Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non-commutative Number Theory? C*-Riemann

Marty Walter

Martin.Walter@Colorado.Edu

JMM-Denver January 16, 2020

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨー

Sac

Definition of Euler Φ -Function

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non-	
commutative Number	Definition
Theory? C*-Riemann	Let <i>n</i> be a natural number.
Marty Walter	$\Phi[n]$ is the number of integers k in the range $1 \le k \le n$ for
Introduction: Basic Concepts	which the greatest common divisor $gcd(n, k) = 1$.
Permutation Length Matrix of a Finite Group	
Euler-Φ Function for Arbitrary Cyclic Group	

シック・ 川 (本田)・ (田)・ (日)・

Conoral Einite

Definition of Möbius Function

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non-	
commutative	Definition
Number Theory? C*-Riemann	Let <i>n</i> be a natural number.
Marty Walter	$\mu[n]$ is given by: $\mu[1] = 1$, $\mu[n] = 0$ if <i>n</i> is divisible by the square of a prime number, otherwise $\mu[n] = (-1)^k$, where k is
Introduction: Basic Concepts	the number of prime factors of n.
Permutation Length Matrix of a Finite Group	
Euler-Φ Function for Arbitrary Cyclic Group C _n	

シック・ 川 (本田)・ (田)・ (日)・

General Einite

Matrix-Valued Euler Φ-Functions

Functional Analysis Meets Number Theory: Matrix-Valued Fuler Functions Noncommutative Number Theory? C*-Riemann Marty Walter Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Claim: Each natural number *n* determines a unique $n \times n$ ("*Euler*") matrix modulo conjugation by permutation matrices.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Matrix-Valued Euler Φ-Functions

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Claim: Each natural number *n* determines a unique $n \times n$ ("*Euler*") matrix modulo conjugation by permutation matrices. If $C_n = \{a^0 = a^n = e, a^1, \dots, a^{n-1}\}$ is a cyclic group with *n* elements, where $n = \prod_{i=1}^r p_i^{n_i}$, the p_i being pairwise distinct primes for $i = 1, \dots, r$,

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Matrix-Valued Euler Φ-Functions

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Claim: Each natural number *n* determines a unique $n \times n$ ("*Euler*") matrix modulo conjugation by permutation matrices. If $C_n = \{a^0 = a^n = e, a^1, ..., a^{n-1}\}$ is a cyclic group with *n* elements, where $n = \prod_{i=1}^r p_i^{n_i}$, the p_i being pairwise distinct primes for i = 1, ..., r, Define the *Euler* Φ -function:

Definition

 $\Phi[C_n]:=\Sigma\{a^i:gcd[i,n]=1\},\$

i.e., the formal sum of elements of C_n which generate C_n , where gcd[x, y] stands for greatest common divisor of integers x and y.

Representation π of Φ

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

If π is a matrix representation of C_n , then $\Phi[C_n]$ can be represented/defined as a matrix as well, viz.,

Definition

 $\pi * \Phi[C_n] := \Sigma \{ \pi[a^i] : gcd[i, n] = 1 \}$, a sum of matrices called the π representation of Φ .

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

For $0 \le k \le n-1$, let χ_k be the homomorphism of $G = C_n$ into \mathbb{C} defined by $\chi_k[a^j] = e^{2\pi l k j/n}$, $0 \le j \le n-1$. (Note that χ_k is called a *character* of C_n , or an *irreducible unitary representation* of C_n .)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

For $0 \le k \le n-1$, let χ_k be the homomorphism of $G = C_n$ into \mathbb{C} defined by $\chi_k[a^j] = e^{2\pi l k j/n}$, $0 \le j \le n-1$. (Note that χ_k is called a *character* of C_n , or an *irreducible unitary representation* of C_n .)

We have the following:

(i) $\chi_0 * \Phi[C_n] = \phi[n]$, the classical Euler Φ -function;

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

For $0 \le k \le n-1$, let χ_k be the homomorphism of $G = C_n$ into \mathbb{C} defined by $\chi_k[a^j] = e^{2\pi l k j/n}$, $0 \le j \le n-1$. (Note that χ_k is called a *character* of C_n , or an *irreducible unitary representation* of C_n .)

We have the following:

(i) $\chi_0 * \Phi[C_n] = \phi[n]$, the classical Euler Φ -function; (ii) $\chi_1 * \Phi[C_n] = \mu[n]$, the classical Möbius function;

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

For $0 \le k \le n-1$, let χ_k be the homomorphism of $G = C_n$ into \mathbb{C} defined by $\chi_k[a^j] = e^{2\pi l k j/n}$, $0 \le j \le n-1$. (Note that χ_k is called a *character* of C_n , or an *irreducible unitary representation* of C_n .)

We have the following:

$$1) \chi_k * \Phi[\mathcal{L}_n] = \sum_{d \mid gcd[k,n]} \mu[\frac{1}{d}]d = \frac{1}{\phi[\frac{n}{gcd[k,n]}]} \mu[\frac{n}{gcd[k,n]}],$$

a Ramanujan sum.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition of Euler Φ -matrix of C_n

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

We prove some elementary properties of this Euler Φ -function for cyclic groups, including the formula:

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Theorem

$$\rho * \Phi[C_n] = \bigotimes_{i=1}^r \mathbb{I}[p_i]^{\otimes (n_i-1)} \otimes \Delta[p_i],$$

which we call the 'Euler Φ -matrix of C_{n_i} '

where $\mathbb{I}[p]$ is the $p \times p$ matrix of all 1s and $\Delta[p] = \mathbb{I}[p] - I_p$, I_p being the $p \times p$ identity matrix, ρ being a regular representation.

Nice Eigenvector Prolem: Solved

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative Number Theory? C*-Riemann Marty Walter	We use this formula to solve to a previously posed problem, viz., each Euler Φ -matrix has a complete set of eigenvectors all the entries of which come from the set $\{-1, 0, 1\}$.
Introduction: Basic Concepts	
Permutation Length Matrix of a Finite Group	
Euler-Φ Function for Arbitrary Cyclic Group C _n	< ロ > 〈 司 > 〈 三 > 〈 三 > 〈 三 > 〈 三 > 〈 三 > 〈 三 > 〉 ○ へへ
General Einite	

Multiplication Table of a Finite Group: "Standard Form"

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative Number Theory? C*-Riemann	Write group G as a $1 \times n$ matrix:
Marty Walter	
Introduction: Basic Concepts	
Permutation Length Matrix of a Finite Group	
Euler-Φ Function for Arbitrary Cyclic Group C _n	< ロ > 〈 団 > 〈 団 > 〈 三 > 〈 三 > 〈 三 > 〈 三 > 〈 三 > 〉 〇 へ 〇

Multiplication Table of a Finite Group: "Standard Form"

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Write group G as a $1 \times n$ matrix:

$$G = [g_1, g_2, \ldots, g_n].$$

Let the $n \times 1$ matrix: G^* , be the conjugate transpose of G, where $g_i^* = g_i^{-1}$. Then the $n \times n$ "standard (positive-symmetric) matrix multiplication table of G" is:

$$M[G] = G^*G = [g_i^{-1}g_j].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Given $M[G] = [g_i^{-1}g_j]$, $1 \le i \le n, 1 \le j \le n$. (Note that the first row of M[G] determines the entire array.)

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � � �

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Given $M[G] = [g_i^{-1}g_j], 1 \le i \le n, 1 \le j \le n$. (Note that the first row of M[G] determines the entire array.)

If \mathbb{S}_n is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_n$, then

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Given $M[G] = [g_i^{-1}g_j]$, $1 \le i \le n, 1 \le j \le n$. (Note that the first row of M[G] determines the entire array.) If \mathbb{S}_n is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_n$, then

$$M_{\alpha}[G] = [g_{\alpha[i]}^{-1}g_{\alpha[j]}]$$

is also a form of the multiplication table of G in symmetric form.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Given $M[G] = [g_i^{-1}g_j]$, $1 \le i \le n, 1 \le j \le n$. (Note that the first row of M[G] determines the entire array.) If \mathbb{S}_n is the permutation group of the set $\{1, \ldots, n\}$, and $\alpha \in \mathbb{S}_n$, then

$$M_{\alpha}[G] = [g_{\alpha[i]}^{-1}g_{\alpha[j]}]$$

is also a form of the multiplication table of G in symmetric form.

We say that the the collection of all multiplication tables thus arrived at are (pairwise) *permutation equivalent*.

Regular Permutation Length: $N[g] = n - \frac{n}{o(g)}$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative Number Theory? C*-Riemann Marty Walter											
Introduction: Basic Concepts Permutation											
Length Matrix of a Finite Group											
Euler-Φ Function for Arbitrary Cyclic Group C _n											
Comput Finite					< □	 < 67	▶ ◄	=)	 ≡►	=	うく

Regular Permutation Length: $N[g] = n - \frac{n}{o(g)}$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introductior Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Given a permutation σ of n distinct objects written as a product of s disjoint cycles, c_1, \ldots, c_s , Jacobson associates an integer, $N[\sigma] = (|c_1| - 1) + \cdots + (|c_s| - 1)$, where $|c_i|$ is the number of objects permuted by, or the "cycle length" of, c_i . Note that N is a well-defined function on the permutations of a finite set, and that N of the identity permutation is 0.

Regular Permutation Length: $N[g] = n - \frac{n}{o(g)}$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Given a permutation σ of n distinct objects written as a product of s disjoint cycles, c_1, \ldots, c_s , Jacobson associates an integer, $N[\sigma] = (|c_1| - 1) + \cdots + (|c_s| - 1)$, where $|c_i|$ is the number of objects permuted by, or the "cycle length" of, c_i . Note that N is a well-defined function on the permutations of a finite set, and that N of the identity permutation is 0. If each element, g, of a finite group, G of order n, (abelian or not) is represented by the permutation, $\rho_G[g]$, of the set G, created as that element acts via (left) translation, i.e., $x \in G \longrightarrow gx \in G$ (where gx is the product in G of g and x)

 $x \in G \mapsto gx \in G$, (where gx is the product in G of g and x), then we have the integer-valued function,

 $g \in G \mapsto N[\rho_G[g]] = \frac{n}{o(g)}[o(g) - 1] = n - \frac{n}{o(g)}$, where o(g) is the order of g, viz., the smallest positive integer k such that $g^k = e$, the identity in G.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Here we are making use of a property of the *regular* representation, $\rho_G[g]$; namely that it is a permutation of *n* objects, and all of its (pairwise) disjoint cycles are of the same length, o(g).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Here we are making use of a property of the *regular* representation, $\rho_G[g]$; namely that it is a permutation of nobjects, and all of its (pairwise) disjoint cycles are of the same length, o(g). Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G] = [g_i^{-1}g_j]$, replace occurence of x in this matrix with a 1, 0 elsewhere, call the resulting permutation matrix $\rho[x]$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()・

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Here we are making use of a property of the *regular* representation, $\rho_G[g]$; namely that it is a permutation of nobjects, and all of its (pairwise) disjoint cycles are of the same length, o(g). Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G] = [g_i^{-1}g_j]$, replace occurence of x in this matrix with a 1, 0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$\mathbf{N}[G] = [N[g_i^{-1}g_j]]$$

◆ロト ◆昼 ト ◆ 臣 ト ◆ 臣 - のへぐ

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Here we are making use of a property of the *regular* representation, $\rho_G[g]$; namely that it is a permutation of nobjects, and all of its (pairwise) disjoint cycles are of the same length, o(g). Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G] = [g_i^{-1}g_j]$, replace occurence of x in this matrix with a 1, 0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$\mathbf{N}[G] = [N[g_i^{-1}g_j]].$$

What are the eigenvalues of this matrix?

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Here we are making use of a property of the *regular* representation, $\rho_G[g]$; namely that it is a permutation of nobjects, and all of its (pairwise) disjoint cycles are of the same length, o(g). Note: $\rho[x]$ is also a permutation matrix obtained as follows: $x \in G$ occurs exactly once in each row and each column of $M[G] = [g_i^{-1}g_j]$, replace occurence of x in this matrix with a 1, 0 elsewhere, call the resulting permutation matrix $\rho[x]$.

We define the regular permutation length matrix of G to be the following $n \times n$ matrix of natural numbers (zero on the diagonal):

$$\mathbf{N}[G] = [N[g_i^{-1}g_j]].$$

What are the eigenvalues of this matrix?

Is this Matrix Negative Definite?

Functional Analysis Eventual Answer: Yes Meets Number Theory: Matrix-Valued Fuler Functions Noncommutative Number Theory? C*-Riemann Marty Walter Permutation Length Matrix of a Finite Group Fuler-Φ Arbitrary ・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Conoral Einita

Is this Matrix Negative Definite?

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Eventual Answer: Yes Why Do I Care?

Definition

A function $N: G \to \mathbb{C}$, is negative definite on group G if and only if the following three conditions are satisfied: (i) $N[e] \ge 0$, where e is the identity of G, (ii) $N = N^*$, (iii) For any natural number m, any $\{g_1, g_2, \ldots, g_m\} \subset G$, and any $\{\rho_1, \rho_2, \ldots, \rho_m\} \subset \mathbb{C}$, $\sum_{i=1}^{m} \rho_i = 0, \quad implies \sum_{i=1}^{m} N[g_i^{-1}g_j]\overline{\rho_i}\rho_j \le 0.$

C*-Algebras: One Parameter Semigroup of Completely Positive Maps

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative	Theorem
Commutative Number	A function $N : G \to \mathbb{C}$ is negative definite if and only if the
Theory? C*-Riemann	
	following two conditions are satisfied:
Marty Walter	(<i>i</i>) $N[e] \ge 0$,
Introduction: Basic Concepts	(ii) The function $g \in G \rightarrow Exp[-tN[g]]$ is positive definite for all $t > 0$.
Permutation Length Matrix of a Finite Group	
Euler-Φ Function for Arbitrary Cyclic Group	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆

Conoral Einite

The Riemann Hypothesis is near

Functional Analysis Meets Number Theory: Matrix-Valued Fuler The Landau function, $\sigma[n] := MAX\{o[g] : g \in \mathbb{S}_n\}$. Functions Noncommutative Number Theory? C*-Riemann Marty Walter Permutation Length Matrix of a Finite Group Euler-Φ Arbitrary < ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

Conoral Einite

The Riemann Hypothesis is near

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

The Landau function,
$$\sigma[n] := MAX\{o[g] : g \in S_n\}$$
.

Remark

$$\ln \sigma[n] < (Li^{-1}[n])^{\frac{1}{2}}$$

for sufficiently large n, is equivalent to the Riemann Hypothesis.

The Riemann Hypothesis is near

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

The Landau function,
$$\sigma[n] := MAX\{o[g] : g \in S_n\}$$
.

Remark

$$\ln \sigma[n] < (Li^{-1}[n])^{\frac{1}{2}}$$

for sufficiently large n, is equivalent to the Riemann Hypothesis.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Note:
$$Li[x] = \int_2^x \frac{\mathrm{d}t}{\ln t}$$
.

If $G = C_n$: $N[a^i] = n - gcd[n, i]$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative Number Theory? C*-Riemann									
Marty Walter									
Introduction: Basic Concepts									
Permutation Length Matrix of a Finite Group									
Euler-Φ Function for Arbitrary Cyclic Group C _n									
Concerel Einite			$\langle \Box \rangle$	< 🗗 >	< 2	• •	$\Xi \succ$	1	Я a

If
$$G = C_n$$
: $N[a^i] = n - gcd[n, i]$

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

If $G = C_n = \{a^i : 0 \le i \le n-1\}$ then note that lcm[n, i]gcd[n, i] = ni, where lcm means least common multiple and gcd, recall, is greatest common divisor. Now $o(a^i) = \frac{lcm[n,i]}{i}$, since $(a^i)^{\frac{lcm[n,i]}{i}} = e$; and no smaller power has this property. Thus

$$N[a^i] = n - \frac{n}{o(a^i)} = n - \frac{ni}{lcm[n,i]} = n - gcd[n,i].$$

◆□ > ◆□ > ◆豆 > ◆豆 > → 豆 = ∽ へ ⊙ > < ○

Eigenvalues for N for Cyclic Groups

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

We thus finally have the closed form formula for each eigenvalue, λ_k , of **N**, $1 \le k < n$:

$$\lambda_k = -\sum_{d|gcd[n,k]} d\phi[\frac{n}{d}].$$

Note that ϕ is the classical Euler ϕ -function from number theory.

Note that λ_k is the eigenvalue corresponding to $\chi_k = (\chi_1)^k$, the usual group characters of C_n . $(\chi_1[a] = e^{2\pi I/n}.)$ Note that $\lambda_0 = \lambda_n$, the only positive eigenvalue, is the negative sum of all n-1 other eigenvalues.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

The Formula for Aribitrary Finite Abelian Group A

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

If A is an abelian group of order $n = \prod_{k=1}^{r} n_k$, where $A = C_{n_1} \times C_{n_2} \times \ldots \otimes C_{n_r}$, a product of r cyclic groups, C_{n_k} , of order n_k , generated by a_k , $k = 1, \ldots, r$, then

$$N[a_1^{i_1}a_2^{i_2}\dots a_r^{i_r}] =$$

$$n-\gcd[\frac{n}{n_1}\gcd[n_1,i_1],\frac{n}{n_2}\gcd[n_2,i_2],\ldots,\frac{n}{n_r}\gcd[n_r,i_r]].$$

The function N is associated with an $n \times n$ self-adjoint matrix, **N**, whose eigenvalues are the values of the Fourier transform of N. We calculate these eigenvalues exactly:

The Eigenvalues for $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_r}$

Functional
Analysis
Meets
Number
Theory:
Matrix-Valued
Euler
Functions
Non-
commutative
Number
Theory?
C*-Riemann
Marty Walter
ntroduction:
Basic
Concepts
Permutation
ength Matrix
of a Finite
Group
Euler-Ф
Function for
Arbitrary
Cyclic Group
-n

The Eigenvalues for $A = C_{n_1} \times C_{n_2} \times \ldots \times C_{n_r}$

•

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

$$\lambda_{k_1,k_2,...,k_r} = -\gcd[\frac{n}{n_1},\frac{n}{n_2},\ldots,\frac{n}{n_r}] \sum \{\phi[d](\prod_{i=1}^r n_i[d]): d | lcm[n_1,n_2,\ldots,n_r], n_i[d] | k_i, i = 1, 2, ..., r\},$$

where *lcm* means least common multiple, and $n_i[d] = gcd[n_i, \frac{lcm[n_1,...,n_r]}{d}]$ for all *i*, and where $1 \le k_i \le n_i$, $i = 1, \ldots, r$, and $\lambda_{k_1,k_2,\ldots,k_r} \ne \lambda_{n_1,n_2,\ldots,n_r}$. The negative of the sum of all these eigenvalues is $\lambda_{n_1,n_2,\ldots,n_r}$. Also $\lambda_{n_1,n_2,\ldots,n_r}$ is equal to the sum of the *n* values of *N* on *A*.

A Question Arose

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question

How far in this direction can I go? Can I find a complete set of eigenvectors with only 1, -1, and 0 entries?

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

A Question Arose

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question

How far in this direction can I go? Can I find a complete set of eigenvectors with only 1, -1, and 0 entries?

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Answer:

A Question Arose

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

While calculating the eigenvalues/eigenvectors the default algorithm of Mathematica produced eigenvectors with sparse small integer entries. I asked:

Question

How far in this direction can I go? Can I find a complete set of eigenvectors with only 1, -1, and 0 entries?

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Answer: Yes!

A Matrix-Valued Euler Phi-Function

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Definition

If C_n is the cyclic group with n elements, define the *Euler* Φ -function: $\Phi[C_n] := \Sigma\{a^i : gcd[i, n] = 1\}$, i.e., the formal sum of the generators of C_n .

Definition

If π is a matrix representation of C_n , then define the π -representation of $\Phi[C_n]$ to be $\pi * \Phi[C_n] \coloneqq \Sigma\{\pi[a^i] : gcd[i, n] = 1\}$, a matrix sum.

Classical Euler Φ "=" Classical Möbius μ ??

Remark

Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Functional Analysis

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

In general, there is more than one matrix representation for a given C_n . Thus our definition of Euler Φ -function includes both the classical Euler ϕ -function and the Möbius function. If we take the trivial representation of C_n : $\chi_n : a^i \in C_n \mapsto 1$, for $0 \le i \le n-1$, then $\chi_n * \Phi[C_n] = \phi[n]$, Euler's classical function which donotes the number of natural numbers between 0 and n relatively prime to n. If we take instead the faithul representation, χ_1 of C_n , determined by $\chi_1[a] = e^{2\pi I/n}$, we obtain $\chi_1 * \Phi[C_n] = \mu[n]$, the Möbius function of n, which is known (among other things) to equal the sum of the primitive n^{th} roots of unity. Our Euler Φ -function leads to a number of such phenomena.

Our First Lemma

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Definition

We will denote by $\mathbb{I}[n]$ the $n \times n$ matrix every entry of which is the natural number 1. We denote the $n \times n$ identity matrix by I_n . We define $\Delta[n] := \mathbb{I}[n] - I_n$, the $n \times n$ matrix of all 1s except for all 0s on the main diagonal.

Lemma

If p is a prime natural number, then $\rho * \Phi[C_p] = \Delta[p]$.

◆□ > ◆□ > ◆豆 > ◆豆 > ● ● ● ● ● ●

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Non- commutative Number Theory? C*-Riemann								
Marty Walter								
Introduction: Basic Concepts								
Permutation Length Matrix of a Finite Group								
Euler-Φ Function for Arbitrary Cyclic Group C _n				_	_	_	_	
			< □ ▶	< ⊡ >	< ≞ >	$<\Xi >$	=	996

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

 $\Delta[m]$ has an eigenvector with eigenvalue m - 1, viz., $\vec{e_0}[m] = [1, 1, \dots, 1], 1$ in each of the *m* positions.

◆ロト ◆昼 ト ◆臣 ト ◆臣 ト ◆ 日 ト

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

 $\Delta[m]$ has an eigenvector with eigenvalue m - 1, viz., $\vec{e_0}[m] = [1, 1, ..., 1]$, 1 in each of the *m* positions. The matrix $\Delta[m]$ has m - 1 eigenvectors each with eigenvalue -1, viz., $\vec{e_k}[m] = [0, ..., 1, 0, ..., -1]$, with a single 1 in the k^{th} position, a single -1 in the m^{th} position, all other positions occupied by 0, k = 1, ..., m - 1.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

$$\begin{split} &\Delta[m] \text{ has an eigenvector with eigenvalue } m-1, \text{ viz.}, \\ &\vec{e_0}[m] = [1, 1, \ldots, 1], 1 \text{ in each of the } m \text{ positions.} \\ &\text{The matrix } \Delta[m] \text{ has } m-1 \text{ eigenvectors each with eigenvalue} \\ &-1, \text{ viz.}, \ \vec{e_k}[m] = [0, \ldots, 1, 0, \ldots, -1], \text{ with a single 1 in the} \\ &k^{th} \text{ position, a single } -1 \text{ in the } m^{th} \text{ position, all other positions} \\ &\text{occupied by 0, } k = 1, \ldots, m-1. \\ &\text{The matrix } \mathbb{I}[m] \text{ has the same set of eigenvectors, viz., } \vec{e_0}[m] \text{ is} \end{split}$$

an eigenvector with eigenvalue m, and $\vec{e_k}[m]$ is an eigenvector with eigenvalue 0, k = 1, ..., m - 1.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Euler Φ for Prime Power Cyclic Groups

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

The "Euler Φ function for prime power cyclics proposition."

Proposition

If $n \ge 2$ is a natural number and p is a prime natural number, then (up to permutation equivalence)

$$p * \Phi[\mathcal{C}_{p^n}] = \mathbb{I}[p]^{\otimes (n-1)} \otimes \Delta[p],$$

where $\mathbb{I}[p]^{\otimes (n-1)}$ is the Kronecker product of $\mathbb{I}[p]$ with itself, n-1 factors, i.e., $\mathbb{I}[p^{(n-1)}]$.

Proof

Functional Analysis Meets Number Theory: Matrix-Valued Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Proof: We exhibit a multiplication table for C_{p^n} that has the desired property. If a generates C_{p^n} , $a^{p^{(n-1)}}$ is an element of order p. Let C_p denote the subgroup it generates. Write the first row of the multiplication table of C_{p^n} as follows: Begin with the first row of the multiplication table of C_{p} , with $a^{p^n} = a^0 = e$, followed by the integral powers of $a^{p^{(n-1)}}$ in order, viz., $a^{kp^{(n-1)}}, k = 0, \dots, p-1$. We note that this C_p contains the elements $a^i \in C_{p^n}$ with $gcd[i, p^n] = p^n$ or $p^{(n-1)}$. Next consider $a^{p^{(n-2)}}$ which generates a cyclic subgroup of C_{n^n} of order p^2 . There is a decomposition of C_{p^2} into p cosets of subgroup C_p , viz., $\{a^{kp^{(n-2)}}C_p : k = 0, ..., p-1\}$. Note that this subgroup C_{p^2} contains the elements $a^i \in C_{p^n}$ with $gcd[i, p^n] = p^n, p^{(n-1)}, \text{ or } p^{(n-2)}.$

Proof: continued

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Proceed inductively, letting $a^{p^{(n-r)}}$ generate a cyclic subgroup of order p^r , denoted C_{p^r} , containing the $a^i \in C_{p^n}$, with $gcd[i, p^n] = p^n, p^{(n-1)}, \dots, \text{ or } p^{(n-r)}$. There is the coset decomposition of C_{p^r} into p cosets of subgroup $C_{p^{(r-1)}}$, viz., $a^{kp^{(n-r)}}C_{p^{(r-1)}}, k=0,\ldots,p-1.$ The penultimate subgroup in this nest of subgroups, $C_{p^{(n-1)}}$, with order $p^{(n-1)}$, is generated by a^p , and this subgroup contains the elements $a^i \in C_{p^n}$ such that $gcd[i, p^n] = p^n, p^{(n-1)}, \dots, p^2$, or p. The full group C_{p^n} admits a coset decomposition into p cosets of $C_{p^{(n-1)}}$, viz., $a^k C_{p^{(n-1)}}, k = 0, 1, \dots, p-1$. The cosets corresponding to $k = 1, \ldots, p-1$ are the elements $a^i \in C_{p^n}$ such that $gcd[i, p^n] = 1.$

Proof: continued

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

We now observe some desired properties of the symmetric multiplication table of C_{p^n} whose first row is as described above. Each subgroup multiplication table, $M[C_{p^r}]$ is repeated in the form of a $p^r \times p^r$ square, repeated $p^{(n-r)}$ times down the main diagonal of the $p^n \times p^n$ square which is the entire multiplication table. In particular, all of the elements which do not generate all of C_{p^n} occur in the diagonal array $M[C_{p^{(n-1)}}] \otimes I_p$, while the elements a^i with $gcd[i, p^n] = 1$ fill the rest of the table. Replacing these generators with the number 1, and the non-generators with the number 0, we obtain the desired matrix.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

One can immediately write down a complete set of eigenvectors, p^n of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes I_p^{\otimes (n-r)}$, $r = n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\vec{e_k}[p]$ with *n* factors, viz.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

One can immediately write down a complete set of eigenvectors, p^n of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes I_p^{\otimes (n-r)}$, $r = n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\vec{e_k}[p]$ with *n* factors, viz. $\otimes_{j=1}^n \vec{e_{k_j}}[p]$, $0 \le k_j \le p-1$.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

One can immediately write down a complete set of eigenvectors, p^n of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes l_p^{\otimes (n-r)}$, $r = n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\vec{e_k}[p]$ with *n* factors, viz. $\bigotimes_{j=1}^n \vec{e_{k_j}}[p]$, $0 \le k_j \le p-1$. Thus $\Delta[p]$ has p-1 eigenvalues of -1 and one eigenvalue of p-1.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

One can immediately write down a complete set of eigenvectors, p^n of them, that work simultaneoulsly for all $\mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes l_p^{\otimes (n-r)}$, $r = n, \ldots, 1$, by forming all of the Kronecker products of the eigenvectors $\vec{e_k}[p]$ with n factors, viz. $\bigotimes_{j=1}^n \vec{e_{k_j}}[p]$, $0 \le k_j \le p-1$. Thus $\Delta[p]$ has p-1 eigenvalues of -1 and one eigenvalue of p-1. The matrix $\mathbb{I}[p]^{\otimes (r-1)}$ has one eigenvalue of $p^{(r-1)}$ and $p^{(r-1)}-1$ eigenvalues of 0.

Eigenvectors/Eigenvalues continued

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Thus the set of eigenvalues of $\rho * \Phi[C_{p^r}] \otimes I_p^{(n-r)} =$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eigenvectors/Eigenvalues continued

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

General Einite

Thus the set of eigenvalues of $\rho * \Phi[C_{p^r}] \otimes I_p^{(n-r)} = \mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes I_p^{\otimes (n-r)}, r = 1, ..., n$ is equal to the product of the sets of eigenvalues: the set (with multiplicities) of eigenvalues of $\mathbb{I}[p]^{\otimes (r-1)}$ times the set (with multiplicities) of the eigenvalues of $\Delta[p]$ times the set (with multiplicities) of the eigenvalues of $I_p^{(n-r)}$.

Eigenvectors/Eigenvalues continued

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Thus the set of eigenvalues of $\rho * \Phi[C_{p^r}] \otimes I_p^{(n-r)} = \mathbb{I}[p]^{\otimes (r-1)} \otimes \Delta[p] \otimes I_p^{\otimes (n-r)}, r = 1, ..., n$ is equal to the product of the sets of eigenvalues: the set (with multiplicities) of eigenvalues of $\mathbb{I}[p]^{\otimes (r-1)}$ times the set (with multiplicities) of the eigenvalues of $\Delta[p]$ times the set (with multiplicities) of the eigenvalues of $I_p^{(n-r)}$. Thus we get the set : $\{\{(p^{(r-1)}(p-1) = \phi[p^r], \text{ multiplicity } 1\} \times$

 $\{-p^{(r-1)}, \text{ multiplicity } p-1\} \times \{0, \text{ multiplicity } (p^{(r-1)}-1)p\}\},\$ with this whole set repeated $p^{(n-r)}$ times because of the Kronecker factor of $I_p^{\otimes (n-r)}$.

Cyclic Groups of Order n, any Natural Number

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n Our next goal is to show that our Euler Φ -function is "multiplicative" in the number theoretic sense. The "Euler Φ function is multiplicative proposition." This next Proposition is well known:

Proposition

If natural number $n = n_1n_2$, where n_1 and n_2 are relatively prime natural numbers, i.e., $gcd[n_1, n_2[= 1, then c \in C_n = C_{n_1} \times C_{n_2}$ is a generator of C_n if and only if there exist generators $a_i \in C_{n_i}$, i = 1, 2, such that $c = a_1a_2$. Thus the Euler function, $\rho * \Phi$, is Kronecker product multiplicative in the number theoretic sense.

Cyclic Groups of Order n, any Natural Number

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

Our next goal is to show that our Euler Φ -function is "multiplicative" in the number theoretic sense. The "Euler Φ function is multiplicative proposition." This next Proposition is well known:

Proposition

If natural number $n = n_1n_2$, where n_1 and n_2 are relatively prime natural numbers, i.e., $gcd[n_1, n_2[= 1, then c \in C_n = C_{n_1} \times C_{n_2}$ is a generator of C_n if and only if there exist generators $a_i \in C_{n_i}$, i = 1, 2, such that $c = a_1a_2$. Thus the Euler function, $\rho * \Phi$, is Kronecker product multiplicative in the number theoretic sense.

Proof: Given the groups and notation in Proposition, if $M[C_{n_i}]$, i = 1, 2, are symmetric multiplication tables, it is useful to write a multiplication table for C_n as a formal Kronecker product: $M[C_n] = M[C_{n_1}] \otimes M[C_{n_2}]$.

proof cont.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Einite

It is then easy to see that $\rho[c] = \rho[a_1] \otimes \rho[a_2]$. Thus if $c_{i_1,i_2} = a_{i_1}a_{i_2}$, $1 \le i_1 \le \phi[n_1]$, and $1 \le i_2 \le \phi[n_2]$ are all of the generators involved, where ϕ is Euler's orginal ϕ -function, then it is not hard to see that $\sum_{i_1,i_2}\rho[c_{i_1,i_2}] = (\sum_{i_1}\rho[a_{i_1}]) \otimes (\sum_{i_2}\rho[a_{i_2}])$.

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Remark

Remark

Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Functional Analysis Meets

Number

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

We have just used special properties of the permutation matrices $\rho[x]$. (For properties of the Kronecker product see Bernstein.) Note that while the Kronecker product is associative and distributes over addition. it is not commutative. However, although in general $A \otimes B \neq B \otimes A$, they are related, cf., "cannonical shuffle." Now in this special case it is important and easy to see that $M[C_{n_1}] \otimes M[C_{n_2}]$ is permutation equivalent to $M[C_{n_2}] \otimes M[C_{n_1}]$, since the first row of the former corresponds to a decomposition of $C_{n_1} \times C_{n_2}$ into cosets of C_{n_1} , and the latter's first row corresponds to a decomposition of the same group into cosets of C_{n_2} .

Cyclic Group: General Case

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Finite

We now have the following formula for the matrix-valued Euler Φ -function of a cyclic group of order *n*.

Theorem

Given the unique factrorization of natural number $n = \prod_{i=1}^{s} p_i^{n_i}$, where the p_i are pairwise distinct primes for i = 1, ..., s, then one can express $C_n = C_{p_1^{n_1}} \times C_{p_2^{n_2}} \times \cdots \times C_{p_s^{n_s}}$, the direct product of prime-power cyclic groups. Thus

$$\rho * \Phi[C_n] = \bigotimes_{i=1}^{s} \mathbb{I}[p_i]^{\otimes (n_i-1)} \otimes \Delta[p_i],$$

(up to permutation equivalence).

Proof: From the structure theorem for finite abelian cyclic groups, C_n can be expressed as the direct product of prime power cyclic groups as described.

proof cont.

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Finito

If $M[C_{p^{n_i}}]$ is the symmetric multiplication table described in the proof of "Euler Prime Power Proposition," then write the formal Kronecker product: $\bigotimes_{i=1}^{s} M[C_{p^{n_i}}]$ (which is, $M[C_n]$, up to permutation equivalence). The theorem follows by inductively applying the Euler Prime Power and Kronecker Multiplicative Propositions."

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

Remark

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Remark

It is a routine matter to write down the set of subgroups, $C_{\frac{n}{d}}$ of C_n , which is in bijection with the set of divisors d of n. Then, using a Corollary of the "Prime Power Proposition," one can write down the corresponding $\rho * \Phi[C_{\frac{n}{d}}]$ function for each embedded subgroup. Note that the divisors of n can be linearly ordered, or partially ordered by the divisor relation. Also the maps, $d \leftrightarrow \frac{n}{d}$, give two enumerations of the divisors of n. We use whichever is notationally convenient.

An Euler Φ-Function for Finite Abelian Groups

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Ceneral Einite

Given a finite abelian group G of order $n = \prod_{i=1}^{r} p_i^{n_i}$, where the p_i are pairwise distinct primes, it is well known that

$$G = G[p_1] \times G[p_2] \times \cdots \times G[p_r],$$

a direct product, where the $G[p_i]$ are the subgroups of elements whose orders are powers of p_i , i = 1, 2..., r. (In fact, $G[p_i]$ is the Sylow p_i -group of G.)

Let's Look at one Sylow Subgroup

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Ceneral Einite

Now each $G[p_i]$ is itself the direct product of cyclic prime-power subgroups; thus

$$G[p_i] = C_{p_i^{s_{i_1}}} \times C_{p_i^{s_{i_2}}} \times \cdots \times C_{p_i^{s_{i_{t_i}}}},$$

Thus we need to extend the "Prime Power Proposition" to a result that "works" for direct products of prime power cyclic groups, of the *same* prime.

▲ロト ▲帰 ト ▲ 三 ト ▲ 三 ト ● の Q ()

General Theorem for One Factor

Proposition

Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Functional Analysis

Marty Walter

Introduction: Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Ceneral Einite

Let p be a prime natural number and let $G = G[p] = C_{p^{s_1}} \times C_{p^{s_2}} \times \cdots \times C_{p^{s_t}}$ be the direct product of cyclic prime-power subgroups with non-increasing integral powers of this prime p. To be specific, suppose that $s_1 = \cdots = s_m > s_{m+1} \ge \cdots \ge s_t$. Then the symmetric multiplication table for G can be written (up to permutation equivalence) in such a way that the Euler Φ -function can be defined for this group and satsifies:

$$\rho * \Phi[G] = \mathbb{I}[p^{-m} \prod_{k=1}^{t} p^{s_k}] \otimes \Delta[p^m].$$

Final Remark

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions							
Non- commutative	Remark						
Number Theory? C*-Riemann	To obtain this matrix each group element of maximal order,						
Marty Walter	viz., order p^{s_1} , in the group multiplication table is replaced by the number 1. Thus "maximal order" generalizes "gcd =1" in						
Introduction: Basic Concepts	this context.						

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Permutation Length Matrix of a Finite Group

Euler-Φ Function for Arbitrary Cyclic Group C_n

Conoral Finite

Functional Analysis Meets Number Theory: Matrix-Valued Euler Functions Noncommutative Number Theory? C*-Riemann

Marty Walter

Introduction Basic Concepts

Permutation Length Matrix of a Finite Group

Euler- Φ Function for Arbitrary Cyclic Group C_n

Conoral Finite

THANKS FOR ATTENTION!

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで