C*-algebras of Artin-Tits monoids

Jack Spielberg, Arizona State University (joint work with Xin Li and Tron Omland)

Session on C^{*}-algebras, dynamical systems and applications, Joint mathematics meetings, Denver, Colorado, January 2019.
S - set, $M=\left(m_{s, t}\right) \in M_{S \times S}(\mathbb{N} \cup\{\infty\})$
$m_{s, s}=1, m_{s, t}>1$ if $s \neq t, m_{s, t}=m_{t, s}$
Artin-Tits group $\Gamma=\langle S \mid \underbrace{s t s t \cdots}_{m_{s, t}}=\underbrace{\text { tsts } \cdots}_{m_{t, s}}\rangle$
Artin-Tits monoid $P=\langle S \mid \underbrace{s t s t \cdots}_{m_{s, t}}=\underbrace{\text { tsts } \cdots}_{m_{t, s}}\rangle^{+}$
Coxeter (reflection) group $W=\langle S \mid \underbrace{s t s t}_{m_{s, t}} \cdots=\underbrace{t s t s \cdots}_{m_{t, s}}, s^{2}=1\rangle$

- $\Gamma($ and $P)$ are irreducible if cannot write $S=S_{1} \sqcup S_{2}$ so that $m_{s, t}=2$ whenever $s \in S_{1}$ and $t \in S_{2}$.
- $\Gamma($ and $P)$ are of finite type if W is finite.
(Alternatively, right-angled if $m_{s, t} \in\{2, \infty\}$ for all s, t)
(studied by Crisp-Laca)
- $\Gamma($ and $P)$ are irreducible if cannot write $S=S_{1} \sqcup S_{2}$ so that $m_{s, t}=2$ whenever $s \in S_{1}$ and $t \in S_{2}$.
- $\Gamma($ and $P)$ are of finite type if W is finite.
(Alternatively, right-angled if $m_{s, t} \in\{2, \infty\}$ for all s, t)
(studied by Crisp-Laca)

Examples

1. $D_{2 m}=\langle a, b \mid \underbrace{a b a \cdots}_{m}=\underbrace{b a b \cdots}_{m}\rangle$ "dihedral type",
$M=\left(\begin{array}{cc}1 & m \\ m & 1\end{array}\right)$ (these are the examples with two generators).
W is the dihedral group of order $2 m$.
2. $B_{4}=\langle a, b, c \mid a b a=b a b, b c b=c b c, a c=c a\rangle$
"braid group on 4 strands", $M=\left(\begin{array}{lll}1 & 3 & 2 \\ 3 & 1 & 3 \\ 2 & 3 & 1\end{array}\right)$
$W=S_{4}$, the symmetric group.

Semigroup C^{*}-algebras

Let P be a monoid. Assume that P is

- left cancellative: $\alpha \beta=\alpha \gamma \Rightarrow \beta=\gamma$.
- LCM: $\alpha P \cap \beta P \neq \varnothing \Rightarrow \exists \gamma$ s.t. $\alpha P \cap \beta P=\gamma P$.
(The intersection of two principal right ideals is either empty, or is another principal right ideal.)
$\lambda: P \rightarrow B\left(\ell^{2} P\right)$, the left regular representation: $\lambda_{\alpha}\left(e_{\beta}\right)=e_{\alpha \beta}$.
(λ_{α} is an isometry by left cancellativity)
Define $C_{r}^{*}(P):=C^{*}(\lambda(P))$.

Abstract description
$[\alpha]:=\{\beta: \alpha \in \beta P\}$ - "prefixes" of α. A subset $x \subseteq P$ is hereditary if $\alpha \in x \Rightarrow[\alpha] \subseteq x$ directed if $\alpha, \beta \in x \Rightarrow \alpha P \cap \beta P \cap x \neq \varnothing$
$\Omega=$ set of directed hereditary subsets of P.
Topology on Ω : let $Z(\alpha):=\{x \in \Omega: \alpha \in x\}$.
$\left\{Z(\alpha) \backslash \cup_{1}^{n} Z\left(\beta_{i}\right): \alpha, \beta_{i} \in P\right\}$ is a base of compact-open sets for a compact Hausdorff topology on Ω.

Abstract description
$[\alpha]:=\{\beta: \alpha \in \beta P\}$ - "prefixes" of α. A subset $x \subseteq P$ is hereditary if $\alpha \in x \Rightarrow[\alpha] \subseteq x$ directed if $\alpha, \beta \in x \Rightarrow \alpha P \cap \beta P \cap x \neq \varnothing$
$\Omega=$ set of directed hereditary subsets of P.
Topology on Ω : let $Z(\alpha):=\{x \in \Omega: \alpha \in x\}$.
$\left\{Z(\alpha) \backslash \cup_{1}^{n} Z\left(\beta_{i}\right): \alpha, \beta_{i} \in P\right\}$ is a base of compact-open sets for a compact Hausdorff topology on Ω.

Action by partial homeomorphisms: $P \curvearrowright \Omega$ by $\alpha \cdot Z(\beta)=Z(\alpha \beta)$. $C^{*}(P):=C(\Omega) \rtimes P$ (use groupoid, partial crossed product, etc.)

Laca-Crisp showed that for right-angled Artin groups, $C^{*}(P)$ behaves roughly like (Toeplitz-) Cuntz-Krieger algebras (e.g. free groups).

They point out that for Artin-Tits groups of finite type, $C^{*}(P)$ will usually not be nuclear.

We investigate the structure of $C^{*}(P)$ in that case.

Let P be an Artin-Tits monoid of finite type.

1. $Z(\alpha) \backslash \cup_{\sigma \in S} Z(\alpha \sigma)=\{[\alpha]\}$.
$\bar{P}:=\{[\alpha]: \alpha \in P\}$ is a discrete open invariant subset of Ω.
P acts freely and transitively on \bar{P}, so $\mathcal{K}\left(\ell^{2} P\right) \triangleleft C^{*}(P)$.
2. P is a lattice: $\forall \alpha, \beta \in P, \exists \gamma \in P$ s.t. $\alpha P \cap \beta P=\gamma P$

$$
(\gamma=: \alpha \vee \beta)
$$

P is directed, so $P \in \Omega$. Write $\infty:=P \in \Omega(\partial P=\{\infty\})$. ∞ is invariant; $C^{*}\left(\left.P\right|_{\{\infty\}}\right) \cong C^{*}(\Gamma)$.

Let P be an Artin-Tits monoid of finite type.

1. $Z(\alpha) \backslash \cup_{\sigma \in S} Z(\alpha \sigma)=\{[\alpha]\}$.
$\bar{P}:=\{[\alpha]: \alpha \in P\}$ is a discrete open invariant subset of Ω.
P acts freely and transitively on \bar{P}, so $\mathcal{K}\left(\ell^{2} P\right) \triangleleft C^{*}(P)$.
2. P is a lattice: $\forall \alpha, \beta \in P, \exists \gamma \in P$ s.t. $\alpha P \cap \beta P=\gamma P$

$$
(\gamma=: \alpha \vee \beta)
$$

P is directed, so $P \in \Omega$. Write $\infty:=P \in \Omega(\partial P=\{\infty\})$. ∞ is invariant; $C^{*}\left(\left.P\right|_{\{\infty\}}\right) \cong C^{*}(\Gamma)$.
$0 \rightarrow I \rightarrow C^{*}(P) \rightarrow C^{*}(\Gamma) \rightarrow 0, \quad I=C^{*}\left(\left.P\right|_{\Omega \backslash\{\infty\}}\right)$
$0 \rightarrow \mathcal{K} \rightarrow I \rightarrow I / \mathcal{K} \rightarrow 0, \quad I / \mathcal{K}=C^{*}\left(\left.P\right|_{\Omega \backslash(\bar{P} \cup\{\infty\})}\right)$
We study I / \mathcal{K}.

Normal forms

$\pi: P \rightarrow W, P_{\text {red }}:=\{\alpha \in P: \ell(\alpha)=\ell(\pi(\alpha))\}$. $\left.\pi\right|_{P_{\text {red }}}: P_{\text {red }} \rightarrow W$ is bijective.

Normal forms

$\pi: P \rightarrow W, P_{\text {red }}:=\{\alpha \in P: \ell(\alpha)=\ell(\pi(\alpha))\}$. $\left.\pi\right|_{P_{\text {red }}}: P_{\text {red }} \rightarrow W$ is bijective.
For $\alpha \in P_{\text {red }}$, put

$$
\begin{array}{ll}
L(\alpha)=\{\sigma \in S: \alpha \in \sigma P\}, & \text { "left initial letters" of } \alpha \\
R(\alpha)=\{\sigma \in S: \alpha \in P \sigma\}, & \text { "right initial letters" of } \alpha
\end{array}
$$

E.g. $\alpha \sigma \in P_{\text {red }}$ iff $\sigma \notin R(\alpha)$.

Normal forms

$\pi: P \rightarrow W, P_{\text {red }}:=\{\alpha \in P: \ell(\alpha)=\ell(\pi(\alpha))\}$.
$\left.\pi\right|_{P_{\text {red }}}: P_{\text {red }} \rightarrow W$ is bijective.
For $\alpha \in P_{\text {red }}$, put

$$
\begin{array}{ll}
L(\alpha)=\{\sigma \in S: \alpha \in \sigma P\}, & \text { "left initial letters" of } \alpha \\
R(\alpha)=\{\sigma \in S: \alpha \in P \sigma\}, & \text { rright initial letters" of } \alpha
\end{array}
$$

E.g. $\alpha \sigma \in P_{\text {red }}$ iff $\sigma \notin R(\alpha)$.
$\Delta:=\bigvee P_{\text {red }}$ - the unique maximal element of $P_{\text {red }}$

$$
L(\Delta)=S=R(\Delta) \text {, but } L(\alpha) \neq S \neq R(\alpha) \text { for } \alpha \in P_{\text {red }} \backslash\{\Delta\}
$$

Normal forms

$\pi: P \rightarrow W, P_{\text {red }}:=\{\alpha \in P: \ell(\alpha)=\ell(\pi(\alpha))\}$.
$\left.\pi\right|_{P_{\text {red }}}: P_{\text {red }} \rightarrow W$ is bijective.
For $\alpha \in P_{\text {red }}$, put
$L(\alpha)=\{\sigma \in S: \alpha \in \sigma P\}$, "left initial letters" of α
$R(\alpha)=\{\sigma \in S: \alpha \in P \sigma\}$, "right initial letters" of α
E.g. $\alpha \sigma \in P_{\text {red }}$ iff $\sigma \notin R(\alpha)$.
$\Delta:=\bigvee P_{\text {red }}$ - the unique maximal element of $P_{\text {red }}$ $L(\Delta)=S=R(\Delta)$, but $L(\alpha) \neq S \neq R(\alpha)$ for $\alpha \in P_{\text {red }} \backslash\{\Delta\}$.
For $\alpha \in P \backslash\{1\}$, a normal form is $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with

- $\alpha_{i} \in P_{\text {red }} \backslash\{1\}, 1 \leq i \leq n$
- $\alpha=\alpha_{1} \cdots \alpha_{n}$
- $R\left(\alpha_{i}\right) \supseteq L\left(\alpha_{i+1}\right), 1 \leq i<n$

Every $\alpha \in P$ has a unique normal form.

Infinite Word: $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$ s.t. $\forall n,\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is normal.
Theorem There is a bijection from the set of infinite words to
$\Omega \backslash \bar{P}$ given by

$$
\left(\alpha_{1}, \alpha_{2}, \ldots\right) \mapsto \bigcup_{n=1}^{\infty}\left[\alpha_{1} \cdots \alpha_{n}\right] .
$$

In particular, $(\Delta, \Delta, \ldots) \mapsto \infty$
Let $X_{k}=\left\{x \in \Omega \backslash \bar{P}: \Delta^{k} \in x, \Delta^{k+1} \notin x\right\}$

$$
=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{i}=\Delta \text { iff } i \leq k\right\} .
$$

Put $X=\bigsqcup_{n=0}^{\infty} X_{n}$. Then $I / \mathcal{K}=C^{*}\left(\left.P\right|_{X}\right)$.
X is invariant and relatively open in $\Omega \backslash \bar{P} . X_{0}$ is a relatively closed transversal in X. Then $I / \mathcal{K} \sim C^{*}\left(\left.P\right|_{X_{0}}\right)$ (Muhly-Renault-Williams).
X_{0} is the space of reduced infinite words (i.e. not containing Δ).

Example $D_{2 m}$

$$
\begin{aligned}
& P_{\text {red }}=\{1, a, a b, a b a, \ldots, \underbrace{a b a \cdots}_{m-1}, b, b a, b a b, \ldots, \underbrace{b a b \cdots}_{m-1}, \Delta\} \\
& L(a b a \cdots)=\{a\}, L(b a b \cdots)=\{b\} \\
& C^{*}\left(\left.P\right|_{X_{0}}\right) \text { is a Cuntz-Krieger algebra, } l \text { is nuclear. }
\end{aligned}
$$

Example Γ with more than two generators (e.g. B_{4})
Theorem $I / \mathcal{K} \sim C^{*}\left(\left.P\right|_{X_{0}}\right)$ is simple and purely infinite, but not nuclear.

Ideas of the proof: the restricted action $P \curvearrowright X_{0}$ is

- minimal: $\forall \varnothing \neq U \subseteq X_{0}$ open, $\forall x \in X_{0}, \exists \alpha \in P, \alpha x \in U$.
- top. principal: $\left\{x \in X_{0}: \alpha x=x \Rightarrow \alpha=1\right\}$ is dense in X_{0}.
- loc. contractive: $\forall \varnothing \neq U \subseteq X_{0}$ open, $\exists V \subseteq U$ open, $\exists \alpha \in P$,

$$
\alpha \bar{V} \subsetneq V .
$$

A necessary move in this direction is
Lemma Let $U=Z(\alpha) \backslash \bigcup_{1}^{n} Z\left(\beta_{i}\right)$, suppose $U \cap X_{0} \neq \varnothing$. There exists $\delta \in P \backslash \Delta P$ s.t. $Z(\delta) \subseteq U$.
(Technical) Lemma Suppose Γ is irreducible. For all $s, t \in S$ there is a normal form $\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ s.t. $L\left(\gamma_{1}\right)=\{s\}$ and $R\left(\gamma_{n}\right)=S \backslash\{t\}$.

$$
\gamma=\gamma_{1} \cdots \gamma_{n} \text { is a spacer. }
$$

E.g. let $\varepsilon \in P \backslash \Delta P$ and $x=\left(\mu_{1}, \mu_{2}, \ldots\right) \in X_{0}$.
ε has normal form $\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)$.
Choose $s \in R\left(\varepsilon_{m}\right)$ and $t \in S \backslash L\left(\alpha_{1}\right)$.
Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ be as in the lemma. Then

$$
\varepsilon \gamma x=\left(\varepsilon_{1}, \ldots, \varepsilon_{m}, \gamma_{1}, \ldots, \gamma_{n}, \mu_{1}, \mu_{2}, \ldots\right) \in Z(\varepsilon)
$$

With a bit more trickery, can choose $\delta=\varepsilon \gamma$ so that $Z(\delta) \cap X_{0} \subseteq U$ in the lemma.

