Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non-commutative Number Theory?
 C*-Riemann

Marty Walter
Martin.Walter@Colorado.Edu

JMM-Denver January 16, 2020

Definition of Euler Φ-Function

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_{n}

Definition

Let n be a natural number. $\Phi[n]$ is the number of integers k in the range $1 \leq k \leq n$ for which the greatest common divisor $\operatorname{gcd}(n, k)=1$.

Definition of Möbius Function

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler-Ф Function for Arbitrary Cyclic Group

Definition

Let n be a natural number.
$\mu[n]$ is given by: $\mu[1]=1, \mu[n]=0$ if n is divisible by the square of a prime number, otherwise $\mu[n]=(-1)^{k}$, where k is the number of prime factors of n.

Matrix-Valued Euler Φ-Functions

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_{n}

Claim: Each natural number n determines a unique $n \times n$ ("Euler") matrix modulo conjugation by permutation matrices.

Matrix-Valued Euler Φ-Functions

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

Claim: Each natural number n determines a unique $n \times n$ ("Euler") matrix modulo conjugation by permutation matrices. If $C_{n}=\left\{a^{0}=a^{n}=e, a^{1}, \ldots, a^{n-1}\right\}$ is a cyclic group with n elements, where $n=\Pi_{i=1}^{r} p_{i}^{n_{i}}$, the p_{i} being pairwise distinct primes for $i=1, \ldots, r$,

Matrix-Valued Euler Φ-Functions

Functional
Analysis Meets Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation

Claim: Each natural number n determines a unique $n \times n$ ("Euler") matrix modulo conjugation by permutation matrices. If $C_{n}=\left\{a^{0}=a^{n}=e, a^{1}, \ldots, a^{n-1}\right\}$ is a cyclic group with n elements, where $n=\Pi_{i=1}^{r} p_{i}^{n_{i}}$, the p_{i} being pairwise distinct primes for $i=1, \ldots, r$,
Define the Euler Φ-function:

Definition

$$
\Phi\left[C_{n}\right]:=\sum\left\{a^{i}: \operatorname{gcd}[i, n]=1\right\}
$$

i.e., the formal sum of elements of C_{n} which generate C_{n}, where $\operatorname{gcd}[x, y]$ stands for greatest common divisor of integers x and y.

Representation π of Φ

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler-Ф Function for Arbitrary Cyclic Group

If π is a matrix representation of C_{n}, then $\Phi\left[C_{n}\right]$ can be represented/defined as a matrix as well, viz.,

Definition

$\pi * \Phi\left[C_{n}\right]:=\sum\left\{\pi\left[a^{i}\right]: \operatorname{gcd}[i, n]=1\right\}$, a sum of matrices called the π representation of Φ.

Euler, Möbius just two different representations

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

For $0 \leq k \leq n-1$, let χ_{k} be the homomorphism of $G=C_{n}$ into \mathbb{C} defined by $\chi_{k}\left[a^{j}\right]=e^{2 \pi l k j / n}, 0 \leq j \leq n-1$.
(Note that χ_{k} is called a character of C_{n}, or an irreducible unitary representation of C_{n}.)

Euler, Möbius just two different representations

Functional
Analysis Meets
Number
Theory:
Matrix-Valued
Euler
Functions Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

For $0 \leq k \leq n-1$, let χ_{k} be the homomorphism of $G=C_{n}$ into \mathbb{C} defined by $\chi_{k}\left[a^{j}\right]=e^{2 \pi / k j / n}, 0 \leq j \leq n-1$.
(Note that χ_{k} is called a character of C_{n}, or
an irreducible unitary representation of C_{n}.)
We have the following:
(i) $\chi_{0} * \Phi\left[C_{n}\right]=\phi[n]$, the classical Euler Φ-function;

Euler, Möbius just two different representations

Functional
Analysis Meets
Number
Theory:
Matrix-Valued
Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation
Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

For $0 \leq k \leq n-1$, let χ_{k} be the homomorphism of $G=C_{n}$ into \mathbb{C} defined by $\chi_{k}\left[a^{j}\right]=e^{2 \pi / k j / n}, 0 \leq j \leq n-1$.
(Note that χ_{k} is called a character of C_{n}, or
an irreducible unitary representation of C_{n}.)
We have the following:
(i) $\chi_{0} * \Phi\left[C_{n}\right]=\phi[n]$, the classical Euler Φ-function;
(ii) $\chi_{1} * \Phi\left[C_{n}\right]=\mu[n]$, the classical Möbius function;

Euler, Möbius just two different representations

Functional
Analysis Meets
Number
Theory:
Matrix-Valued
Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation

For $0 \leq k \leq n-1$, let χ_{k} be the homomorphism of $G=C_{n}$ into \mathbb{C} defined by $\chi_{k}\left[a^{j}\right]=e^{2 \pi / k j / n}, 0 \leq j \leq n-1$.
(Note that χ_{k} is called a character of C_{n}, or an irreducible unitary representation of C_{n}.)

We have the following:
(i) $\chi_{0} * \Phi\left[C_{n}\right]=\phi[n]$, the classical Euler Φ-function; (ii) $\chi_{1} * \Phi\left[C_{n}\right]=\mu[n]$, the classical Möbius function;
(iii) $\chi_{k} * \Phi\left[C_{n}\right]=\sum_{d \mid g c d[k, n]} \mu\left[\frac{n}{d}\right] d=\frac{\phi[n]}{\phi\left[\frac{n}{g c d[k, n]}\right]} \mu\left[\frac{n}{g c d[k, n]}\right]$,
a Ramanujan sum.

Definition of Euler Φ-matrix of C_{n}

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction: Basic
Concepts
Permutation
Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

We prove some elementary properties of this Euler Φ-function for cyclic groups, including the formula:

Theorem
$\rho * \Phi\left[C_{n}\right]=\bigotimes_{i=1}^{r} \mathbb{I}\left[p_{i}\right]^{\otimes\left(n_{i}-1\right)} \otimes \Delta\left[p_{i}\right]$,
which we call the "Euler Φ-matrix of C_{n},"
where $\mathbb{I}[p]$ is the $p \times p$ matrix of all 1 s and
$\Delta[p]=\mathbb{I}[p]-I_{p}$,
I_{p} being the $p \times p$ identity matrix,
ρ being a regular representation.

Nice Eigenvector Prolem: Solved

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

We use this formula to solve to a previously posed problem, viz., each Euler Φ-matrix has a complete set of eigenvectors all the entries of which come from the set $\{-1,0,1\}$.

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

Multiplication Table of a Finite Group: "Standard Form"

Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter
Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- Φ
Function for
Arbitrary
Cyclic Group
C_{n}

Write group G as a $1 \times n$ matrix:

Multiplication Table of a Finite Group: "Standard Form"

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for

Write group G as a $1 \times n$ matrix:

$$
G=\left[g_{1}, g_{2}, \ldots, g_{n}\right]
$$

Let the $n \times 1$ matrix: G^{*}, be the conjugate transpose of G, where $g_{i}^{*}=g_{i}^{-1}$.
Then the $n \times n$ "standard (positive-symmetric) matrix multiplication table of G " is:

$$
M[G]=G^{*} G=\left[g_{i}^{-1} g_{j}\right] .
$$

Permutation Equivalence of Group Multiplication Tables

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

Given $M[G]=\left[g_{i}^{-1} g_{j}\right], 1 \leq i \leq n, 1 \leq j \leq n$.
(Note that the first row of $M[G]$ determines the entire array.)

Permutation Equivalence of Group Multiplication Tables

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Given $M[G]=\left[g_{i}^{-1} g_{j}\right], 1 \leq i \leq n, 1 \leq j \leq n$. (Note that the first row of $M[G]$ determines the entire array.)

If \mathbb{S}_{n} is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_{n}$, then

Permutation Equivalence of Group Multiplication Tables

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Given $M[G]=\left[g_{i}{ }^{-1} g_{j}\right], 1 \leq i \leq n, 1 \leq j \leq n$.
(Note that the first row of $M[G]$ determines the entire array.)
If \mathbb{S}_{n} is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_{n}$, then

$$
M_{\alpha}[G]=\left[g_{\alpha[i]}{ }^{-1} g_{\alpha[j]}\right]
$$

is also a form of the multiplication table of G in symmetric form.

Permutation Equivalence of Group Multiplication Tables

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory?
C*-Riemann
Marty Walter

Introduction

Given $M[G]=\left[g_{i}{ }^{-1} g_{j}\right], 1 \leq i \leq n, 1 \leq j \leq n$.
(Note that the first row of $M[G]$ determines the entire array.)
If \mathbb{S}_{n} is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_{n}$, then

$$
M_{\alpha}[G]=\left[g_{\alpha[i]}^{-1} g_{\alpha[j]}\right]
$$

is also a form of the multiplication table of G in symmetric form.
We say that the the collection of all multiplication tables thus arrived at are (pairwise) permutation equivalent.

Regular Permutation Length: $N[g]=n-\frac{n}{o(g)}$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter
Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group
Euler-Ф Function for

Regular Permutation Length: $N[g]=n-\frac{n}{o(g)}$

Functional
Analysis Meets
Number
Theory:
Matrix-Valued
Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Given a permutation σ of n distinct objects written as a product of s disjoint cycles, c_{1}, \ldots, c_{s}, Jacobson associates an integer, $N[\sigma]=\left(\left|c_{1}\right|-1\right)+\cdots+\left(\left|c_{s}\right|-1\right)$, where $\left|c_{i}\right|$ is the number of objects permuted by, or the "cycle length" of, c_{i}. Note that N is a well-defined function on the permutations of a finite set, and that N of the identity permutation is 0 .

Regular Permutation Length: $N[g]=n-\frac{n}{o(g)}$

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Given a permutation σ of n distinct objects written as a product of s disjoint cycles, c_{1}, \ldots, c_{s}, Jacobson associates an integer, $N[\sigma]=\left(\left|c_{1}\right|-1\right)+\cdots+\left(\left|c_{s}\right|-1\right)$, where $\left|c_{i}\right|$ is the number of objects permuted by, or the "cycle length" of, c_{i}. Note that N is a well-defined function on the permutations of a finite set, and that N of the identity permutation is 0 . If each element, g, of a finite group, G of order n, (abelian or not) is represented by the permutation, $\rho_{G}[g]$, of the set G, created as that element acts via (left) translation, i.e., $x \in G \longmapsto g x \in G$, (where $g x$ is the product in G of g and x), then we have the integer-valued function, $g \in G \longmapsto N\left[\rho_{G}[g]\right]=\frac{n}{o(g)}[o(g)-1]=n-\frac{n}{o(g)}$, where $o(g)$ is the order of g, viz., the smallest positive integer k such that $g^{k}=e$, the identity in G.

Permutation Length Matrix

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative

Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for

Here we are making use of a property of the regular representation, $\rho_{G}[g]$; namely that it is a permutation of n objects, and all of its (pairwise) disjoint cycles are of the same length, $o(g)$.

Permutation Length Matrix

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Here we are making use of a property of the regular representation, $\rho_{G}[g]$; namely that it is a permutation of n objects, and all of its (pairwise) disjoint cycles are of the same length, $o(g)$. Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G]=\left[g_{i}^{-1} g_{j}\right]$, replace occurence of x in this matrix with a 1,0 elsewhere, call the resulting permutation matrix $\rho[x]$.

Permutation Length Matrix

Functional Analysis Meets Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Here we are making use of a property of the regular representation, $\rho_{G}[g]$; namely that it is a permutation of n objects, and all of its (pairwise) disjoint cycles are of the same length, $o(g)$. Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G]=\left[g_{i}^{-1} g_{j}\right]$, replace occurence of x in this matrix with a 1,0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$
\mathbf{N}[G]=\left[N\left[g_{i}^{-1} g_{j}\right]\right] .
$$

Permutation Length Matrix

Functional Analysis Meets Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Here we are making use of a property of the regular representation, $\rho_{G}[g]$; namely that it is a permutation of n objects, and all of its (pairwise) disjoint cycles are of the same length, $o(g)$. Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G]=\left[g_{i}^{-1} g_{j}\right]$, replace occurence of x in this matrix with a 1,0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$
\mathbf{N}[G]=\left[N\left[g_{i}^{-1} g_{j}\right]\right]
$$

What are the eigenvalues of this matrix?

Permutation Length Matrix

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Here we are making use of a property of the regular representation, $\rho_{G}[g]$; namely that it is a permutation of n objects, and all of its (pairwise) disjoint cycles are of the same length, $o(g)$. Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G]=\left[g_{i}^{-1} g_{j}\right]$, replace occurence of x in this matrix with a 1,0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$
\mathbf{N}[G]=\left[N\left[g_{i}^{-1} g_{j}\right]\right] .
$$

What are the eigenvalues of this matrix?
What choices of eigenvectors are there?

Is this Matrix Negative Definite?

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter
Introduction: Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler-Ф
Function for
Arbitrary
Cyclic Group
C_{n}
\section*{Eventual Answer: Yes}

Is this Matrix Negative Definite?

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Eventual Answer: Yes
Why Do I Care?

Definition

A function $N: G \rightarrow \mathbb{C}$, is negative definite on group G if and only if the following three conditions are satisfied:
(i) $N[e] \geq 0$, where e is the identity of G,
(ii) $N=N^{*}$,
(iii) For any natural number m, any $\left\{g_{1}, g_{2}, \ldots, g_{m}\right\} \subset G$, and any $\left\{\rho_{1}, \rho_{2}, \ldots, \rho_{m}\right\} \subset \mathbb{C}$,

$$
\sum_{i=1}^{m} \rho_{i}=0, \quad \text { implies } \sum_{i, j=1}^{m} N\left[g_{i}^{-1} g_{j}\right] \overline{\rho_{i}} \rho_{j} \leq 0
$$

C*-Algebras: One Parameter Semigroup of Completely Positive Maps

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

Theorem

A function $N: G \rightarrow \mathbb{C}$ is negative definite if and only if the following two conditions are satisfied:
(i) $N[e] \geq 0$,
(ii) The function $g \in G \mapsto \operatorname{Exp}[-t N[g]]$ is positive definite for all $t>0$.

The Riemann Hypothesis is near

Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter
Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- Φ
Function for
Arbitrary
Cyclic Group
C_{n}

The Landau function, $\sigma[n]:=\operatorname{MAX}\left\{o[g]: g \in \mathbb{S}_{n}\right\}$.

The Riemann Hypothesis is near

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler-ф Function for Arbitrary Cyclic Group

The Landau function, $\sigma[n]:=\operatorname{MAX}\left\{o[g]: g \in \mathbb{S}_{n}\right\}$.
Remark

$$
\ln \sigma[n]<\left(L i^{-1}[n]\right)^{\frac{1}{2}}
$$

for sufficiently large n, is equivalent to the Riemann Hypothesis.

The Riemann Hypothesis is near

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

The Landau function, $\sigma[n]:=\operatorname{MAX}\left\{o[g]: g \in \mathbb{S}_{n}\right\}$.
Remark

$$
\ln \sigma[n]<\left(L i^{-1}[n]\right)^{\frac{1}{2}}
$$

for sufficiently large n, is equivalent to the Riemann Hypothesis.
Note: $\operatorname{Li}[x]=\int_{2}^{x} \frac{\mathrm{~d} t}{\ln t}$.

If $G=C_{n}: N\left[a^{i}\right]=n-\operatorname{gcd}[n, i]$

 Functional
 Analysis
 Meets
 Number
 Theory:
 Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter
Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- Φ
Function for
Arbitrary
Cyclic Group
C_{n}

$$
\text { If } G=C_{n}: N\left[a^{i}\right]=n-\operatorname{gcd}[n, i]
$$

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ

If $G=C_{n}=\left\{a^{i}: 0 \leq i \leq n-1\right\}$ then note that $\operatorname{Icm}[n, i] g c d[n, i]=n i$, where $/ c m$ means least common multiple and $g c d$, recall, is greatest common divisor. Now $o\left(a^{i}\right)=\frac{\operatorname{lcm}[n, i]}{i}$, since $\left(a^{i}\right)^{\frac{\mid \operatorname{cm}[n, i]}{i}}=e$; and no smaller power has this property. Thus

$$
N\left[a^{i}\right]=n-\frac{n}{o\left(a^{i}\right)}=n-\frac{n i}{\operatorname{lcm}[n, i]}=n-\operatorname{gcd}[n, i] .
$$

Eigenvalues for N for Cyclic Groups

Functional
Analysis Meets
Number
Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

We thus finally have the closed form formula for each eigenvalue, λ_{k}, of $\mathbf{N}, 1 \leq k<n$:

$$
\lambda_{k}=-\sum_{d \mid g c d[n, k]} d \phi\left[\frac{n}{d}\right] .
$$

Note that ϕ is the classical Euler ϕ-function from number theory.
Note that λ_{k} is the eigenvalue corresponding to $\chi_{k}=\left(\chi_{1}\right)^{k}$, the usual group characters of $C_{n} .\left(\chi_{1}[a]=e^{2 \pi I / n}.\right)$
Note that $\lambda_{0}=\lambda_{n}$, the only positive eigenvalue, is the negative sum of all $n-1$ other eigenvalues.

The Formula for Aribitrary Finite Abelian Group A

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction

If A is an abelian group of order $n=\Pi_{k=1}^{r} n_{k}$, where $A=C_{n_{1}} \times C_{n_{2}} \times \ldots C_{n_{r}}$, a product of r cyclic groups, $C_{n_{k}}$, of order n_{k}, generated by $a_{k}, k=1, \ldots, r$, then

$$
N\left[a_{1}{ }^{i_{1}} a_{2}^{i_{2}} \ldots a_{r}^{i_{r}}\right]=
$$

$$
n-\operatorname{gcd}\left[\frac{n}{n_{1}} \operatorname{gcd}\left[n_{1}, i_{1}\right], \frac{n}{n_{2}} \operatorname{gcd}\left[n_{2}, i_{2}\right], \ldots, \frac{n}{n_{r}} \operatorname{gcd}\left[n_{r}, i_{r}\right]\right] .
$$

The function N is associated with an $n \times n$ self-adjoint matrix, \mathbf{N}, whose eigenvalues are the values of the Fourier transform of N. We calculate these eigenvalues exactly:

The Eigenvalues for $A=C_{n_{1}} \times C_{n_{2}} \times \ldots C_{n_{r}}$

Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- Φ
Function for
Arbitrary
Cyclic Group
C_{n}

The Eigenvalues for $A=C_{n_{1}} \times C_{n_{2}} \times \ldots C_{n_{r}}$

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:

$$
\begin{gathered}
\lambda_{k_{1}, k_{2}, \ldots, k_{r}}= \\
-\operatorname{gcd}\left[\frac{n}{n_{1}}, \frac{n}{n_{2}}, \ldots, \frac{n}{n_{r}}\right] \sum\left\{\phi[d]\left(\prod_{i=1}^{r} n_{i}[d]\right): d| | c m\left[n_{1}, n_{2}, \ldots, n_{r}\right], n_{i}[d] \mid k_{i}, i=1,2, \ldots, r\right\},
\end{gathered}
$$

where 1 cm means least common multiple, and $n_{i}[d]=\operatorname{gcd}\left[n_{i}, \frac{\mid c m\left[n_{1}, \ldots, n_{r}\right]}{d}\right]$ for all i, and where $1 \leq k_{i} \leq n_{i}$, $i=1, \ldots . r$, and $\lambda_{k_{1}, k_{2}, \ldots, k_{r}} \neq \lambda_{n_{1}, n_{2}, \ldots, n_{r}}$. The negative of the sum of all these eigenvalues is $\lambda_{n_{1}, n_{2}, \ldots, n_{r}}$. Also $\lambda_{n_{1}, n_{2}, \ldots, n_{r}}$ is equal to the sum of the n values of N on A.

A Question Arose

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question
 How far in this direction can I go? Can I find a complete set of eigenvectors with only $1,-1$, and 0 entries?

A Question Arose

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question
 How far in this direction can I go? Can I find a complete set of eigenvectors with only $1,-1$, and 0 entries?

Answer:

A Question Arose

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question
 How far in this direction can I go? Can I find a complete set of eigenvectors with only $1,-1$, and 0 entries?

Answer: Yes!

A Matrix-Valued Euler Phi-Function

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite Group

Definition

If C_{n} is the cyclic group with n elements, define the Euler Φ-function: $\Phi\left[C_{n}\right]:=\sum\left\{a^{i}: \operatorname{gcd}[i, n]=1\right\}$, i.e., the formal sum of the generators of C_{n}.

Definition

If π is a matrix representation of C_{n}, then define the π-representation of $\Phi\left[C_{n}\right]$ to be $\pi * \Phi\left[C_{n}\right]:=\sum\left\{\pi\left[a^{i}\right]: \operatorname{gcd}[i, n]=1\right\}$, a matrix sum.

Classical Euler Φ " $=$ " Classical Möbius μ ??

Functional
Analysis Meets Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite Group

Euler- Φ
Function for Arbitrary Cyclic Group

Remark

In general, there is more than one matrix representation for a given C_{n}. Thus our definition of Euler Φ-function includes both the classical Euler ϕ-function and the Möbius function. If we take the trivial representation of $C_{n}: \chi_{n}: a^{i} \in C_{n} \mapsto 1$, for $0 \leq i \leq n-1$, then $\chi_{n} * \Phi\left[C_{n}\right]=\phi[n]$, Euler's classical function which donotes the number of natural numbers between 0 and n relatively prime to n. If we take instead the faithul representation, χ_{1} of C_{n}, determined by $\chi_{1}[a]=e^{2 \pi I / n}$, we obtain $\chi_{1} * \Phi\left[C_{n}\right]=\mu[n]$, the Möbius function of n, which is known (among other things) to equal the sum of the primitive $n^{\text {th }}$ roots of unity. Our Euler Φ-function leads to a number of such phenomena.

Our First Lemma

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

Definition

We will denote by $\mathbb{I}[n]$ the $n \times n$ matrix every entry of which is the natural number 1 . We denote the $n \times n$ identity matrix by I_{n}. We define $\Delta[n]:=\mathbb{I}[n]-I_{n}$, the $n \times n$ matrix of all 1 s except for all 0 s on the main diagonal.

Lemma

If p is a prime natural number, then $\rho * \Phi\left[C_{p}\right]=\Delta[p]$.

New Set of Eigenvectors

Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- ϕ
Function for
Arbitrary
Cyclic Group
C

New Set of Eigenvectors

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for
$\Delta[m]$ has an eigenvector with eigenvalue $m-1$, viz., $\overrightarrow{e_{0}}[m]=[1,1, \ldots, 1], 1$ in each of the m positions.

New Set of Eigenvectors

Functional
Analysis Meets
Number Theory:
Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group
$\Delta[m]$ has an eigenvector with eigenvalue $m-1$, viz., $\overrightarrow{e_{0}}[m]=[1,1, \ldots, 1], 1$ in each of the m positions. The matrix $\Delta[m]$ has $m-1$ eigenvectors each with eigenvalue -1 , viz., $\overrightarrow{e_{k}}[m]=[0, \ldots, 1,0, \ldots,-1]$, with a single 1 in the $k^{\text {th }}$ position, a single -1 in the $m^{\text {th }}$ position, all other positions occupied by $0, k=1, \ldots, m-1$.

New Set of Eigenvectors

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:
$\Delta[m]$ has an eigenvector with eigenvalue $m-1$, viz., $\overrightarrow{e_{0}}[m]=[1,1, \ldots, 1], 1$ in each of the m positions.
The matrix $\Delta[m]$ has $m-1$ eigenvectors each with eigenvalue -1 , viz., $\overrightarrow{e_{k}}[m]=[0, \ldots, 1,0, \ldots,-1]$, with a single 1 in the $k^{\text {th }}$ position, a single -1 in the $m^{\text {th }}$ position, all other positions occupied by $0, k=1, \ldots, m-1$.
The matrix $\mathbb{I}[m]$ has the same set of eigenvectors, viz., $\overrightarrow{e_{0}}[m]$ is an eigenvector with eigenvalue m, and $\overrightarrow{e_{k}}[m]$ is an eigenvector with eigenvalue $0, k=1, \ldots, m-1$.

Euler Φ for Prime Power Cyclic Groups

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group

The "Euler Φ function for prime power cyclics proposition."

Proposition

If $n \geq 2$ is a natural number and p is a prime natural number, then (up to permutation equivalence)

$$
\rho * \Phi\left[C_{p^{n}}\right]=\mathbb{I}[p]^{\otimes(n-1)} \otimes \Delta[p],
$$

where $\mathbb{I}[p]^{\otimes(n-1)}$ is the Kronecker product of $\mathbb{I}[p]$ with itself, $n-1$ factors, i.e., $\mathbb{I}\left[p^{(n-1)}\right]$.

Proof

Functional

Proof: We exhibit a multiplication table for $C_{p^{n}}$ that has the desired property. If a generates $C_{p^{n}}, a^{p^{(n-1)}}$ is an element of order p. Let C_{p} denote the subgroup it generates. Write the first row of the multiplication table of $C_{p^{n}}$ as follows: Begin with the first row of the multiplication table of C_{p}, with $a^{p^{n}}=a^{0}=e$, followed by the integral powers of $a^{p^{(n-1)}}$ in order, viz., $a^{k p^{(n-1)}}, k=0, \ldots, p-1$. We note that this C_{p} contains the elements $a^{i} \in C_{p^{n}}$ with $\operatorname{gcd}\left[i, p^{n}\right]=p^{n}$ or $p^{(n-1)}$. Next consider $a^{p^{(n-2)}}$ which generates a cyclic subgroup of $C_{p^{n}}$ of order p^{2}. There is a decomposition of $C_{p^{2}}$ into p cosets of subgroup C_{p}, viz., $\left\{a^{k p^{(n-2)}} C_{p}: k=0, \ldots, p-1\right\}$. Note that this subgroup $C_{p^{2}}$ contains the elements $a^{i} \in C_{p^{n}}$ with $\operatorname{gcd}\left[i, p^{n}\right]=p^{n}, p^{(n-1)}$, or $p^{(n-2)}$.

Proof: continued

Functional
Analysis Meets
Number
Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Proceed inductively, letting $a^{p^{(n-r)}}$ generate a cyclic subgroup of order p^{r}, denoted $C_{p^{r}}$, containing the $a^{i} \in C_{p^{n}}$, with $\operatorname{gcd}\left[i, p^{n}\right]=p^{n}, p^{(n-1)}, \ldots$, or $p^{(n-r)}$. There is the coset decomposition of $C_{p^{r}}$ into p cosets of subgroup $C_{p^{(r-1)}}$, viz., $a^{k p^{(n-r)}} C_{p^{(r-1)}}, k=0, \ldots, p-1$. The penultimate subgroup in this nest of subgroups, $C_{p^{(n-1)}}$, with order $p^{(n-1)}$, is generated by a^{p}, and this subgroup contains the elements $a^{i} \in C_{p^{n}}$ such that $\operatorname{gcd}\left[i, p^{n}\right]=p^{n}, p^{(n-1)}, \ldots, p^{2}$, or p. The full group $C_{p^{n}}$ admits a coset decomposition into p cosets of $C_{p^{(n-1)}}$, viz., $a^{k} C_{p^{(n-1)}}, k=0,1, \ldots, p-1$. The cosets corresponding to $k=1, \ldots, p-1$ are the elements $a^{i} \in C_{p^{n}}$ such that $\operatorname{gcd}\left[i, p^{n}\right]=1$.

Proof: continued

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

We now observe some desired properties of the symmetric multiplication table of $C_{p^{n}}$ whose first row is as described above. Each subgroup multiplication table, $M\left[C_{p^{r}}\right]$ is repeated in the form of a $p^{r} \times p^{r}$ square, repeated $p^{(n-r)}$ times down the main diagonal of the $p^{n} \times p^{n}$ square which is the entire multiplication table. In particular, all of the elements which do not generate all of $C_{p^{n}}$ occur in the diagonal array $M\left[C_{p^{(n-1)}}\right] \otimes I_{p}$, while the elements a^{i} with $\operatorname{gcd}\left[i, p^{n}\right]=1$ fill the rest of the table. Replacing these generators with the number 1 , and the non-generators with the number 0 , we obtain the desired matrix. \square

Eigenvectors/Eigenvalues revisited

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

One can immediately write down a complete set of eigenvectors, p^{n} of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p}^{\otimes(n-r)}, r=n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\overrightarrow{e_{k}}[p]$ with n factors, viz.

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for

Eigenvectors/Eigenvalues revisited

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory?
C*-Riemann
Marty Walter

One can immediately write down a complete set of eigenvectors, p^{n} of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p}^{\otimes(n-r)}, r=n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\overrightarrow{e_{k}}[p]$ with n factors, viz. $\otimes_{j=1}^{n} \overrightarrow{e_{j}}[p], 0 \leq k_{j} \leq p-1$.

Eigenvectors/Eigenvalues revisited

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite Group

One can immediately write down a complete set of eigenvectors, p^{n} of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p}^{\otimes(n-r)}, r=n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\overrightarrow{e_{k}}[p]$ with n factors, viz. $\otimes_{j=1}^{n} \overrightarrow{e_{k}}[p], 0 \leq k_{j} \leq p-1$.
Thus $\Delta[p]$ has $p-1$ eigenvalues of -1 and one eigenvalue of $p-1$.

Eigenvectors/Eigenvalues revisited

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

One can immediately write down a complete set of eigenvectors, p^{n} of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p}{ }^{\otimes(n-r)}, r=n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\overrightarrow{e_{k}}[p]$ with n factors, viz. $\otimes_{j=1}^{n} \overrightarrow{e_{k}}[p], 0 \leq k_{j} \leq p-1$.
Thus $\Delta[p]$ has $p-1$ eigenvalues of -1 and one eigenvalue of $p-1$.
The matrix $\mathbb{I}[p]^{\otimes(r-1)}$ has one eigenvalue of $p^{(r-1)}$ and $p^{(r-1)}-1$ eigenvalues of 0 .

Eigenvectors/Eigenvalues continued

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann Marty Walter

Introduction: Basic

Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ
Function for

Thus the set of eigenvalues of $\rho * \Phi\left[C_{p^{r}}\right] \otimes I_{p}{ }^{(n-r)}=$

Eigenvectors/Eigenvalues continued

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Thus the set of eigenvalues of $\rho * \Phi\left[C_{p^{r}}\right] \otimes I_{p}{ }^{(n-r)}=$ $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p}^{\otimes(n-r)}, r=1, \ldots, n$ is equal to the product of the sets of eigenvalues: the set (with multiplicities) of eigenvalues of $\mathbb{I}[p]^{\otimes(r-1)}$ times the set (with multiplicities) of the eigenvalues of $\Delta[p]$ times the set (with multiplicities) of the eigenvalues of $I_{p}{ }^{(n-r)}$.

Eigenvectors/Eigenvalues continued

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Thus the set of eigenvalues of $\rho * \Phi\left[C_{p^{r}}\right] \otimes I_{p}{ }^{(n-r)}=$ $\mathbb{I}[p]^{\otimes(r-1)} \otimes \Delta[p] \otimes I_{p} \otimes(n-r), r=1, \ldots, n$ is equal to the product of the sets of eigenvalues: the set (with multiplicities) of eigenvalues of $\mathbb{I}[p]^{\otimes(r-1)}$ times the set (with multiplicities) of the eigenvalues of $\Delta[p]$ times the set (with multiplicities) of the eigenvalues of $I_{p}{ }^{(n-r)}$.
Thus we get the set :
$\left\{\left\{\left(p^{(r-1)}(p-1)=\phi\left[p^{r}\right]\right.\right.\right.$, multiplicity 1$\} \times$ $\left\{-p^{(r-1)}\right.$, multiplicity $\left.p-1\right\} \times\left\{0\right.$, multiplicity $\left.\left.\left(p^{(r-1)}-1\right) p\right\}\right\}$, with this whole set repeated $p^{(n-r)}$ times because of the Kronecker factor of $I_{p}{ }^{\otimes(n-r)}$.

Cyclic Groups of Order n, any Natural Number

Functional Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite
Group

Euler-Ф

Function for Arbitrary Cyclic Group

Our next goal is to show that our Euler Φ-function is "multiplicative" in the number theoretic sense.
The "Euler Φ function is multiplicative proposition." This next Proposition is well known:

Proposition

If natural number $n=n_{1} n_{2}$, where n_{1} and n_{2} are relatively prime natural numbers, i.e., $\operatorname{gcd}\left[n_{1}, n_{2}[=1\right.$, then
$c \in C_{n}=C_{n_{1}} \times C_{n_{2}}$ is a generator of C_{n} if and only if there exist generators $a_{i} \in C_{n_{i}}, i=1,2$, such that $c=a_{1} a_{2}$. Thus the Euler function, $\rho * \Phi$, is Kronecker product multiplicative in the number theoretic sense.

Cyclic Groups of Order n, any Natural Number

Functional
Analysis Meets
Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite
Group
Euler- Φ
Function for Arbitrary Cyclic Group C_{n}

Our next goal is to show that our Euler Φ-function is "multiplicative" in the number theoretic sense.
The "Euler Φ function is multiplicative proposition." This next Proposition is well known:

Proposition

If natural number $n=n_{1} n_{2}$, where n_{1} and n_{2} are relatively prime natural numbers, i.e., $\operatorname{gcd}\left[n_{1}, n_{2}[=1\right.$, then
$c \in C_{n}=C_{n_{1}} \times C_{n_{2}}$ is a generator of C_{n} if and only if there exist generators $a_{i} \in C_{n_{i}}, i=1,2$, such that $c=a_{1} a_{2}$. Thus the Euler function, $\rho * \Phi$, is Kronecker product multiplicative in the number theoretic sense.

Proof: Given the groups and notation in Proposition, if $M\left[C_{n_{i}}\right]$, $i=1,2$, are symmetric multiplication tables, it is useful to write a multiplication table for C_{n} as a formal Kronecker product: $M\left[C_{n}\right]=M\left[C_{n_{1}}\right] \otimes M\left[C_{n_{2}}\right]$.

proof cont.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic
Concepts
Permutation Length Matrix of a Finite Group

Euler- Φ
Function for Arbitrary Cyclic Group C_{n}

It is then easy to see that $\rho[c]=\rho\left[a_{1}\right] \otimes \rho\left[a_{2}\right]$. Thus if $c_{i_{1}, i_{2}}=a_{i_{1}} a_{i_{2}}, 1 \leq i_{1} \leq \phi\left[n_{1}\right]$, and $1 \leq i_{2} \leq \phi\left[n_{2}\right]$ are all of the generators involved, where ϕ is Euler's orginal ϕ-function, then it is not hard to see that $\sum_{i_{1}, i_{2}} \rho\left[c_{i_{1}, i_{2}}\right]=\left(\sum_{i_{1}} \rho\left[a_{i_{1}}\right]\right) \otimes\left(\sum_{i_{2}} \rho\left[a_{i_{2}}\right]\right)$.

Remark

Functional
Analysis Meets Number Theory: Matrix-Valued Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Permutation
Length Matrix of a Finite
Group
Euler-Ф
Function for Arbitrary Cyclic Group C_{n}

Remark

We have just used special properties of the permutation matrices $\rho[x]$. (For properties of the Kronecker product see Bernstein.) Note that while the Kronecker product is associative and distributes over addition, it is not commutative. However, although in general $A \otimes B \neq B \otimes A$, they are related, cf., "cannonical shuffle." Now in this special case it is important and easy to see that $M\left[C_{n_{1}}\right] \otimes M\left[C_{n_{2}}\right]$ is permutation equivalent to $M\left[C_{n_{2}}\right] \otimes M\left[C_{n_{1}}\right]$, since the first row of the former corresponds to a decomposition of $C_{n_{1}} \times C_{n_{2}}$ into cosets of $C_{n_{1}}$, and the latter's first row corresponds to a decomposition of the same group into cosets of $C_{n_{2}}$.

Cyclic Group: General Case

Functional
Analysis Meets Number Theory: Matrix-Valued

Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

We now have the following formula for the matrix-valued Euler Φ-function of a cyclic group of order n.

Theorem

Given the unique factrorization of natural number $n=\Pi_{i=1}^{s} p_{i}^{n_{i}}$, where the p_{i} are pairwise distinct primes for $i=1, \ldots, s$, then one can express $C_{n}=C_{p_{1}^{n_{1}}} \times C_{p_{2}^{n_{2}}} \times \cdots \times C_{p_{s}^{n_{s}}}$, the direct product of prime-power cyclic groups. Thus

$$
\rho * \Phi\left[C_{n}\right]=\bigotimes_{i=1}^{s} \mathbb{I}\left[p_{i}\right]^{\otimes\left(n_{i}-1\right)} \otimes \Delta\left[p_{i}\right]
$$

(up to permutation equivalence).
Proof: From the structure theorem for finite abelian cyclic groups, C_{n} can be expressed as the direct product of prime power cyclic groups as described.

proof cont.

Functional
Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:
Basic
Concepts
Permutation
Length Matrix of a Finite Group

If $M\left[C_{p^{n_{i}}}\right]$ is the symmetric multiplication table described in the proof of "Euler Prime Power Proposition," then write the formal Kronecker product: $\otimes_{i=1}^{s} M\left[C_{p^{n_{i}}}\right]$ (which is, $M\left[C_{n}\right]$, up to permutation equivalence). The theorem follows by inductively applying the Euler Prime Power and Kronecker Multiplicative Propositions."

Remark

Functional Analysis Meets Number Theory: Matrix-Valued Euler
Functions Noncommutative

Number
Theory?
C*-Riemann
Marty Walter

Introduction:

Remark

It is a routine matter to write down the set of subgroups, $C_{\frac{n}{d}}$ of C_{n}, which is in bijection with the set of divisors d of n. Then, using a Corollary of the "Prime Power Proposition," one can write down the corresponding $\rho * \Phi\left[C_{\frac{n}{d}}\right]$ function for each embedded subgroup. Note that the divisors of n can be linearly ordered, or partially ordered by the divisor relation. Also the maps, $d \leftrightarrow \frac{n}{d}$, give two enumerations of the divisors of n. We use whichever is notationally convenient.

An Euler Φ-Function for Finite Abelian Groups

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction

Given a finite abelian group G of order $n=\prod_{i=1}^{r} p_{i}^{n_{i}}$, where the p_{i} are pairwise distinct primes, it is well known that

$$
G=G\left[p_{1}\right] \times G\left[p_{2}\right] \times \cdots \times G\left[p_{r}\right],
$$

a direct product, where the $G\left[p_{i}\right]$ are the subgroups of elements whose orders are powers of $p_{i}, i=1,2 \ldots, r$. (In fact, $G\left[p_{i}\right]$ is the Sylow p_{i}-group of G.)

Let's Look at one Sylow Subgroup

Functional
Analysis Meets
Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Now each $G\left[p_{i}\right]$ is itself the direct product of cyclic prime-power subgroups; thus

$$
G\left[p_{i}\right]=C_{p_{i}}^{s_{i 1}} \times C_{p_{i}}^{s_{i 2}} \times \cdots \times C_{p_{i}}^{s_{i_{i}}},
$$

Thus we need to extend the "Prime Power Proposition" to a result that "works" for direct products of prime power cyclic groups, of the same prime.

General Theorem for One Factor

Functional Analysis Meets Number Theory: Matrix-Valued Euler
Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction

Permutation Length Matrix of a Finite Group

Proposition

Let p be a prime natural number and let $G=G[p]=C_{p^{s_{1}}} \times C_{p^{s_{2}}} \times \cdots \times C_{p^{s_{t}}}$ be the direct product of cyclic prime-power subgroups with non-increasing integral powers of this prime p. To be specific, suppose that $s_{1}=\cdots=s_{m}>s_{m+1} \geq \cdots \geq s_{t}$. Then the symmetric multiplication table for G can be written (up to permutation equivalence) in such a way that the Euler Φ-function can be defined for this group and satsifies:

$$
\rho * \Phi[G]=\mathbb{I}\left[p^{-m} \prod_{k=1}^{t} p^{s_{k}}\right] \otimes \Delta\left[p^{m}\right]
$$

Final Remark

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction:

Remark
To obtain this matrix each group element of maximal order, viz., order $p^{s_{1}}$, in the group multiplication table is replaced by the number 1. Thus "maximal order" generalizes "gcd =1" in this context.
Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter
Introduction:
Basic
Concepts
Permutation
Length Matrix
of a Finite
Group
Euler- Φ
Function for
Arbitrary
Cyclic Group
C_{n}

THANKS FOR ATTENTION!

