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@ A non-zero positive element a in A is said to be properly
infinite if a ® a = a. Then A is said to be purely infinite if
there are no characters on A and if, for every pair of positive
elements a,b € A such that b belongs to the closed ideal in A
generated by a, one has b = a.

© Kirchberg and Rgrdam showed that A is purely infinite if and
only if every non-zero positive element a in A is properly
infinite.
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Finiteness against strongly purely infiniteness of

C*-algebras

© Kirchberg and Rgrdam also introduced a stronger notion
called strongly pure infiniteness. If A is nuclear and separable
then A is strongly purely infinite if and only if A ® Oy, =~ A.

@ Rgrdam and Pasnicu then showed that pure infiniteness is
equivalent to strongly pure infiniteness if A has the ideal
property (IP).

© we say A is finite if 1; is a finite projection in A If M, (A)
are finite for all n € N then we say A is stably finite.
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Definition (Kerr, 2017)

Let F' be a compact set in X and O an open set in X. We write
F < O if there exists a finite collectiond = {U,...,U,} of open
sets in X and group elements {s1, ..., sy} such that F C |J;", U;
and |_|?:1 s;U; C O. In addition, for open sets U,V , we write

U <V if I <V holds whenever F' is a compact subset of U.

Definition (Kerr, 2017)

The action o : G ~ X s said to have dynamical comparison if
U <V for every non-empty open sets U,V C X satisfying
w(U) < w(V) for all p € Mg(X), where Mg (X) is the set
consisting of all G-invariant probability Borel measure.
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Let o : G ~ X. we write U <4V if for any compact set F' C U
there are disjoint non-empty open sets O1,0Oo C V such that
F-<01 andF<Og.

Definition (M.)

Let o : G ~ X. We say the action «

@ is purely infinite if U <4V whenever U C G -V for any open
sets U,V in X.

@ has paradoxical comparison if U <4 U for any open set U in
X.

© is weakly purely infinite if U <V whenever U C G -V for any
open sets U,V in X

v
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Relations among these three notions

@ In general one easily has (1)=(2) and (1) =(3).

@ If the action « is minimal then all of these three notions are
equivalent to dynamical comparison in the case Mg (X) = 0,
i.e., U <V for any open sets U,V in X.

@ If a is not minimal then one actually could establish (1)<(2).
However, (3) is strictly weaker than (1) and (2) because the
trivial action of the group G on X is weakly purely infinite but
is not purely infinite.

Q Nevertheless, if the space X is zero-dimensional and the

action has no global fixed points (i.e. G- {z} = {z}), then
one can show (3) is equivalent to (1) and thus also (2).
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@ Pure infiniteness of actions is not preserved by extensions.
Here is an example due to Hanfeng Li. Start with a Cantor
pure infinite system « : G ~ X. Let G* denote the one-point
compactification G U {oo} for G. Note 5 : G ~ G* is the
natural action given by g-h = gh for h € G and g - 0o = .
Define v: G ~ X x G* by v4(x,p) = (ag(x), Bg(p)). Then v
is an extension of «. Consider the open set X x {h} for
h € G. It is not hard to see it is impossible to find two
disjoint non-empty open subsets V; x {h} and V, x {h} of
X x {h}. such that X x {h} < V; x {h} fori=1,2.
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pure infinite system « : G ~ X. Let G* denote the one-point
compactification G U {oo} for G. Note 5 : G ~ G* is the
natural action given by g-h = gh for h € G and g - 0o = .
Define v: G ~ X x G* by v4(x,p) = (ag(x), Bg(p)). Then v
is an extension of «. Consider the open set X x {h} for
h € G. It is not hard to see it is impossible to find two
disjoint non-empty open subsets V; x {h} and V, x {h} of
X x {h}. such that X x {h} < V; x {h} fori=1,2.

@ Since « has no G-invariant probability measure on X, neither
does v because 7y is an extension. Nevertheless, one can show
for any open set of the form O x {h} in X x G there is a
infinite Borel regular G-invariant measure p such that
1(O x {h}) = 1. Therefore Hanfeng' s example in fact has a
flavor of finiteness.
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@ Natural question: Is there a Cantor dynamical system having
no non-trivial Borel invariant measure and also not purely
infinite.

@ Pure infiniteness of actions is preserved by inverse limits of
dynamical systems.

@ Suzuki constructed a class of group actions by inverse limits
of IF), acting on its boundary when he studied the K-theory of
Kirchberg algebras. Therefore his examples of dynamical
systems are in fact purely infinite.

@ It is not known whether pure infiniteness is preserved by
factors.
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Kumjian and Archbold independently observe that the Cuntz
algebra 05 has a dynamical model in the sense that there is an
action a of Zg * Z3 on the Cantor set X such that
O ~ C(X) X, (Zg % Zs3) where « is defined as follows. Identify X
by {0,1}" and let ¢ and 1/ be two homeomorphism on X given by

(O,ZE2,$3,...)L>(1,$2,$3,...)L(O,ZE2,$3,...)
and
(0,%2,%3,...)i(l,l,d?g,l‘g,...)i(l,o,xg,xg,...)g(0,$2,x3,...)

Then ©? = 93 = idx. It can be verified that ¢ and % induces a
purely infinite action ag on X. We sketch below
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@ Note that the collection of all
Nizg.ozn = {x € X : 1 = 2; for any i < n} where
2122, ..,2n € {0,1}™ and n € N form a standard base of the
topology on X.

@ Now X = Ny U N;p. In addition, choose two disjoint open sets
Niizy,.ozn and Nyjyo oy, € O. Without loss of generality,
one can assume n, m > 2. Now, it suffices to show that there
are g1, g2 € Zs * Z3 such that gt No = N, ., .. -, and
gQNl = Nylyg,...,ym-

@ For N, ., .. .., where n > 2, one has

Q ifzy =2 =1then v (N, 25, 2) = Nozg,... 2
@ if 21 =1 and 23 = 0 then (N, 2, 2.) = Nozs,,..
© if 21 =0then (N,,25,. . 20) = Nisy o2

2Zn "
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gNz1zz,...,zn = NZQ,...,zn- Indeed,
Q If 2y = 20 = 1 define g = poyp~ L.
Q If z; =1 and 23 = 0 then define g = 1.
@ If z; =0, by third condition above, one can always reduce the
problem to the case z; = 1 above.
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@ This implies that there is a g € Zg * Z3 such that
gNzlzz,...,zn = NZQ,...,zn- Indeed,
Q If 21 = 20 = 1 define g = poypL.
Q If z; =1 and 23 = 0 then define g = 1.
@ If z; =0, by third condition above, one can always reduce the
problem to the case z; = 1 above.
@ By induction there is an h € Zs * Z3 such that
AN ... 2. = N,. If z, =0 we are done and if z, =1 then
(p(thlzz,...,zn) = NO-
@ Thus there is a g1 € Zy * Z3 such that g1 No = Ny 25, 2,
The same method shows that there is an hy such that
haNo = Ny,y,....ym- Then define go = ho o . Then
92N1 = Nyyys....ym -
@ In fact, this action is a strong boundary action.
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© We say C((X) separates ideals of Cy(X) x, G if the
(surjective) map I — I N Cy(X) from ideals in Cy(X) %, G
to ideals in Cy(X) generating by G-invariant closed sets is
injective.

@ In the case « is amenable, Sierakowski showed that Cp(X)
separates ideals of Cy(X) %, G if and only if « is essentially
free.

Let a: G ~ X. Suppose Cy(X) separates ideals of Cy(X) %, G
and there are only finitely many G-invariant closed sets in X. If «
is purely infinite then Co(X) %, G is strongly purely infinite.
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Let o : G ~ X be a minimal topologically free action. Suppose
that the action « is purely infinite Then the reduced crossed
product Cy(X) %, G is strongly purely infinite. If « is also
amenable then Cy(X) %, G is a Kirchberg algebra.

Let o : G ~ X be a minimal topologically free continuous action
of G on X. Suppose that the action o has dynamical comparison.
Then the reduced crossed product Co(X) X, G is simple and is
either stably finite or strongly purely infinite.
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Let o : G ~ X be a minimal action. Let Y be a locally compact
Hausdorff space and 8 : G ~ X x Y by By(z,y) = (og(2),y).
Suppose « is purely infinite then so is 3.




Dynamical models of non-simple purely infinite C*-algebras

Proposition (M.)

Let o : G ~ X be a minimal action. Let Y be a locally compact
Hausdorff space and 8 : G ~ X x Y by By(z,y) = (og(2),y).
Suppose « is purely infinite then so is 3.

There exists a non-simple strongly purely infinite C*-algebra A, for
example, O2 @ Cy(R), which has a purely infinite dynamical
model. However, it has no dynamical model implemented by an
n-filling or locally boundary action.




Thank you!



