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Definition of Euler Φ-Function

Definition

Let n be a natural number.
Φ[n] is the number of integers k in the range 1 ≤ k ≤ n for
which the greatest common divisor gcd(n, k) = 1.



Functional
Analysis
Meets

Number
Theory:

Matrix-Valued
Euler

Functions
Non-

commutative
Number
Theory?

C*-Riemann

Marty Walter

Introduction:
Basic
Concepts

Permutation
Length Matrix
of a Finite
Group

Euler-Φ
Function for
Arbitrary
Cyclic Group
Cn

General Finite
Abelian
Groups

Definition of Möbius Function

Definition

Let n be a natural number.
µ[n] is given by: µ[1] = 1, µ[n] = 0 if n is divisible by the
square of a prime number, otherwise µ[n] = (−1)k , where k is
the number of prime factors of n.
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Matrix-Valued Euler Φ-Functions

Claim: Each natural number n determines a unique n × n
(“Euler”) matrix modulo conjugation by permutation matrices.

If Cn = {a0 = an = e, a1, . . . , an−1} is a cyclic group with n
elements, where n = Πr

i=1pni
i , the pi being pairwise distinct

primes for i = 1, . . . , r ,
Define the Euler Φ-function:

Definition

Φ[Cn]:=Σ{ai : gcd [i , n] = 1},

i.e., the formal sum of elements of Cn which generate Cn,
where gcd [x , y ] stands for greatest common divisor of integers
x and y .
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Representation π of Φ

If π is a matrix representation of Cn, then Φ[Cn] can be
represented/defined as a matrix as well, viz.,

Definition

π∗Φ[Cn]:=Σ{π[ai ] : gcd [i , n] = 1}, a sum of matrices called
the π representation of Φ.



Functional
Analysis
Meets

Number
Theory:

Matrix-Valued
Euler

Functions
Non-

commutative
Number
Theory?

C*-Riemann

Marty Walter

Introduction:
Basic
Concepts

Permutation
Length Matrix
of a Finite
Group

Euler-Φ
Function for
Arbitrary
Cyclic Group
Cn

General Finite
Abelian
Groups

Euler, Möbius just two different representations

For 0 ≤ k ≤ n − 1, let χk be the homomorphism of G = Cn

into C defined by χk [aj ] = e2πIkj/n, 0 ≤ j ≤ n − 1.
(Note that χk is called a character of Cn, or
an irreducible unitary representation of Cn.)

We have the following:
(i) χ0 ∗ Φ[Cn] = φ[n], the classical Euler Φ-function;
(ii) χ1 ∗ Φ[Cn] = µ[n], the classical Möbius function;

(iii) χk ∗ Φ[Cn] =
∑

d |gcd [k,n]

µ[
n

d
]d =

φ[n]

φ[ n
gcd [k,n] ]

µ[ n
gcd [k,n] ],

a Ramanujan sum.
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Definition of Euler Φ-matrix of Cn

We prove some elementary properties of this Euler Φ-function
for cyclic groups, including the formula:

Theorem

ρ ∗ Φ[Cn] =
⊗r

i=1 I[pi ]
⊗(ni−1) ⊗∆[pi ],

which we call the “Euler Φ-matrix of Cn,”

where I[p] is the p × p matrix of all 1s and
∆[p] = I[p]− Ip,
Ip being the p × p identity matrix,
ρ being a regular representation.
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Nice Eigenvector Prolem: Solved

We use this formula to solve to a previously posed problem,
viz., each Euler Φ-matrix has a complete set of eigenvectors all
the entries of which come from the set {−1, 0, 1}.
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Multiplication Table of a Finite Group:
“Standard Form”

Write group G as a 1× n matrix:

G = [g1, g2, . . . , gn].

Let the n × 1 matrix: G ∗, be the conjugate transpose of G ,
where g∗i = g−1

i .
Then the n × n “standard (positive-symmetric) matrix
multiplication table of G ” is:

M[G ] = G ∗G = [g−1
i gj ].
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Permutation Equivalence of Group
Multiplication Tables

Given M[G ] = [gi
−1gj ], 1 ≤ i ≤ n, 1 ≤ j ≤ n.

(Note that the first row of M[G ] determines the entire array.)

If Sn is the permutation group of the set {1, . . . , n}, and
α ∈ Sn, then

Mα[G ] = [gα[i ]
−1gα[j]]

is also a form of the multiplication table of G in symmetric
form.
We say that the the collection of all multiplication tables thus
arrived at are (pairwise) permutation equivalent.
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Regular Permutation Length: N[g ] = n − n
o(g)

Given a permutation σ of n distinct objects written as a
product of s disjoint cycles, c1, . . . , cs , Jacobson associates an
integer, N[σ] = (|c1| − 1) + · · ·+ (|cs | − 1), where |ci | is the
number of objects permuted by, or the “cycle length” of, ci .
Note that N is a well-defined function on the permutations of a
finite set, and that N of the identity permutation is 0.
If each element, g , of a finite group, G of order n, (abelian or
not) is represented by the permutation, ρG [g ], of the set G ,
created as that element acts via (left) translation, i.e.,
x ∈ G 7−→ gx ∈ G , (where gx is the product in G of g and x),
then we have the integer-valued function,
g ∈ G 7−→ N[ρG [g ]] = n

o(g) [o(g)− 1] = n − n
o(g) , where o(g)

is the order of g , viz., the smallest positive integer k such that
gk = e, the identity in G .
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Permutation Length Matrix

Here we are making use of a property of the regular
representation, ρG [g ]; namely that it is a permutation of n
objects, and all of its (pairwise) disjoint cycles are of the same
length, o(g).

Note: ρ[x ] is also a permutation matrix obtained
as follows: x ∈ G occurs exactly once in each row and each
column of M[G ] = [g−1

i gj ], replace occurence of x in this
matrix with a 1, 0 elsewhere, call the resulting permutation
matrix ρ[x ].

We define the regular permutation length matrix of G to be
the following n × n matrix of natural numbers (zero on the
diagonal):

N[G ] = [N[g−1
i gj ]].

What are the eigenvalues of this matrix?

What choices of eigenvectors are there?
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Is this Matrix Negative Definite?

Eventual Answer: Yes

Why Do I Care?

Definition

A function N: G → C, is negative definite on group G if and
only if the following three conditions are satisfied:
(i) N[e] ≥ 0, where e is the identity of G ,
(ii) N = N∗,
(iii) For any natural number m, any {g1, g2, . . . , gm} ⊂ G , and
any {ρ1, ρ2, . . . , ρm} ⊂ C,

m∑
i=1

ρi = 0, implies
m∑

i ,j=1

N[g−1
i gj ]ρiρj ≤ 0.



Functional
Analysis
Meets

Number
Theory:

Matrix-Valued
Euler

Functions
Non-

commutative
Number
Theory?

C*-Riemann

Marty Walter

Introduction:
Basic
Concepts

Permutation
Length Matrix
of a Finite
Group

Euler-Φ
Function for
Arbitrary
Cyclic Group
Cn

General Finite
Abelian
Groups

Is this Matrix Negative Definite?

Eventual Answer: Yes
Why Do I Care?

Definition

A function N: G → C, is negative definite on group G if and
only if the following three conditions are satisfied:
(i) N[e] ≥ 0, where e is the identity of G ,
(ii) N = N∗,
(iii) For any natural number m, any {g1, g2, . . . , gm} ⊂ G , and
any {ρ1, ρ2, . . . , ρm} ⊂ C,

m∑
i=1

ρi = 0, implies
m∑

i ,j=1

N[g−1
i gj ]ρiρj ≤ 0.
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C*-Algebras: One Parameter Semigroup of
Completely Positive Maps

Theorem

A function N : G → C is negative definite if and only if the
following two conditions are satisfied:
(i) N[e] ≥ 0,
(ii) The function g ∈ G � Exp[−tN[g ]] is positive definite for
all t > 0.
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The Riemann Hypothesis is near

The Landau function, σ[n] := MAX{o[g ] : g ∈ Sn}.

Remark

ln σ[n] < (Li−1[n])
1
2

for sufficiently large n, is equivalent to the Riemann Hypothesis.

Note: Li [x ] =
∫ x

2
dt
ln t .
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If G = Cn: N[ai ] = n − gcd [n, i ]

If G = Cn = {ai : 0 ≤ i ≤ n − 1} then note that
lcm[n, i ]gcd [n, i ] = ni , where lcm means least common multiple
and gcd , recall, is greatest common divisor. Now

o(ai ) = lcm[n,i ]
i , since (ai )

lcm[n,i ]
i = e; and no smaller power has

this property. Thus

N[ai ] = n − n

o(ai )
= n − ni

lcm[n, i ]
= n − gcd [n, i ].
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Eigenvalues for N for Cyclic Groups

We thus finally have the closed form formula for each
eigenvalue, λk , of N, 1 ≤ k < n:

λk = −
∑

d |gcd [n,k]

dφ[
n

d
].

Note that φ is the classical Euler φ-function from number
theory.
Note that λk is the eigenvalue corresponding to χk = (χ1)k ,
the usual group characters of Cn. (χ1[a] = e2πI/n.)
Note that λ0 = λn, the only positive eigenvalue, is the negative
sum of all n − 1 other eigenvalues.



Functional
Analysis
Meets

Number
Theory:

Matrix-Valued
Euler

Functions
Non-

commutative
Number
Theory?

C*-Riemann

Marty Walter

Introduction:
Basic
Concepts

Permutation
Length Matrix
of a Finite
Group

Euler-Φ
Function for
Arbitrary
Cyclic Group
Cn

General Finite
Abelian
Groups

The Formula for Aribitrary Finite Abelian Group A

If A is an abelian group of order n = Πr
k=1nk ,

where A = Cn1 × Cn2 × . . .Cnr , a product of r cyclic groups,
Cnk , of order nk , generated by ak , k = 1, . . . , r , then

N[a1
i1a2

i2 . . . ar
ir ] =

n − gcd [
n

n1
gcd [n1, i1],

n

n2
gcd [n2, i2], . . . ,

n

nr
gcd [nr , ir ] ].

The function N is associated with an n × n self-adjoint matrix,
N, whose eigenvalues are the values of the Fourier transform of
N. We calculate these eigenvalues exactly:
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The Eigenvalues for A = Cn1
× Cn2

× . . .Cnr

λk1,k2,..,kr =

−gcd [ n
n1
, n
n2
, . . . , n

nr
]
∑
{φ[d ](

r∏
i=1

ni [d ]) : d|lcm[n1, n2, . . . , nr ], ni [d ] | ki , i = 1, 2, . . . , r},

where lcm means least common multiple, and
ni [d ] = gcd [ni ,

lcm[n1,...,nr ]
d ] for all i , and where 1 ≤ ki ≤ ni ,

i = 1, . . . .r , and λk1,k2,...,kr 6= λn1,n2,...,nr . The negative of the
sum of all these eigenvalues is λn1,n2,...,nr . Also λn1,n2,...,nr is
equal to the sum of the n values of N on A.
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A Question Arose

While calculating the eigenvalues/eigenvectors the default
algorithm of Mathematica produced eigenvectors with sparse
small integer entries. I asked:

Question

How far in this direction can I go? Can I find a complete set of
eigenvectors with only 1, -1, and 0 entries?

Answer: Yes!
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A Matrix-Valued Euler Phi -Function

Definition

If Cn is the cyclic group with n elements, define the
Euler Φ-function: Φ[Cn]:=Σ{ai : gcd [i , n] = 1},
i.e., the formal sum of the generators of Cn.

Definition

If π is a matrix representation of Cn, then define the
π-representation of Φ[Cn] to be
π ∗ Φ[Cn]:=Σ{π[ai ] : gcd [i , n] = 1}, a matrix sum.
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Classical Euler Φ “=” Classical Möbius µ??

Remark

In general, there is more than one matrix representation for a
given Cn. Thus our definition of Euler Φ-function includes both
the classical Euler φ-function and the Möbius function. If we
take the trivial representation of Cn: χn : ai ∈ Cn 7→ 1, for
0 ≤ i ≤ n − 1, then χn ∗ Φ[Cn] = φ[n], Euler’s classical
function which donotes the number of natural numbers
between 0 and n relatively prime to n. If we take instead the
faithul representation, χ1 of Cn, determined by χ1[a] = e2πI/n,
we obtain χ1 ∗ Φ[Cn] = µ[n], the Möbius function of n, which
is known (among other things) to equal the sum of the
primitive nth roots of unity. Our Euler Φ-function leads to a
number of such phenomena.
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Our First Lemma

Definition

We will denote by I[n] the n × n matrix every entry of which is
the natural number 1. We denote the n × n identity matrix by
In. We define ∆[n] := I[n]− In, the n × n matrix of all 1s
except for all 0s on the main diagonal.

Lemma

If p is a prime natural number, then ρ ∗ Φ[Cp] = ∆[p].
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New Set of Eigenvectors

∆[m] has an eigenvector with eigenvalue m − 1, viz.,
~e0[m] = [1, 1, . . . , 1], 1 in each of the m positions.
The matrix ∆[m] has m − 1 eigenvectors each with eigenvalue
−1, viz., ~ek [m] = [0, . . . , 1, 0, . . . ,−1], with a single 1 in the
kth position, a single −1 in the mth position, all other positions
occupied by 0, k = 1, . . . ,m − 1.
The matrix I[m] has the same set of eigenvectors, viz., ~e0[m] is
an eigenvector with eigenvalue m, and ~ek [m] is an eigenvector
with eigenvalue 0, k = 1, . . . ,m − 1.
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Euler Φ for Prime Power Cyclic Groups

The “Euler Φ function for prime power cyclics proposition.”

Proposition

If n ≥ 2 is a natural number and p is a prime natural number,
then (up to permutation equivalence)

ρ ∗ Φ[Cpn ] = I[p]⊗(n−1) ⊗∆[p],

where I[p]⊗(n−1) is the Kronecker product of I[p] with itself,
n − 1 factors, i.e., I[p(n−1)].
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Proof

Proof: We exhibit a multiplication table for Cpn that has the

desired property. If a generates Cpn , ap
(n−1)

is an element of
order p. Let Cp denote the subgroup it generates. Write the
first row of the multiplication table of Cpn as follows: Begin
with the first row of the multiplication table of Cp, with

ap
n

= a0 = e, followed by the integral powers of ap
(n−1)

in
order, viz., akp

(n−1)
, k = 0, . . . , p − 1. We note that this Cp

contains the elements ai ∈ Cpn with gcd [i , pn] = pn or p(n−1).

Next consider ap
(n−2)

which generates a cyclic subgroup of Cpn

of order p2. There is a decomposition of Cp2 into p cosets of

subgroup Cp, viz., {akp(n−2)
Cp : k = 0, . . . , p − 1}. Note that

this subgroup Cp2 contains the elements ai ∈ Cpn with

gcd [i , pn] = pn, p(n−1), or p(n−2).
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Proof: continued

Proceed inductively, letting ap
(n−r)

generate a cyclic subgroup
of order pr , denoted Cpr , containing the ai ∈ Cpn , with
gcd [i , pn] = pn, p(n−1), . . . , or p(n−r). There is the coset
decomposition of Cpr into p cosets of subgroup Cp(r−1) , viz.,

akp
(n−r)

Cp(r−1) , k = 0, . . . , p − 1. The penultimate subgroup in

this nest of subgroups, Cp(n−1) , with order p(n−1), is generated

by ap, and this subgroup contains the elements ai ∈ Cpn such
that gcd [i , pn] = pn, p(n−1), . . . , p2, or p. The full group Cpn

admits a coset decomposition into p cosets of Cp(n−1) , viz.,

akCp(n−1) , k = 0, 1, . . . , p − 1. The cosets corresponding to

k = 1, . . . , p − 1 are the elements ai ∈ Cpn such that
gcd [i , pn] = 1.
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Proof: continued

We now observe some desired properties of the symmetric
multiplication table of Cpn whose first row is as described
above. Each subgroup multiplication table, M[Cpr ] is repeated
in the form of a pr × pr square, repeated p(n−r) times down
the main diagonal of the pn × pn square which is the entire
multiplication table. In particular, all of the elements which do
not generate all of Cpn occur in the diagonal array
M[Cp(n−1) ]⊗ Ip, while the elements ai with gcd [i , pn] = 1 fill
the rest of the table. Replacing these generators with the
number 1, and the non-generators with the number 0, we
obtain the desired matrix. �
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Eigenvectors/Eigenvalues revisited

One can immediately write down a complete set of
eigenvectors, pn of them, that work simultaneoulsly for all
I[p]⊗(r−1) ⊗∆[p]⊗ Ip

⊗(n−r), r = n, . . . , 1, by forming all of the
Kronecker products of the eigenvectors ~ek [p] with n factors, viz.

⊗n
j=1 ~ekj [p], 0 ≤ kj ≤ p − 1.

Thus ∆[p] has p − 1 eigenvalues of −1 and one eigenvalue of
p − 1.
The matrix I[p]⊗(r−1) has one eigenvalue of p(r−1) and
p(r−1) − 1 eigenvalues of 0.
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Eigenvectors/Eigenvalues continued

Thus the set of eigenvalues of ρ ∗ Φ[Cpr ]⊗ Ip
(n−r) =

I[p]⊗(r−1) ⊗∆[p]⊗ Ip
⊗(n−r), r = 1, . . . , n is equal to the

product of the sets of eigenvalues: the set (with multiplicities)
of eigenvalues of I[p]⊗(r−1) times the set (with multiplicities)
of the eigenvalues of ∆[p] times the set (with multiplicities) of
the eigenvalues of Ip

(n−r).
Thus we get the set :
{{(p(r−1)(p − 1) = φ[pr ], multiplicity 1} ×
{ −p(r−1), multiplicity p−1 }×{ 0, multiplicity (p(r−1)−1)p }},
with this whole set repeated p(n−r) times because of the
Kronecker factor of Ip

⊗(n−r).
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Eigenvectors/Eigenvalues continued

Thus the set of eigenvalues of ρ ∗ Φ[Cpr ]⊗ Ip
(n−r) =

I[p]⊗(r−1) ⊗∆[p]⊗ Ip
⊗(n−r), r = 1, . . . , n is equal to the

product of the sets of eigenvalues: the set (with multiplicities)
of eigenvalues of I[p]⊗(r−1) times the set (with multiplicities)
of the eigenvalues of ∆[p] times the set (with multiplicities) of
the eigenvalues of Ip

(n−r).

Thus we get the set :
{{(p(r−1)(p − 1) = φ[pr ], multiplicity 1} ×
{ −p(r−1), multiplicity p−1 }×{ 0, multiplicity (p(r−1)−1)p }},
with this whole set repeated p(n−r) times because of the
Kronecker factor of Ip

⊗(n−r).
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Eigenvectors/Eigenvalues continued

Thus the set of eigenvalues of ρ ∗ Φ[Cpr ]⊗ Ip
(n−r) =

I[p]⊗(r−1) ⊗∆[p]⊗ Ip
⊗(n−r), r = 1, . . . , n is equal to the

product of the sets of eigenvalues: the set (with multiplicities)
of eigenvalues of I[p]⊗(r−1) times the set (with multiplicities)
of the eigenvalues of ∆[p] times the set (with multiplicities) of
the eigenvalues of Ip

(n−r).
Thus we get the set :
{{(p(r−1)(p − 1) = φ[pr ], multiplicity 1} ×
{ −p(r−1), multiplicity p−1 }×{ 0, multiplicity (p(r−1)−1)p }},
with this whole set repeated p(n−r) times because of the
Kronecker factor of Ip

⊗(n−r).
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Cyclic Groups of Order n, any Natural Number

Our next goal is to show that our Euler Φ-function is
“multiplicative” in the number theoretic sense.
The “Euler Φ function is multiplicative proposition.” This next
Proposition is well known:

Proposition

If natural number n = n1n2, where n1 and n2 are relatively
prime natural numbers, i.e., gcd [n1, n2[= 1, then
c ∈ Cn = Cn1 × Cn2 is a generator of Cn if and only if there
exist generators ai ∈ Cni , i = 1, 2, such that c = a1a2. Thus
the Euler function, ρ ∗Φ, is Kronecker product multiplicative in
the number theoretic sense.

Proof: Given the groups and notation in Proposition, if M[Cni ],
i = 1, 2, are symmetric multiplication tables, it is useful to
write a multiplication table for Cn as a formal Kronecker
product: M[Cn] = M[Cn1 ]⊗M[Cn2 ].
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Cyclic Groups of Order n, any Natural Number

Our next goal is to show that our Euler Φ-function is
“multiplicative” in the number theoretic sense.
The “Euler Φ function is multiplicative proposition.” This next
Proposition is well known:

Proposition

If natural number n = n1n2, where n1 and n2 are relatively
prime natural numbers, i.e., gcd [n1, n2[= 1, then
c ∈ Cn = Cn1 × Cn2 is a generator of Cn if and only if there
exist generators ai ∈ Cni , i = 1, 2, such that c = a1a2. Thus
the Euler function, ρ ∗Φ, is Kronecker product multiplicative in
the number theoretic sense.

Proof: Given the groups and notation in Proposition, if M[Cni ],
i = 1, 2, are symmetric multiplication tables, it is useful to
write a multiplication table for Cn as a formal Kronecker
product: M[Cn] = M[Cn1 ]⊗M[Cn2 ].



Functional
Analysis
Meets

Number
Theory:

Matrix-Valued
Euler

Functions
Non-

commutative
Number
Theory?

C*-Riemann

Marty Walter

Introduction:
Basic
Concepts

Permutation
Length Matrix
of a Finite
Group

Euler-Φ
Function for
Arbitrary
Cyclic Group
Cn

General Finite
Abelian
Groups

proof cont.

It is then easy to see that ρ[c] = ρ[a1]⊗ ρ[a2]. Thus if
ci1,i2 = ai1ai2 , 1 ≤ i1 ≤ φ[n1], and 1 ≤ i2 ≤ φ[n2] are all of the
generators involved, where φ is Euler’s orginal φ-function, then
it is not hard to see that Σi1,i2ρ[ci1,i2 ] = (Σi1ρ[ai1 ])⊗ (Σi2ρ[ai2 ]).
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Remark

Remark

We have just used special properties of the permutation
matrices ρ[x ]. (For properties of the Kronecker product see
Bernstein.) Note that while the Kronecker product is
associative and distributes over addition, it is not commutative.
However, although in general A⊗ B 6= B ⊗ A, they are related,
cf., “cannonical shuffle.” Now in this special case it is
important and easy to see that M[Cn1 ]⊗M[Cn2 ] is permutation
equivalent to M[Cn2 ]⊗M[Cn1 ], since the first row of the former
corresponds to a decomposition of Cn1 × Cn2 into cosets of Cn1 ,
and the latter’s first row corresponds to a decomposition of the
same group into cosets of Cn2 .
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Cyclic Group: General Case

We now have the following formula for the matrix-valued Euler
Φ-function of a cyclic group of order n.

Theorem

Given the unique factrorization of natural number n = Πs
i=1pni

i ,
where the pi are pairwise distinct primes for i = 1, . . . , s, then
one can express Cn = Cp

n1
1
× Cp

n2
2
× · · · × Cpnss , the direct

product of prime-power cyclic groups. Thus

ρ ∗ Φ[Cn] =
s⊗

i=1

I[pi ]
⊗(ni−1) ⊗∆[pi ],

(up to permutation equivalence).

Proof: From the structure theorem for finite abelian cyclic
groups, Cn can be expressed as the direct product of prime
power cyclic groups as described.
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proof cont.

If M[Cpni ] is the symmetric multiplication table described in the
proof of “Euler Prime Power Proposition,” then write the
formal Kronecker product: ⊗s

i=1M[Cpni ] (which is, M[Cn], up
to permutation equivalence). The theorem follows by
inductively applying the Euler Prime Power and Kronecker
Multiplicative Propositions.”
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Remark

Remark

It is a routine matter to write down the set of subgroups, C n
d

of
Cn, which is in bijection with the set of divisors d of n. Then,
using a Corollary of the “Prime Power Proposition,” one can
write down the corresponding ρ ∗ Φ[C n

d
] function for each

embedded subgroup. Note that the divisors of n can be linearly
ordered, or partially ordered by the divisor relation. Also the

maps, d ↔ n

d
, give two enumerations of the divisors of n. We

use whichever is notationally convenient.
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An Euler Φ-Function for Finite Abelian Groups

Given a finite abelian group G of order n = Πr
i=1pni

i , where the
pi are pairwise distinct primes, it is well known that

G = G [p1]× G [p2]× · · · × G [pr ],

a direct product, where the G [pi ] are the subgroups of
elements whose orders are powers of pi , i = 1, 2 . . . , r . (In fact,
G [pi ] is the Sylow pi -group of G .)
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Let’s Look at one Sylow Subgroup

Now each G [pi ] is itself the direct product of cyclic
prime-power subgroups; thus

G [pi ] = Cpi
si1 × Cpi

si2 × · · · × C
pi

siti
,

Thus we need to extend the “Prime Power Proposition” to a
result that “works” for direct products of prime power cyclic
groups, of the same prime.
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General Theorem for One Factor

Proposition

Let p be a prime natural number and let
G = G [p] = Cps1 × Cps2 × · · · × Cpst be the direct product of
cyclic prime-power subgroups with non-increasing integral
powers of this prime p. To be specific, suppose that
s1 = · · · = sm > sm+1 ≥ · · · ≥ st . Then the symmetric
multiplication table for G can be written (up to permutation
equivalence) in such a way that the Euler Φ-function can be
defined for this group and satsifies:

ρ ∗ Φ[G ] = I[p−m
t∏

k=1

psk ]⊗∆[pm].
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Final Remark

Remark

To obtain this matrix each group element of maximal order,
viz., order ps1 , in the group multiplication table is replaced by
the number 1. Thus “maximal order” generalizes “gcd =1” in
this context.
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THANKS FOR ATTENTION!
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