τ(f)| < ε/2, f ∈ F ,
and

αi(τ
′) > δ′, ∀i.

Set

ξ = (α1(τ ′), α2(τ ′), ..., αm(τ ′))T and κ = (κ(p1), κ(p2), ..., κ(pn))T,

and then one has

‖Pξ − κ‖∞ = max{τ ′(pi)− κ(pi) : i = 1, ..., n}
= max{τ(pi)− κ(pi) : i = 1, ..., n} (by (3.14))

< δ

By Lemma 3.4, there is a positive vector ζ = (β1, ..., βm) such that

(3.15) Pζ = (κ(p1), κ(p2), ..., κ(pn))T

and

|αi − βi| < ε/2m, ∀i.
Consider the trace

τ ′′ =
∑

βiµi.

It is clear that

|τ ′′(f)− τ(f)| < ε, f ∈ F .
By (3.15), one has

τ ′′(p) = κ(p), p ∈ K0(A).

Moreover, the trace τ ′′ is indeed a state since τ ′′(1A) = κ([1A]) = 1, as desired. �
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Theorem 3.7. Let A be a unital NCCC, and let σ > 0. Let (F , ε) be given. Let p1, p2, ..., pn ∈
K0(A) be such that the set {p1, ..., pn} generates the group ρA(K0(A)) (let us still use the same

notation for the image of pi). Then, there is a finite set H ⊆ A+ such that for any σ > 0, there

is δ > 0 such that if κ : K0(A)→ Q and τ ∈ T(A) satisfy

(1) |τ(pi)− κ[pi]| < δ, i = 1, ..., n, and

(2) τ(h) > σ, h ∈ H,
then there is a homomorphism φ : A→ Q such that

(3) [φ]0 = κ, and

(4) |τ(f)− tr(φ(f))| < ε, f ∈ F ,
where tr is the canonical trace of Q. Moreover, φ can be chosen to have finite dimensional range.

Proof. Let H ⊆ A+ denote the finite set of Lemma 3.6 with respect to the data A, F , ε/2. Then

H satisfies the theorem.

Indeed, given σ > 0, consider the constant δ of Lemma 3.6 with respect to σ. Let (κ, τ) be a

pair as above—δ-compatible on pi, i = 1, ..., n, and such that

τ(h) > σ, h ∈ H.

By Lemma 3.6, there is τ ′ ∈ T(A) such that the pair (κ, τ ′) is exactly compatible on the pi and

|τ ′(f)− τ(f)| < ε/2, f ∈ F .

Then, by Lemma 3.2, there is a homomorphism φ : A→ Q such that

[φ]0 = κ

and

|tr(φ(f))− τ ′(f)| < ε/2, f ∈ F ,

and therefore satisfying the condition of the theorem. �

4. A decomposition theorem and a uniqueness theorem

Recall (see, for instance, [10])

Lemma 4.1 (The Marriage Lemma). Let A and B be two finite subsets of a metric space.

Suppose that for any set X ⊆ A, one has

#{y ∈ B : dist(y,X) < ε} ≥ #X,

then there is a set B′ ⊆ B and a one-to-one pairing between A and B′ such that the distance

between the points in each pair is at most ε.

The following statement is a generalization of the Marriage Lemma due to Gong in a unpub-

lished manuscript:
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Lemma 4.2. Let A,B be two finite subsets of a metric space with subsets A1 ⊂ A and B1 ⊂ B.

Suppose that for each X ⊂ A1, one has

#{y ∈ B : dist(y,X) < ε} ≥ #X

and for each Y ⊂ B1, one has

#{x ∈ A : dist(x, Y ) < ε} ≥ #Y.

Then there are sets A2 ⊆ A and B2 ⊆ B such that

A1 ⊆ A2 and B1 ⊆ B2,

and the elements of A2 and B2 can be (bijectively) paired to within ε.

Proof. The proof is similar to that of [10]. We spell out the details for reader’s convenience. In

the case #(B1) = 0, i.e., B1 is empty, then this is the case of the classical Marriage Lemma

(Lemma 4.1) in the case of A1 and B. (For this case, X0 can be chosen to be A1.)

We define partial order for (m,n) ∈ Z+ × Z+ (where Z+ = {0, 1, 2, ...} is the set of positive

integers) by (m,n) ≤ (m1, n1) if m ≤ m1 and n ≤ n1. We denote (m,n) < (m1, n1) if (m,n) ≤
(m1, n1) and (m,n) 6= (m1, n1). We will prove the lemma by induction on #(A1) and #(B1).

That is, we assume that if the result is true for the case
(
#(A1),#(B1)

)
< (m,n) and prove the

lemma to be true for the case

#(A1) = m and #(B1) = n.

The rest of the proof divides into two cases.

Case 1. For any nonempty set X ⊆ A1,

#{y ∈ B; dist(y,X) < ε} ≥ #(X) + 1

and for any nonempty set Y ⊆ B1,

#{x ∈ A; dist(x, Y ) < ε} ≥ #(Y ) + 1.

Choose any a ∈ A1, there is a b ∈ B such that dist(a, b) < ε. We will pair a ∈ A1 with b ∈ B.

Then let Ã = A\{a} with Ã1 = A1\{a}, and B̃ = B\{b} with B̃1 = B1 if b 6∈ B1 or B̃1 = B1\{b}
if b ∈ B1. It is easy to verify that Ã ⊇ Ã1 and B̃ ⊇ B̃1 satisfy the condition of the lemma with(
#(Ã1),#(B̃1)

)
= either (m− 1, n) or (m− 1, n− 1). That is,

(
#(A1),#(B1)

)
< (m,n). By the

induction assumption, there is a subset Ã2 ⊇ Ã1 and B̃2 ⊇ B̃1 such that X̃0 can be paired one

by one within ε. Then the sets A2 = Ã2 ∪ {a} and B2 = B̃2 ∪ {b} satisfy the lemma.

Case 2. The conditions of Case 1 do not hold. Then either there is X ⊆ A1 or Y ⊆ B1 does

not satisfy the condition in Case 1. That is, either there is X ⊆ A1 such that

#{y ∈ B; dist(y,X) < ε} = #(X),

or there is Y ⊆ B1 such that

#{x ∈ A; dist(x, Y ) < ε} = #(Y ).

Without loss of generality, let us assume there is Y1 ⊆ B1 such that

#{x ∈ A; dist(x, Y1) < ε} = #(Y1).
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Let X1 = {x ∈ A; dist(x, Y1) < ε}. Then for any subset Z ⊆ Y1, {x ∈ A; dist(x, Z) < ε} ⊆ X1

and therefore {x ∈ A; dist(x, Z) < ε} = {x ∈ X1; dist(x, Z) < ε} which has at least #(Z)

elements. That is, Y1 and X1 satisfy the condition for the classical Pairing Lemma with Y1 =

A, X1 = B as in 2.10. Hence Y1 and X1 can be paired one by one to within ε.

Let B̃ = B \Y1 with subset B̃1 = B1 \Y1, and let Ã = A\X1 with subset Ã1 = A1 \ (X1∩A1).

Let us verify that B̃ ⊇ B̃1 and Ã ⊇ Ã1 satisfy the condition of the lemma. Let Y ⊆ B̃1. Then

{x ∈ A; dist(x, Y ∪ Y1) < ε} = {x ∈ Ã1; dist(x, Y ) < ε} ∪X1.

Since #(X1) = #(Y1) and {x ∈ A; dist(x, Y ∪ Y1) < ε} ≥ #(Y ) + #(Y1) = #(Y ) + #(X1), we

have, {x ∈ Ã1; dist(x, Y ) < ε} ≥ #(Y ).

Let X ⊂ Ã1. Since for point y ∈ Y1, dist(y,X) ≥ ε, we have

#{y ∈ B̃; dist(y,X) < ε} = #{y ∈ B; dist(y,X) < ε} ≥ #(X).

So the conditions of our lemma hold for Ã ⊇ Ã1 and B̃ ⊇ B̃1 with

#(B̃1) = #(B1)−#(Y1) < n and #(Ã1) ≤ #(A1) ≤ m.

So by the inductive assumption, there exist Ã2 ⊇ Ã1 and B̃2 ⊇ B̃1 such that Ã2 and B̃2 can be

paired element by element to within ε. Then the sets A2 = Ã2 ∪ X1 and B2 = B̃2 ∪ Y1 satisfy

the lemma. �

Definition 4.3 (See 2.2 of [9]). Let A be a unital C*-algebra with T(A) 6= Ø. Recall that each

self-adjoint a ∈ A induces â ∈ Aff(T(A)) by â(τ) = τ(a), τ ∈ T(A). Denote this map by ρA.

Denote by A+
1 the set of positive elements with norm at most 1, and then denote by A+

1,q the

image of A+
1 in Aff(T(A)) under the canonical map ρA.

As a consequence of this generalized version of the Marriage Lemma, one has

Lemma 4.4. Let A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)) be an NCCC with n ≥ 1. Let ∆ : A+
1,q \ {0} →

(0, 1) be an order preserving map. Let F ⊆ A be a finite set, and let ε > 0, 1 > γ > 0, and

M ∈ N. There are finite sets H1,H2 ⊆ A+ and δ > 0 such that for any unital homomorphisms

φ, ψ : A→ Mm(C) such that

(1) τ(φ(h)), τ(ψ(h)) > ∆(ĥ), h ∈ H1, and

(2) |τ(φ(h))− τ(ψ(h))| < δ, h ∈ H2,

there are unital homomorphisms φ′, ψ′ : A→ Mm(C) such that

(3) ‖φ′(f)− φ(f)‖ < ε, ‖ψ′(f)− ψ(f)‖ < ε, f ∈ F ,
(4) SP(φ′)∩B(1−γ) = SP(ψ′)∩B(1−γ), and each point in SP(φ′)∩B(1−γ) has multiplicity

at least M ,

where B(1− γ) ⊆ Dn is the closed ball with radius 1− γ.

Proof. Let (F , ε) be given. For each f ∈ F , write f = (fB, fD) where fB ∈ B and fD ∈
Mk(C(Dn)). Set

FB = {fB : f ∈ F} and FD = {fD : f ∈ F}.
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Choose η > 0 such that for any x, y ∈ Dn with dist(x, y) < 4η, one has

(4.1) ‖fD(x)− fD(y)‖ < ε, f ∈ F .

Without loss of generality, one may assume that 5η < γ.

Fix an η-dense finite subset {x1, x2, ..., xl} ⊆ B(1− γ). For each subset

{y1, y2, ..., yt} ⊆ {x1, x2, ..., xl},

define

h{y1,...,yt} = max{1− 1

η
dist(x, {y1, ..., yt}η), 0},

where Yη denotes the η-neighborhood of Y if Y is a subset of a metric space. Using

{y1, y2, ..., yt}2η 6= {y1, y2, ..., yt}3η,

choose a positive function g{y1,...,yt} ∈ C(Dn) such that 0 < g{y1,...,yt} ≤ 1 and

supp(g{y1,...,yt}) ⊆ {y1, ..., yt}3η \ {y1, ..., yt}2η.

For functions hy1,...,yt and gy1,...,yt , regard them as the elements

(0, hy1,...,yt1Mk(C(Dn))), (0, gy1,...,yt1Mk(C(Dn))) ∈ A = B ⊕Mk(C(Sn−1)) Mk(C(Dn)),

and still denote them by hy1,...,yt and gy1,...,yt , respectively.

Put

H̃1 = {g{y1,...,yt} : {y1, ..., yt} ⊆ {x1, x2, ..., xl}},
H2 = {h{y1,...,yt} : {y1, ..., yt} ⊆ {x1, x2, ..., xl}},

and

(4.2) δ = min{∆(ĝ{y1,...,yt}) : {y1, ..., yt} ⊆ {x1, ..., xl}}}.

Also pick a finite open cover U of B(1− γ) such that each U ∈ U has diameter at most η,⋃
U∈U

U ⊆ B(1− γ/2) and U \
⋃
V 6=U

V 6= Ø.

Then choose continuous functions sU,1, ..., sU,M ∈ C(Dn) such that

supp(sU,i) ⊆
⋃
V 6=U

V and supp(sU,i) ∩ supp(sU,j) = Ø, i 6= j.

Regard each sU,i as an element of A, and put

S = {sU,i : U ∈ U , i = 1, ...,M}.

Then H1 := H̃1 ∪ S, H2 and δ have the property stated in the conclusion of the lemma.

Indeed, let φ, ψ : A→ Mm(C) be unital homomorphisms satisfying

(4.3) τ(φ(h)), τ(ψ(h)) > ∆(ĥ), h ∈ H1,

and

(4.4) |τ(φ(h))− τ(ψ(h))| < δ, h ∈ H2.
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Let Y ⊆ SP(φ) ∩ B(1− γ) be an arbitrary subset. Let

{y1, y2, ..., yt} ⊆ {x1, x2, ..., xl}

denote the subset of the points y satisfying dist(y, Y ) < η. Then

#Y ≤ m · tr(φ(h{y1,...,yt}))

≤ m · tr(ψ(h{y1,...,yt})) +m · δ (by (4.4))

≤ m · tr(ψ(h{y1,...,yt})) +m ·∆(ĝy1,...,yt) (by (4.2))

≤ #(SP(ψ) ∩ {y1, ..., yt}2η) +m ·∆(ĝy1,...,yt)

≤ #(SP(ψ) ∩ {y1, ..., yt}3η) (by (4.3))

≤ #(SP(ψ) ∩ Y4η).

The same argument shows that

#X ≤ #(SP(φ) ∩X4η), X ⊆ SP(ψ) ∩ B(1− γ).

Then, applying Lemma 4.2 with

A = SP(φ) ∩B(1− η), A1 = SP(φ) ∩B(1− γ)

and

B = SP(ψ) ∩B(1− η), B1 = SP(ψ) ∩B(1− γ),

one obtains A2 and B2 such that

(4.5) SP(φ) ∩B(1− γ) ⊆ A2 ⊂ SP(φ) ∩B(1− η)

and

(4.6) SP(ψ) ∩B(1− γ) ⊆ B2 ⊂ SP(ψ) ∩B(1− η),

and A2 and B2 can be paired up to 4η.

Write

A2 = {zφ,1, zφ,2, ..., zφ,s} and B2 = {zψ,1, zψ,2, ..., zψ,s}
for some s, where

(4.7) dist(zφ,i, zψ,i) < 4η, i = 1, ..., s.

Then, up to unitary equivalence, there are decompositions

φ = φ̃⊕
s⊕
i=1

πzφ,i and ψ = ψ̃ ⊕
s⊕
i=1

πzψ,i ,

where SPφ̃ ∩ B(1− γ) = SPψ̃ ∩ B(1− γ) = Ø, and the homomorphisms

φ′ = φ = φ̃⊕
s⊕
i=1

πzφ,i and ψ′ = ψ̃ ⊕
s⊕
i=1

πzφ,i

have the required properties except the requirement on multiplicity.

Indeed, by (4.7) and (4.1), one has

‖φ(f)− φ′(f)‖ = 0 < ε and ‖ψ(f)− ψ′(f)‖ < ε, f ∈ F .
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By (4.5) and (4.6), one has that

SP(φ′) ∩ B(1− γ) = {zφ,1, ..., zφ,s} ∩ B(1− γ) = SP(ψ′) ∩ B(1− γ).

To satisfy the multiplicity condition, one needs to perturb φ′ and ψ′ further. Since

φ(sU,i) > ∆(ŝU,i) > 0, U ∈ U , i = 1, ...,M,

one has that for any U ∈ U , at least M of {zφ1 , ..., zφs} are inside U \
⋃
V 6=U V (counting

multiplicity). Then there is a grouping of grouping {zφ1 , ..., zφs} such that each group is insider

at most one open set U and has elements at least M if it is covered by an open set U . Therefore,

after a perturbation, one may assume that each point in {zφ1 , ..., zφs}∩B(1− γ) has multiplicity

at least M , and hence φ′ and ψ′ satisfy the desired multiplicity condition. �

Theorem 4.5. Let A = B⊕Mk(C(Sn−1))Mk(C(Dn)) be an NCCC, and let ∆ : A+
1,q\{0} → (0, 1) be

an order preserving map. Let F ⊆ A be a finite set. Let ε > 0, η > 0 and K ∈ N\{0}. There are

finite sets H1,H2 ⊆ A+ and δ > 0 such that for any unital homomorphisms φ, ψ : A → Mm(C)

such that

(1) τ(φ(h)), τ(φ(h)) > ∆(ĥ), h ∈ H1, and

(2) |τ(φ(h))− τ(ψ(h))| < δ, h ∈ H2,

there exist unital homomorphisms φ̃, ψ̃ : A→ Mm(C) such that

(3)
∥∥∥φ̃(f)− φ(f)

∥∥∥ < ε,
∥∥∥ψ̃(f)− ψ(f)

∥∥∥ < ε, f ∈ F ,
(4) φ̃ and ψ̃ have decompositions

φ̃ = φ̃0 ⊕ φ̃1 ⊕ · · · ⊕ φ̃1︸ ︷︷ ︸
K

and ψ̃ = ψ̃0 ⊕ ψ̃1 ⊕ · · · ⊕ ψ̃1︸ ︷︷ ︸
K

such that φ̃1 and ψ̃1 are unitarily equivalent, and

tr(φ̃0(a)) ≤ η · tr(φ̃(a)) and tr(ψ̃0(a)) ≤ η · tr(ψ̃(a)), a ∈ F .

Proof. The statement holds if A is finite dimensional. Assume that the statement holds for B,

and let us show that the statement holds for A.

Let (F , ε) be given. For each f ∈ F , write f = (fB, fD) where fB ∈ B and fD ∈ Mk(C(Dn)).

Set

FB = {fB : f ∈ F} and FD = {fD : f ∈ F}.
For each r > 0, define

gr : [0, 1] 3 x 7→


1, x ∈ [0, 1− r],
linear, x ∈ [1− r, 1− r/2],

0, x ∈ [1− r/2, 1];

Also define g̃r = (0, gr(‖x‖)1Mk(C(Dn))) ∈ A.

Pick γ > 0 such that

(4.8) ‖fD(x)− fD(y)‖ < ε/8, f ∈ F , dist(x, y) < γ,

and consider gγ.
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Consider the linear map

χγ : Mk(C(Sn−1)) 3 f 7→ (x 7→ (1− gγ(‖x‖)) · f(
x

‖x‖
)) ∈ Mk(C(Dn))

Clearly, χγ is a positive linear map, and then the map

Γγ : B 3 f 7→ (f, χγ(ϕ(f))) ∈ A

is positive and injective, where ϕ : B → Mk(C(Sn−1)) is the gluing map.

If f ∈ B satisfies that τ(f) = 0, τ ∈ T(B), then τ(χ(f)) = 0, τ ∈ T(Mk(C(Dn))), and

therefore

τ(Γγ(f)) = 0, τ ∈ T(A).

Hence the map

∆B : B1
q 3 f 7→ ∆(Γγ(f)) ∈ (0, 1)

is well defined and is order preserving.

Applying the inductive hypothesis to B with ∆B, FB, ε/2, K and η, one obtains HB,1, HB,2,

and δB.

Define

H̃B,1 = {Γγ(h) : h ∈ HB,1} and H̃B,2 = {Γγ(h) : h ∈ HB,2}.
Put

σB = min{∆(ĥ) : h ∈ H̃B,1}.
Let γ̃ be a positive number such that

(4.9) ‖χγ(h)(x)− χγ(h)(y)‖ < min{
∆( ̂1− g̃γ/2)δB

4
,
σB
4
,
ε

8
}, h ∈ HB,1 ∪HB,2 ∪ FD

for any x, y ∈ Dn satisfying dist(x, y) < γ̃.

Let HD,1 ⊆ A, HD,2 ⊆ A and δD denote the finite sets and constant of Lemma 4.4 with respect

to F ∪ H̃B,1 ∪ H̃B,2 (in the place of F), min{ε/8,∆( ̂1− g̃γ/2)δB/8, σB/8} (in the place of ε), γ̃,

M = b2K/ηc+ 1, and ∆.

Then

H1 = H̃B,1 ∪HD,1 ∪ {1− g̃γ/2, g̃γ}, H2 = H̃B,2 ∪HD,2,

and

δ = min{∆( ̂1− g̃γ/2)δB/4, σB/4, δD}
satisfy the statement.

In fact, let φ, ψ : A→ Mm(C) be unital homomorphisms satisfying

(4.10) τ(φ(h)), τ(φ(h)) > ∆(ĥ), h ∈ H1

and

(4.11) |τ(φ(h))− τ(ψ(h))| < δ, h ∈ H2.

Since δ ≤ δD, by Lemma 4.4, there are homomorphisms

φ′, ψ′ : A→ Mm(C)
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such that

(4.12) ‖φ′(f)− φ(f)‖ < min{ε/8,∆( ̂1− gγ/2)δB/8, σB/8}, f ∈ F ∪ H̃B,1 ∪ H̃B,2,

(4.13) ‖ψ′(f)− ψ(f)‖ < min{ε/8,∆( ̂1− gγ/2)δB/8, σB/8}, f ∈ F ∪ H̃B,1 ∪ H̃B,2,

and

Sp(φ′) ∩ B(1− γ̃) = Sp(ψ′) ∩ B(1− γ̃) = {x1, x2, ..., xl},
for some x1, x2, ..., xl ∈ B(1 − γ̃) with multiplicity at least M . Therefore, up to unitary equiva-

lence, there are decompositions

(4.14) φ′ = φ′B ⊕ (

mφ⊕
i=1

πxφ,i)⊕ (
l⊕

i=1

πxi),

(4.15) ψ′ = ψ′B ⊕ (

mψ⊕
i=1

πxψ,i)⊕ (
l⊕

i=1

πxi).

for some mφ,mψ ∈ N and some xφ,1, ..., xφ,mφ , xψ,1, ..., xψ,mψ ∈ Dn with 1 > ‖xφ,i‖ ≥ γ̃ and

1 > ‖xψ,j‖ ≥ γ̃.

By (4.10), (4.12) and (4.13), one has

(4.16) tr(φ′(h)), tr(ψ′(h)) >
7

8
∆(ĥ), h ∈ HB,1.

It also follows from (4.11) (4.12) and (4.13) that for any h ∈ H̃B,1 ∪ H̃B,2,

|tr(φ′(h))− tr(ψ′(h))| < |tr(φ′(h))− tr(ψ′(h))|+ ∆( ̂1− g̃γ/2)δB/4(4.17)

< δ + ∆( ̂1− g̃γ/2)δB/4 ≤ ∆( ̂1− g̃γ/2)δB/2.

Therefore, by the decompositions (4.14) and (4.15), one has

(4.18)

∣∣∣∣∣tr(φ′B(h)⊕ (

mφ⊕
i=1

h(xφ,i)))− tr(ψ′B(h)⊕ (

mψ⊕
i=1

h(xψ,i)))

∣∣∣∣∣ < ∆( ̂1− g̃γ/2)δB/2

For each point xφ,i (or xψ,j), replace the homomorphism πxφ,i (or πxψ,i) by the homomorphism

πx′φ,i (or πx′ψ,i), where x′φ,i = xφ,i/ ‖xφ,i‖ ∈ Sn−1 (or x′ψ,i = xψ,i/ ‖xψ,i‖ ∈ Sn−1). By the choice of

γ̃ (see (4.9)), one has

(4.19)

∥∥∥∥∥
mφ⊕
i=1

πx′φ,i(h)−
mφ⊕
i=1

πxφ,i(h)

∥∥∥∥∥ < min{
∆( ̂1− g̃γ/2)δB

4
,
σB
4
,
ε

8
}, h ∈ H̃B1,1 ∪ H̃B1,2 ∪ FD,

and

(4.20)

∥∥∥∥∥
mψ⊕
i=1

πx′ψ,i(h)−
mψ⊕
i=1

πxψ,i(h)

∥∥∥∥∥ < min{
∆( ̂1− g̃γ/2)δB

4
,
σB
4
,
ε

8
}, h ∈ H̃B1,1 ∪ H̃B1,2 ∪ FD.

Put

φ′′B = φ′B ⊕ (

mφ⊕
i=1

πx′φ,i) and ψ′′B = ψ′B ⊕ (

mψ⊕
i=1

πx′ψ,i).
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Since x′φ,i, x
′
ψ,j ∈ Sn−1, the homomorphisms φ′′B and ψ′′B factor through B. Define

(4.21) φ′′ = φ′′B ⊕ (
l⊕

i=1

πxi) and ψ′′ = ψ′′B ⊕ (
l⊕

i=1

πxi).

By (4.19), (4.20), one has

(4.22) ‖φ′(f)− φ′′(f)‖ < ε/8 and ‖ψ′′(f)− ψ′′′(f)‖ < ε/8, f ∈ F .

By (4.19), (4.20), and (4.16), one has

(4.23) tr(φ′′(h)), tr(ψ′′(h)) >
3

4
∆(ĥ), h ∈ HB,1.

By (4.19), (4.20) and (4.18), one has

(4.24) |tr(φ′′(h))− tr(ψ′′(h))| < 3

4
∆( ̂1− g̃γ/2)δB, h ∈ H̃B,2.

For each point xi with ‖xi‖ > 1 − γ, replace the homomorphism πxi by πx′i , where x′i =

xi/ ‖xi‖ ∈ Sn−1. Clearly, the homomorphism πx′i factors through B. Also note that for each such

xi, one has

(4.25) tr(πx′i(h)) > tr(πxi(h)), h ∈ H̃B,1.

By the choice of γ (see (4.8)), one also has

(4.26)
∥∥πx′i(fD)− πxi(fD)

∥∥ < ε/8, f ∈ F .

Set

φ′′′B = φ′′B ⊕ (
⊕

‖xi‖≥1−γ

πx′i) and ψ′′′B = ψ′′B ⊕ (
⊕

‖x′i‖≥1−γ

πx′i),

and consider

(4.27) φ′′′ = φ′′′B ⊕ (
⊕

‖xi‖<1−γ

πxi) and ψ′′ = ψ′′′B ⊕ (
l⊕

‖xi‖<1−γ

πxi).

By (4.26), one has

(4.28) ‖φ′′(f)− φ′′′(f)‖ < ε/8 and ‖ψ′′(f)− ψ′′′(f)‖ < ε/8, f ∈ F .

By (4.25) and (4.23), one has

(4.29) tr(φ′′′(h)), tr(ψ′′′(h)) >
3

4
∆(ĥ), h ∈ HB,1.

By (4.24), one has

(4.30) |tr(φ′′′(h))− tr(ψ′′′(h))| < 3

4
∆( ̂1− g̃γ/2)δB, h ∈ H̃B,2.

Denote by

N = rank(φ′′′B(1)) = rank(ψ′′′B (1)).

Then, by (4.29),
N

m
≥ tr(φ′′′(1− g̃γ/2)) >

3

4
∆( ̂1− g̃γ/2),
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and
m−N
m

≥ tr(φ′′′(gγ)) > ∆((̂g̃γ)).

Therefore

(4.31)
3

4
∆( ̂1− g̃γ/2) <

N

m
< 1−∆((̂g̃γ)).

Then, by considering the unital homomorphisms φ′′′B , ψ
′′′
B : B → MN(C), it follows from (4.30)

and (4.31) that

(4.32)
1

N
(Tr(φ′′′B(h))− Tr(φ′′′B(h))) =

m

N
(tr(φ′′′(Γγ(h)))− tr(φ′′′(Γγ(h)))) < δB, h ∈ HB,2.

It also follows from (4.29) that

1

N
Tr(φ′′′B(h)) ≥ tr(φ′′′B(h)) = tr(φ′′′(Γγ(h))) > ∆(ĥ), h ∈ HB,1,

and
1

N
Tr(ψ′′′B (h)) ≥ tr(ψ′′′B (h)) = tr(ψ′′′(Γγ(h))) > ∆(ĥ), h ∈ HB,1.

Then, it follows from the inductive hypothesis that there are homomorphisms φ̃B, ψ̃B : B →
MN(C) such that

(4.33)
∥∥∥φ̃B(fB)− φ′′′B(fB)

∥∥∥ < ε/2 and
∥∥∥ψ̃B(fB)− ψ′′′B (fB)

∥∥∥ < ε/2, f ∈ F ,

and there are decompositions

φ̃B = φ̃B,0 ⊕ φ̃B,1 ⊕ · · · ⊕ φ̃B,1︸ ︷︷ ︸
K

and ψ̃B = ψ̃B,0 ⊕ ψ̃B,1 ⊕ · · · ⊕ ψ̃B,1︸ ︷︷ ︸
K

with φ̃B,1 and ψ̃B,1 unitarily equivalent and

(4.34)
1

N
rank(φ̃B,0(a)) ≤ η · 1

N
rank(φ̃B(a)), a ∈ FB,

(4.35)
1

N
rank(ψ̃B,0(a)) ≤ η · 1

N
rank(ψ̃B(a)), a ∈ FB.

By (4.31) and (4.34), one has that for any a ∈ FB, one has

(4.36) tr(φ̃B,0(a)) =
1

m
rank(φ̃B,0(a)) =

N

m

1

N
rank(φ̃B,0(a)) ≤ η · 1

m
rank(φ̃B(a)) = η · tr(φ̃B(a)),

and for the same reason,

(4.37) tr(ψ̃B,0(a)) ≤ η · tr(ψ̃B(a)), a ∈ FB.

Consider the map
⊕
‖xi‖<1−γ πxi , there is a decomposition⊕

‖xi‖<1−γ

πxi =
⊕

‖xi‖<1−γ

πx′i ⊕ (
⊕

‖xi‖<1−γ

πx′′i )⊕ · · · ⊕ (
⊕

‖xi‖<1−γ

πx′′i )︸ ︷︷ ︸
K

,
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where each x′i and x′′i are same as xi but with different multiplies, and x′i has multiplicity at most

K. Since each xi has multiplicity at least M = b2K/ηc+ 1, one has that

(4.38) tr(
⊕

‖xi‖<1−γ

πx′i(a)) ≤ η · tr(
⊕

‖xi‖<1−γ

πxi(a)), a ∈ A.

Then set

φ̃0 = φ̃B,0 ⊕
⊕

‖xi‖<1−γ

πx′i and ψ̃0 = ψ̃B,0 ⊕
⊕

‖xi‖<1−γ

πx′i ,

and

φ̃1 = φ̃B,1 ⊕ (
⊕

‖xi‖<1−γ

πx′′i ) and ψ̃1 = ψ̃B,1 ⊕ (
⊕

‖xi‖<1−γ

πx′′i ),

where φ̃B,0, φ̃B,1, ψ̃B,0, ψ̃B,1 are regarded as maps on A.

The homomorphisms

φ̃ = φ̃0 ⊕ φ̃B,1 ⊕ · · · ⊕ φ̃B,1︸ ︷︷ ︸
K

and ψ̃ = ψ̃0 ⊕ ψ̃B,1 ⊕ · · · ⊕ ψ̃B,1︸ ︷︷ ︸
and these decompositions have the properties required in the statement of the theorem.

Indeed, by (4.12), (4.13), (4.22), (4.28), and (4.33), one has∥∥∥φ(f)− φ̃(f)
∥∥∥ < ‖φ(f)− φ′′′(f)‖+

∥∥∥φ′′′(f)− φ̃(f)
∥∥∥ < ε/2 + ε/2 = ε, f ∈ F ,

and ∥∥∥ψ(f)− ψ̃(f)
∥∥∥ < ‖ψ(f)− ψ′′′(f)‖+

∥∥∥ψ′′′(f)− ψ̃(f)
∥∥∥ < ε/2 + ε/2 = ε, f ∈ F .

It is also clear that φ̃1 and ψ̃1 are unitarily equivalent, and it follows from (4.36), (4.38) and

(4.38) that the maps φ̃0 and ψ̃0 satisfy the desired trace condition. �

Recall (from [9])

Lemma 4.6 (Lemma 4.13 of [9]). Let A be a unital separable nuclear residually finite dimensional

C*-algebra satisfying the UCT, and let ∆ : A+
1,q \ {0} → (0, 1) be an order preserving map. For

any finite set F ⊆ A and any ε > 0, there exist δ > 0, a finite set G ⊆ A, a finite set P ⊆ K(A),

a finite set H ⊆ A1
+ \ {0}, and an integer K ≥ 1 satisfying the following condition: For any two

unital G-δ-multiplicative linear maps φ1, φ2 : A → Mn(C) (for some integer n) and any unital

homomorphism ψ : A→ Mm(C) with m ≥ n such that

(1) τ ◦ ψ(g) ≥ ∆(ĝ), g ∈ H,

(2) [φ1]|P = [φ2]|P ,

there exists a unitary U ∈ MKm+n(C) such that∥∥∥∥∥∥φ1(f)⊕ ψ(f)⊕ · · · ⊕ ψ(f)︸ ︷︷ ︸
K

−u∗(φ2(f)⊕ ψ(f)⊕ · · · ⊕ ψ(f)︸ ︷︷ ︸
K

)u

∥∥∥∥∥∥ < ε, f ∈ F .
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Theorem 4.7. Let A be an NCCC. Let ∆ : A+
1,q \ {0} → (0, 1) be an order preserving map. Let

(F , ε) be given. Then there are finite sets G ⊆ A, H1 ⊆ A+, H2 ⊆ A+ and P ⊆ K(A), and

positive numbers δ, σ > 0 satisfying the following condition:

If φ, ψ : A→ Mm(C) are unital G-δ-multiplicative maps such that

(1) [φ]|P = [ψ]|P ,

(2) tr(φ(h)) > ∆(ĥ) and tr(φ(h)) > ∆(ĥ), h ∈ H1, and

(3) |tr(φ)(h)− tr(ψ)(h)| < σ, h ∈ H2,

then there is a unitary u ∈ Mm(C) such that

‖φ(f)− u∗ψ(f)u‖ < ε, f ∈ F .

Proof. Applying Lemma 4.6 to the data A, ∆/4, and (F , ε/3), one obtains (G ′, δ′,P ,H, K)

satisfying the conditions of Lemma 4.6.

Applying Theorem 4.5 to the data A, ∆/2, F∪H, min{ε/6,∆(H)/4} (in place of ε), η = 1/2K,

and K, one obtains H1, H2, and 2σ (in place of δ) satisfying the conclusion of Theorem 4.5.

Without loss of generality, one may assume that H1 and H2 are in the unital ball of A.

Applying Corollary 5.5 of [9] to

F ∪H1 ∪H2, min{ε/6,∆(H1)/2,∆(H2)/2, σ/4}, min{1/2K,∆(H1)/2,∆(H2)/2, σ/4(1 + σ)},

one obtains (G, δ).
Then G, δ, σ, H1, H2, and P satisfy the conclusion of the theorem. Indeed, let φ, ψ : A →

Mm(C) be G-δ-multiplicative maps such that

(1) [φ]|P = [ψ]|P ,

(2) tr(φ(h)) > ∆(ĥ) and tr(φ(h)) > ∆(ĥ), h ∈ H1, and

(3) |tr(φ)(h)− tr(ψ)(h)| < σ, h ∈ H2.

By Theorem 5.5 of [9], there are φ0, φ1, ψ0, ψ1 : A → Mm(C) such that φ0, ψ0 are G ′-δ′-
multiplicative, φ1, ψ1 are homomorphisms, such that

(4.39) ‖φ(a)− φ0(a)⊕ φ1(a)‖ < min{ε/6,∆(H1)/2,∆(H2)/2, σ/4}, a ∈ F ∪H1 ∪H2,

(4.40) ‖ψ(a)− ψ0(a)⊕ ψ1(a)‖ < min{ε/6,∆(H1)/2,∆(H2)/2, σ/4}, a ∈ F ∪H1 ∪H2,

and

tr(φ0(1)) = tr(ψ0(1)) < min{1/2K,∆(H1)/2,∆(H2)/2, σ/4(1 + σ)}.

Consider the unital homomorphisms φ1, ψ1 : A → pMm(C)p, where p = φ1(1) = ψ1(1). One

has that

(1) τ(φ1(h)), τ(φ1(h)) > ∆(ĥ)/2, h ∈ H1, and

(2) |τ(φ1(h))− τ(ψ1(h))| < 2σ, h ∈ H2,

where τ ∈ T(pMm(C)p).
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By Theorem 4.5, up to unitary equivalence, there are homomorphisms φ′1, ψ
′
1, µ : A →

pMm(C)p such that

(4.41)

∥∥∥∥∥∥φ1(a)− φ′1(a)⊕ µ(a)⊕ · · · ⊕ µ(a)︸ ︷︷ ︸
K

∥∥∥∥∥∥ < min{ε/6,∆(H)/4}, a ∈ F ∪H,

(4.42)

∥∥∥∥∥∥ψ1(a)− ψ′1(a)⊕ µ(a)⊕ · · · ⊕ µ(a)︸ ︷︷ ︸
K

∥∥∥∥∥∥ < min{ε/6,∆(H)/4}, a ∈ F ∪H,

and

τ(φ′1(a)) ≤ 1

2K
· τ(φ1(a)) and τ(ψ′1(a)) ≤ 1

2K
· τ(ψ1(a)), a ∈ F ∪H, τ ∈ T(pMm(C)p).

Therefore, one has that

τ(µ(h)) >
1

4
∆(ĥ), h ∈ H, τ ∈ T(qMm(C)q),

where q = µ(1). Consider the map

(φ0 ⊕ φ′1)⊕ (µ⊕ · · · ⊕ µ︸ ︷︷ ︸
K

) and (ψ0 ⊕ ψ′1)⊕ (µ⊕ · · · ⊕ µ︸ ︷︷ ︸
K

),

and note that

tr(φ0(1)⊕ φ′1(1)) = tr(ψ0(1)⊕ ψ′1(1)) < tr(µ(1)).

It then follows from Lemma 4.6 that there is a unitary u ∈ Mm(C) such that for any a ∈ F ,∥∥∥∥∥∥(φ0(a)⊕ φ′1(a))⊕ (µ(a)⊕ · · · ⊕ µ(a)︸ ︷︷ ︸
K

)− u∗((ψ0(a)⊕ ψ′1(a))⊕ (µ(a)⊕ · · · ⊕ µ(a)︸ ︷︷ ︸
K

))u

∥∥∥∥∥∥ < ε

3
.

It then follows from (4.39), (4.40), (4.41), and (4.42) that

‖φ(a)− u∗ψ(a)u‖ < ε, a ∈ F ,

as desired. �

Note that KL(A,Q) ∼= Hom(K0(A),K0(Q)), a straightforward consequence is

Corollary 4.8. Let A be an NCCC. Let ∆ : A+
1,q \ {0} → (0, 1) be an order preserving map. Let

(F , ε) be given. Then there are finite sets H1 ⊆ A+ and H2 ⊆ A+ and a positive number δ > 0

satisfying the following condition:

If φ, ψ : A→ Q are unital homomorphisms such that

(1) [φ]0 = [ψ]0,

(2) tr(φ(h)) > ∆(ĥ) and tr(φ(h)) > ∆(ĥ), h ∈ H1, and

(3) |tr(φ)(h)− tr(ψ)(h)| < δ, h ∈ H2,

then there is a unitary u ∈ Q such that

‖φ(f)− u∗ψ(f)u‖ < ε, f ∈ F .
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It is also worth pointing out the following corollary:

Corollary 4.9. Let A be a subhomogeneous C*-algebra. Let ∆ : A+
1,q \ {0} → (0, 1) be an order

preserving map. Let (F , ε) be given. Then there are finite sets G ⊆ A, H1 ⊆ A+, H2 ⊆ A+ and

P ⊆ K(A), and positive numbers δ, σ > 0 satisfying the following condition:

If φ, ψ : A→ Mm(C) are unital G-δ-multiplicative maps such that

(1) [φ]|P = [ψ]|P ,

(2) tr(φ(h)) > ∆(ĥ) and tr(φ(h)) > ∆(ĥ), h ∈ H1, and

(3) |tr(φ)(h)− tr(ψ)(h)| < σ, h ∈ H2,

then there is a unitary u ∈ Mm(C) such that

‖φ(f)− u∗ψ(f)u‖ < ε, f ∈ F .

Proof. This follows the fact that any subhomogeneous C*-algebra can be locally approximated

by NCCCs (Theorem 2.15 of [5]). �

5. Tracial factorization and tracial approximation

Recall that

Definition 5.1 ([13], [2]). Let S be a class of unital C*-algebras. A C*-algebra A is said to

be tracially approximated by the C*-algebras in S, and one writes A ∈ TAS, if the following

condition holds: For any finite set F ⊆ A, any ε > 0, and any nonzero a ∈ A+, there is a nonzero

sub-C*-algebra S ⊆ A such that S ∈ S, and if p = 1S, then

(1) ‖pf − fp‖ < ε, f ∈ F ,

(2) pfp ∈ε S, f ∈ F , and

(3) 1− p is Murray-von Neumann equivalent to a subprojection of aAa.

One particularly important class S of building blocks is the class of Elliott-Thomsen algebras.

Definition 5.2. ([6], [1]) A C*-algebra C is said to be an Elliott-Thomsen algebra if

C = {(a, f) ∈ E ⊕ (F ⊗ C([0, 1])) : f(0) = %0(a), f(1) = %1(a)}

for some finite dimensional C*-algebras E, F , where %0, %1 : E → F are unital homomorphisms.

Denote by π∞ the standard quotient map

π∞ : A 3 (a, f) 7→ a ∈ E.

Let us denote the class of unital Elliott-Thomsen algebras by C, and denote the class of unital

Elliott-Thomsen algebras with trivial K1-group by C0.

Remark 5.3. In fact, by Corollary 29.3 of [9], one has TAC = TAC0.

Remark 5.4. In fact, the class of unital Elliott-Thomsen algebras is exactly the class of NCCCs

with dimensions of cells at most one; see [5].

For TAC0 algebras, one has the following classification theorem.
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Theorem 5.5 (Corollary 28.7 of [9]). Let A,B be unital separable amenable simple C*-algebras

satisfying the UCT. Assume that A, B are Jiang-Su stable, and assume that A⊗Q ∈ TAC0 and

B ⊗Q ∈ TAC0. Then A ∼= B if and only if Ell(A) ∼= Ell(B).

In this section, let us show that for any separable simple unital locally ASH algebra A, one

has that A⊗Q ∈ TAC0.

Theorem 5.6. Let A be a unital simple separable locally approximately subhomogeneous (ASH)

C*-algebra satisfying A ∼= A⊗Q. Then, for any finite set F ⊆ A and any ε > 0, there exist an

Elliott-Thomsen algebra C with K1(C) = {0}, a unital completely positive linear map Φ : A→ C,

and a unital embedding Ψ : C → A such that

(1) Φ is F-ε-multiplicative, and

(2) |τ(f)− τ(Ψ(Φ(f)))| < ε, f ∈ F , τ ∈ T(A).

Proof. Without loss of generality, one may assume that 1 ∈ F and each element of F is self-

adjoint and has norm at most 1.

Let A be a unital separable simple locally ASH algebra satisfying A ∼= A ⊗ Q. By Theorem

2.15 of [5], the C*-algebra A can be locally approximated by unital NCCCs. Therefore, without

loss of generality, one may assume that there is a sub-C*-algebra A1 ⊆ A such that A1 is a

NCCC and F ⊆ A1.

Put

GA1 = ρA1(K0(A1)), G+
A1

= ρA1(K0(A1)) ∩ Aff+(T(A1)), uA1 = ρA1([1]),

and fix a set {p1, ..., pn} which generates the group GA1 . Note that by Lemma 2.9, the positive

cone G+
A1

is finitely generated.

For each h ∈ A+, define

∆(h) = inf{τ(ι(h)) : τ ∈ T(A)},

where ι : A1 → A is the embedding map. Since A is simple, the map ∆ induces a order preserving

map from A1,q
+ to (0, 1). Let us still denote this by ∆.

Let H1 ⊆ (A1)+, H2 ⊆ (A1)+ and δ0 > 0 be the finite sets and constant of Corollary 4.8 with

respect to F · F , ε/4, and ∆/4.

Let H be the subset of Theorem 3.7 with respect to A1, F ∪ H1 ∪ H2 (in the place of F),

min{ε/4, δ0/4,∆(ĥ)/4 : h ∈ H1} (in the place of ε). Put

σ =
1

2
min{∆(ĥ) : h ∈ H},

and denote by δ1 the constant of Theorem 3.7 with respect to σ.

Put

G = ρA(K0(A)), G+ = ρA(K0(A)) ∩ Aff+(T(A)), u = ρA([1]).

Then (G,G+, u) is a unperforated order-unit group, and there is a natural pairing between

(G,G+, u) and T(A) induced by ρA. Still denote this pairing map by ρA. Note that one has the
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following commutative diagram:

K0(A1)
[ι]0 //

ρA1

��

K0(A)

ρA

��
GA1

(ι)∗ // G.

Consider ((G,G+, u),T(A), ρA). By Theorem 5.2.2 of [1], there is an inductive system C ′ =

lim−→(C ′i, η
′
i) with C ′i ∈ C0 and ηi injective such that there is an isomorphism

Ξ : ((G,G+, u),T(A), ρA)→ ((K0(C ′),K0(C ′), [1]),T(C ′), ρ′C).

Consider C = C ′ ⊗Q = lim−→(Ci, ηi), where Ci = C ′i ⊗Q and ηi = η′i ⊗ idQ. One has

((G,G+, u),T(A), ρA) ∼= ((K0(C),K0(C), [1]),T(C), ρC),

and let us still denote by Ξ the isomorphism. In the remaining part of the paper, let us also use

Ξ to denote its restriction to G or to Aff(T(A)), depending on the context.

Consider the following diagram:

GA1

[ι]0 // G

Ξ
��

K0(C1)
[η1]0

// K0(C2)
[η2]0

// · · · // K0(C).

Since the positive cone of GA1 is finitely generated (Lemma 2.9), the positive map [ι]0 can be lifted

to a positive homomorphism GA1 → K0(Cn) for sufficiently large n. Without loss of generality,

one may assume that [ι]0 has a lifting κ : GA1 → K0(C1), making the diagram commutative:

GA1

[ι]0 //

κ

��

G

Ξ
��

K0(C1)
[η1]0

// K0(C2)
[η2]0

// · · · // K0(C).

By Lemma 2.10, after a telescoping of the inductive system (Ci, ηi), there is also an approximate

lifting, making the diagram of affine function spaces,

Aff(T(A1))
(ι)∗ //

γ

��

Aff(T(A)))

Ξ
��

Aff(T(C1)))
(η1)∗

// Aff(T(C2)))
(η2)∗

// · · · // Aff(T(C))),

approximately commutative, and such that

(5.1) |τ(κ([pi]))− γ([pi])(τ)| < δ1, τ ∈ T(C1), 1 ≤ i ≤ n,

(5.2) γ(ĥ)(τ) >
1

2
∆(h) > σ, h ∈ H ∪H1, τ ∈ T(C1),
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and

(5.3)
∣∣∣(Ξ−1 ◦ (η1,∞)∗ ◦ γ)(f̂)(τ)− (ι)∗(f̂)(τ)

∣∣∣ < ε/8, τ ∈ T(A), f ∈ F .

Write

C1 = C ′1 ⊗Q = {(a, f) ∈ E ⊕ (F ⊗ C([0, 1])) : f(0) = %0(a), f(1) = %1(a)},

where

E =

p⊕
i=1

Q, F =
l⊕

j=1

Q,

for natural numbers p, l, and %0, %1 : E → F are unital homomorphisms.

On each interval [0, 1]j, choose a partition

0 = t0 < t1 < t2 < · · · < tk−1 < tk = 1

such that

(5.4)
∣∣∣γ(f̂)(τs)− γ(f̂)(τti)

∣∣∣ < min{ε/4, δ0/2}, s ∈ [ti, ti+1], f ∈ F ∪H2,

where τs = tr ◦ πs and tr is the canonical trace of Q. One may assume that k is sufficiently large

that

2π/(k − 1) < ε/8.

For each 0 < i < k, define

κi = [πti ]0 ◦ κ : K0(A1)→ K0(Q) ∼= Q,

and

γi = (πti)∗ ◦ γ : Aff(T(A1))→ Aff(T(Q)) ∼= R.
By (5.1), each pair (κi, γi) is δ1-compatible on [pi], 1 ≤ i ≤ n. By (5.2), one has that

γi(ĥ)(tr) > σ, h ∈ H.

Therefore, by Theorem 3.7, there is a homomorphism φi : A1 → Q such that

[φi]0 = κi

and

(5.5)
∣∣∣γi(ĥ)(tr)− tr(φi(h))

∣∣∣ < min{ε/4, δ0/4,∆(ĥ)/4 : h ∈ H1}, h ∈ F ∪H1 ∪H2.

Together with (5.2), it then follows that

(5.6) tr(φi(h)) > γi(ĥ)(tr)− 1

4
∆(ĥ) >

1

4
∆(ĥ), h ∈ H1.

It also follows from (5.5) and (5.4) that for any h ∈ H2 and any 1 ≤ i ≤ k − 2,

|tr(φi(h))− tr(φi+1(h))| ≤
∣∣∣tr(φi(h))− γi(ĥ)(tr)

∣∣∣+
∣∣∣γi(ĥ)(tr)− γi+1(ĥ)(tr)

∣∣∣(5.7)

+
∣∣∣tr(φi+1(h))− γi+1(ĥ)(tr)

∣∣∣
< δ0/4 + δ0/2 + δ0/4 = δ0.
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Since πi is homotopic to πi+1, it is clear that [κi] = [κi+1], 1 ≤ i ≤ k − 2, and therefore

(5.8) [φ]0 = [φi+1]0, 1 ≤ i ≤ k − 2.

Denote by π∞ : C1 → E the standard quotient map, and consider

κ∞ = [π∞]0 ◦ κ : K0(A1)→ K0(E) and γ∞ = [π∞] ◦ γ : Aff(T(A1))→ Aff(T(E)).

The same argument as above shows that there is a homomorphism φ∞ : A1 → E such that

(5.9) [φ∞]0 = κ∞,

and

(5.10)
∣∣∣γ∞(ĥ)(τ)− τ(φ∞(h))

∣∣∣ < min{ε/4, δ0/4,∆(ĥ)/4 : h ∈ H1}, h ∈ H1 ∪H2, τ ∈ T(E).

Define

φ0 = %0 ◦ φ∞ and φk = %1 ◦ φ∞
and consider the restrictions of these maps to the j-th direct summand; still denote them by φ0

and φk respectively. It then follows from (5.9) that

(5.11) [φ0]0 = [φk] = [φi]0, 1 ≤ i ≤ k − 1,

and it follows from (5.10) and (5.2) that

(5.12) tr(φ0(h)), tr(φk(h)) >
1

4
∆(ĥ), h ∈ H1.

Moreover, with (5.10) and (5.4), the same argument as that of (5.7) shows that

(5.13) |tr(φ0(h))− tr(φ1(h))| < δ0 and |tr(φk−1(h))− tr(φk(h))| < δ0, h ∈ H2.

Thus, with (5.11), (5.6), (5.12), (5.7) and (5.13), Corollary 4.8 implies that there are unitaries

u1, u2, ..., uk−1 ∈ Q such that∥∥φi(f)− u∗i+1φi+1(f)ui+1

∥∥ < ε/4, f ∈ F · F , 0 ≤ i ≤ k − 2.

Define v0 = 1, and

vi = uiui−1 · · ·u1, i = 1, ..., k − 1.

Then, for any 0 ≤ i ≤ k − 2 and any f ∈ F · F , one has

‖Ad(vi) ◦ φi(f)− Ad(vi+1) ◦ φi+1(f)‖
= ‖(ui · · ·u1)∗φi(f)(ui · · ·u1)− (ui+1 · · ·u1)∗φi+1(f)(ui+1 · · ·u1)‖
=

∥∥φi(f)− u∗i+1φi+1(f)ui+1

∥∥ < ε/4.

Replacing each homomorphism φi by Ad(vi) ◦ φi for i = 1, ..., k − 1, and still denoting it by φi,

one has

‖φi(f)− φi+1(f)‖ < ε/4, f ∈ F · F , 0 ≤ i ≤ k − 2.

Note that the replacement of φi does not change the induced map on the invariant, and hence

one still has

[φk−1]0 = [φk]0,
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tr(φ0(h)), tr(φk(h)) >
1

4
∆(ĥ), h ∈ H1,

and

|tr(φk−1(h))− tr(ψk(h))| < δ0, h ∈ H2.

Applying Corollary 4.8 again, we obtain a unitary w ∈ Q such that

‖w∗φk−1(f)w − φk(f)‖ < ε/4, f ∈ F · F .

Since Q is AF, and any unitary in a finite dimensional C*-algebra can be connected to the

identity along a path with length at most π (i.e., it has exponential length at most π), there are

unitaries

1 = w0, w1, ..., wk−2, wk−1 = w ∈ Q
such that

‖wi − wi−1‖ < 2π/(k − 1) < ε/8.

Hence, ∥∥w∗i φi(f)wi − w∗i+1φi+1(f)wi+1

∥∥ < 3ε/8, f ∈ F · F , 0 ≤ i ≤ k − 2.

Replace each homomorphism φi again by Ad(wi) ◦ φi, 1 ≤ i ≤ k − 1, and still denote it by φi.

One then has

(5.14) ‖φi(f)− φi+1(f)‖ < 3ε/8, f ∈ F · F , 0 ≤ i ≤ k − 1.

Define the positive linear map φ : A1 → C([0, 1]j, Q) by

Φj(f)(t) =
ti+1 − t
ti+1 − ti

φi(f) +
t− ti
ti+1 − ti

φi+1(f), if t ∈ [ti, ti+1].

By (5.14), the map Φj is F -ε-multiplicative. It also follows from (5.4) that if t ∈ [ti, ti+1], then,

for any f ∈ F , ∣∣∣γ(f̂)(τt)− τt(Φj(f))
∣∣∣(5.15)

≤
∣∣∣γ(f̂)(τti)− τt(Φj(f))

∣∣∣+ ε/4 (by (5.4))

=

∣∣∣∣γi(f̂)(tr)− (
ti+1 − t
ti+1 − ti

tr(φi(f)) +
t− ti
ti+1 − ti

tr(φi+1(f)))

∣∣∣∣+ ε/4

≤
∣∣∣γi(f̂)(tr)− tr(φi(f))

∣∣∣+ 5ε/8 (by (5.14))

< ε/4 + 5ε/8 = 7ε/8 (by (5.5)).

Repeat this construction for all j = 1, ..., l, and note that the maps Φ1,Φ2, ...,Φl induce a map

Φ : A1 → C1. Since each Φj is F -ε multiplicative, the map Φ is F -ε-multiplicative. By (5.15),

one has

(5.16)
∣∣∣γ(f̂)(τ)− τ(Φ(f))

∣∣∣ < 7ε/8, f ∈ F , τ ∈ T(C1).

Now, let us construct an embedding Ψ : C1 → A such that

|τ(f)− τ(Ψ(Φ(f)))| < ε, f ∈ H, τ ∈ T(A).
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Since A ∼= A ⊗ Q, the subgroup H := ker ρA ⊆ K0(A) is divisible, and therefore the exact

sequence

0 // H // K0(A)
ρA // G // 0

splits. Pick a decomposition

K0(A) = G⊕H.
Since K0(A) is weakly unperforated, the order on (G⊕H) is completely determined by that on

G.

Define

κ′ : G 3 g 7→ (g, 0) ∈ G⊕H = K0(A).

Then κ′ is a positive homomorphism, and the pair

(κ′ ◦ (Ξ−1|K0(C)),Ξ|Aff(T(C)))

is compatible. It induces a positive homomorphism

θ : Cu∼(C)→ Cu∼(A).

By Theorem 1 of [26], there is a homomorphism ψ : C → A such that the Cuntz map induced

by ψ is θ. In particular, one has that

(5.17) (ψ)∗ = Ξ−1|Aff(T(C)).

Then the map

Ψ = ψ ◦ η1,∞

satisfies the conclusion of the theorem (together with Φ). Indeed, since C is simple, the map ψ

is an embedding, and therefore Ψ is an embedding. Moreover, for any f ∈ F , one has

|τ(ι(f))− τ(Ψ ◦ Φ(f))|

=
∣∣∣(ι)∗(f̂)(τ)− (Ψ)∗((Φ)∗(f̂))(τ)

∣∣∣
=

∣∣∣(ι)∗(f̂)(τ)− (ψ)∗((ηi,∞ ◦ Φ)∗(f̂))(τ)
∣∣∣

=
∣∣∣(ι)∗(f̂)(τ)− (Ξ−1 ◦ (ηi,∞)∗ ◦ (Φ)∗)(f̂)(τ)

∣∣∣ (by (5.17))

<
∣∣∣(ι)∗(f̂)(τ)− (Ξ−1 ◦ (ηi,∞)∗ ◦ γ)(f̂)(τ)

∣∣∣+ 7ε/8 (by (5.16))

≤ ε/8 + 7ε/8 = ε (by (5.3)),

as desired. �

Remark 5.7. With a slight modification (a perturbation of the linear map γ), the same argu-

ment as Theorem 5.6 shows that the same statement holds for C*-algebras which are tracially

approximated by subhomogeneous C*-algebras.

The passage from Theorem 5.6 to the actual tracial approximation is an application of the

following very important theorem due to Winter:
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Theorem 5.8 (Theorem 2.2 of [32]). Let S be a class of separable unital C*-algebras which have

a finite presentation with weakly stable relations. Suppose further that S is closed under taking

direct sums and under taking tensor products with finite dimensional C*-algebras, and that S
contains all finite dimensional C*-algebras.

Let A be a separable, simple, unital C*-algebra with dimnucA <∞ and T(A) 6= Ø, and let

( A
σi // Bi

%i // A )i∈N

be a system of maps with the following properties:

(1) Bi ∈ S, i ∈ N,

(2) %i is an embedding for each i ∈ N,

(3) σi is a completely positive contraction for each i ∈ N,

(4) σ̄ : A→
∏

i∈NBi/
⊕

i∈NBi induced by σi is a unital homomorphism

(5) sup{|τ(%iσi(a)− a)| : τ ∈ T(A)} → 0, as i→∞ for each a ∈ A.

Then A⊗Q ∈ TAS.

With this and Theorem 5.6, one has

Theorem 5.9. Let A be a unital simple separable locally ASH C*-algebra. Then A⊗Q ∈ TAC0,

where C0 is the class of unital Elliott-Thomsen algebras with trivial K1-group. In particular, if

A ∼= A⊗Z, where Z is the Jiang-Su algebra, then A is classifiable (by means of the naive Elliott

invariant). (The converse is also true.)

Proof. By Theorem 3.1 of [5], one has dr(A⊗Q) ≤ 2, and in particular, dimnuc(A⊗Q) ≤ 2 < +∞.

It then follows from Theorems 5.6 and 5.8 that A⊗Q ∈ TAC0. By the classification theorem of [9]

(based in particular on the deformation technique of [33] and [17]—see also [19]), the C*-algebra

A is classifiable. �

Corollary 5.10. Let A be a simple separable unital locally ASH (respectively, locally AH) algebra.

Then A⊗Z is an ASH (respectively, AH) algebra.

Proof. By Theorem 5.9, the C*-algebra A ⊗ Z is classifiable by means of the Elliott invariant.

By [1] and [8], the Elliott invariant for separable, Jiang-Su stable, simple, unital, finite C*-

algebras (in particular, locally ASH algebras) is exhausted by ASH algebras (by Theorem 3 of

[8], finiteness implies stable finiteness in this setting). Furthermore, by [30], the Elliott invariant

for separable, Jiang-Su stable, simple, unital, locally AH algebras is exhausted by AH algebras.

(In both settings, the models have no dimension growth.) �

The classification of locally ASH algebras (Theorem 5.9) in fact allow us to recover the recent

classification result for the C*-algebra of a minimal homeomorphism—assumed to have mean

dimension zero but not to be uniquely ergodic ([27], [18]—the uniquely ergodic case was dealt

with in [3], or in [29] on the ease the space is finite dimensional):

Corollary 5.11 (Corollary 5.3 of [18]). Let X be a compact metrizable space, and let σ : X → X

be a minimal homeomorphism. Then the C*-algebra (C(X)oσZ)⊗Z is classifiable. In particular,

if (X, σ) has mean dimension zero, the C*-algebra C(X) oσ Z is classifiable.
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Proof. By Theorem 4.1 of [5], the C*-algebra (C(X) oσ Z) ⊗ Q is locally ASH. By Theorem

5.9, the C*-algebra (C(X) oσ Z) ⊗ Q belongs to the class TAC0, and hence the C*-algebra

(C(X) oσ Z)⊗Z is classifiable.

If (X, σ) has mean dimension zero, then it follows from [3] that

C(X) oσ Z ∼= (C(X) oσ Z)⊗Z,

and so the C*-algebra C(X) oσ Z is classifiable. �
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