Purely infinite dynamical systems and their C^* -algebras AMS Special Session on C^* -algebras, Dynamical systems and Applications

Xin Ma

SUNY at Buffalo

Jan 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pure infiniteness of C^* -algebras

Let A be a C^* -algebra.

- We write $M_{\infty}(A)_{+} = \bigcup_{n=1}^{\infty} M_{n}(A)_{+}$. Let a, b be two positive elements in $M_{n}(A)_{+}$ and $M_{m}(A)_{+}$, respectively. Write $a \preceq b$ if there exists a sequence (r_{n}) in $M_{m,n}(A)$ with $r_{n}^{*}br_{n} \rightarrow a$.
- 2 A non-zero positive element a in A is said to be properly infinite if a ⊕ a ≍ a. Then A is said to be purely infinite if there are no characters on A and if, for every pair of positive elements a, b ∈ A such that b belongs to the closed ideal in A generated by a, one has b ≍ a.
- Sirchberg and Rørdam showed that A is purely infinite if and only if every non-zero positive element a in A is properly infinite.

Let A be a C^* -algebra.

- We write $M_{\infty}(A)_{+} = \bigcup_{n=1}^{\infty} M_{n}(A)_{+}$. Let a, b be two positive elements in $M_{n}(A)_{+}$ and $M_{m}(A)_{+}$, respectively. Write $a \preceq b$ if there exists a sequence (r_{n}) in $M_{m,n}(A)$ with $r_{n}^{*}br_{n} \rightarrow a$.
- ② A non-zero positive element a in A is said to be properly infinite if a ⊕ a ≍ a. Then A is said to be purely infinite if there are no characters on A and if, for every pair of positive elements a, b ∈ A such that b belongs to the closed ideal in A generated by a, one has b ≍ a.
- Sirchberg and Rørdam showed that A is purely infinite if and only if every non-zero positive element a in A is properly infinite.

Let A be a C^* -algebra.

- We write $M_{\infty}(A)_{+} = \bigcup_{n=1}^{\infty} M_{n}(A)_{+}$. Let a, b be two positive elements in $M_{n}(A)_{+}$ and $M_{m}(A)_{+}$, respectively. Write $a \preceq b$ if there exists a sequence (r_{n}) in $M_{m,n}(A)$ with $r_{n}^{*}br_{n} \rightarrow a$.
- ② A non-zero positive element a in A is said to be properly infinite if a ⊕ a ≍ a. Then A is said to be purely infinite if there are no characters on A and if, for every pair of positive elements a, b ∈ A such that b belongs to the closed ideal in A generated by a, one has b ≍ a.
- Kirchberg and Rørdam showed that A is purely infinite if and only if every non-zero positive element a in A is properly infinite.

Finiteness against strongly purely infiniteness of C^* -algebras

- Sirchberg and Rørdam also introduced a stronger notion called *strongly pure infiniteness*. If A is nuclear and separable then A is strongly purely infinite if and only if A ⊗ O_∞ ≃ A.
- Q Rørdam and Pasnicu then showed that pure infiniteness is equivalent to strongly pure infiniteness if A has the ideal property (IP).
- (3) we say A is *finite* if $1_{\tilde{A}}$ is a finite projection in \tilde{A} . If $M_n(A)$ are finite for all $n \in \mathbb{N}$ then we say A is *stably finite*.

Finiteness against strongly purely infiniteness of C^* -algebras

- Sirchberg and Rørdam also introduced a stronger notion called *strongly pure infiniteness*. If A is nuclear and separable then A is strongly purely infinite if and only if A ⊗ O_∞ ≃ A.
- Q Rørdam and Pasnicu then showed that pure infiniteness is equivalent to strongly pure infiniteness if A has the ideal property (IP).
- we say A is *finite* if 1_Ã is a finite projection in Ã. If M_n(A) are finite for all n ∈ N then we say A is stably finite.

Finiteness against strongly purely infiniteness of C^* -algebras

- Sirchberg and Rørdam also introduced a stronger notion called *strongly pure infiniteness*. If A is nuclear and separable then A is strongly purely infinite if and only if A ⊗ O_∞ ≃ A.
- Q Rørdam and Pasnicu then showed that pure infiniteness is equivalent to strongly pure infiniteness if A has the ideal property (IP).
- **3** we say A is *finite* if $1_{\tilde{A}}$ is a finite projection in \tilde{A} . If $M_n(A)$ are finite for all $n \in \mathbb{N}$ then we say A is *stably finite*.

- Throughout G denotes a countable infinite discrete group, X a locally compact metrizable topological space and α : G ∩ X a continuous action of G on X.
- $\alpha : G \curvearrowright X$ is amenable iff $C_0(X) \rtimes_r G$ is nuclear iff the transformation groupoid $X \rtimes G$ is amenable. In this case, $C_0(X) \rtimes_r G$ satisfies the UCT by a theorem of Tu.
- It is well-known that if the action α is minimal and (topologically) free then the reduced crossed product of it is simple.

- Throughout G denotes a countable infinite discrete group, X a locally compact metrizable topological space and α : G ∩ X a continuous action of G on X.
- $\alpha : G \curvearrowright X$ is amenable iff $C_0(X) \rtimes_r G$ is nuclear iff the transformation groupoid $X \rtimes G$ is amenable. In this case, $C_0(X) \rtimes_r G$ satisfies the UCT by a theorem of Tu.
- It is well-known that if the action α is minimal and (topologically) free then the reduced crossed product of it is simple.

- Throughout G denotes a countable infinite discrete group, X a locally compact metrizable topological space and α : G ∩ X a continuous action of G on X.
- $\alpha : G \curvearrowright X$ is amenable iff $C_0(X) \rtimes_r G$ is nuclear iff the transformation groupoid $X \rtimes G$ is amenable. In this case, $C_0(X) \rtimes_r G$ satisfies the UCT by a theorem of Tu.
- It is well-known that if the action α is minimal and (topologically) free then the reduced crossed product of it is simple.

- Throughout G denotes a countable infinite discrete group, X a locally compact metrizable topological space and α : G ∩ X a continuous action of G on X.
- $\alpha : G \curvearrowright X$ is amenable iff $C_0(X) \rtimes_r G$ is nuclear iff the transformation groupoid $X \rtimes G$ is amenable. In this case, $C_0(X) \rtimes_r G$ satisfies the UCT by a theorem of Tu.
- It is well-known that if the action α is minimal and (topologically) free then the reduced crossed product of it is simple.

Definition (Kerr, 2017)

Let *F* be a compact set in *X* and *O* an open set in *X*. We write $F \prec O$ if there exists a finite collection $\mathcal{U} = \{U_1, \ldots, U_n\}$ of open sets in *X* and group elements $\{s_1, \ldots, s_n\}$ such that $F \subset \bigcup_{i=1}^n U_i$ and $\bigsqcup_{i=1}^n s_i U_i \subset O$. In addition, for open sets U, V, we write $U \prec V$ if $F \prec V$ holds whenever *F* is a compact subset of *U*.

Definition (Kerr, 2017)

The action $\alpha : G \cap X$ is said to have dynamical comparison if $U \prec V$ for every non-empty open sets $U, V \subset X$ satisfying $\mu(U) < \mu(V)$ for all $\mu \in M_G(X)$, where $M_G(X)$ is the set consisting of all *G*-invariant probability Borel measure.

Definition (Kerr, 2017)

Let *F* be a compact set in *X* and *O* an open set in *X*. We write $F \prec O$ if there exists a finite collection $\mathcal{U} = \{U_1, \ldots, U_n\}$ of open sets in *X* and group elements $\{s_1, \ldots, s_n\}$ such that $F \subset \bigcup_{i=1}^n U_i$ and $\bigsqcup_{i=1}^n s_i U_i \subset O$. In addition, for open sets U, V, we write $U \prec V$ if $F \prec V$ holds whenever *F* is a compact subset of *U*.

Definition (Kerr, 2017)

The action $\alpha : G \curvearrowright X$ is said to have dynamical comparison if $U \prec V$ for every non-empty open sets $U, V \subset X$ satisfying $\mu(U) < \mu(V)$ for all $\mu \in M_G(X)$, where $M_G(X)$ is the set consisting of all *G*-invariant probability Borel measure.

Definition (X. Ma)

Let $\alpha : G \cap X$. we write $U \prec_d V$ if for any compact set $F \subset U$ there are disjoint non-empty open sets $O_1, O_2 \subset V$ such that $F \prec O_1$ and $F \prec O_2$.

Definition (M.)

Let $\alpha : G \curvearrowright X$. We say the action α

- **1** is purely infinite if $U \prec_d V$ whenever $U \subset G \cdot V$ for any open sets U, V in X.
- e has paradoxical comparison if U ≺_d U for any open set U in X.
- ③ is weakly purely infinite if U ≺ V whenever U ⊂ G · V for any open sets U, V in X

Definition (X. Ma)

Let $\alpha : G \cap X$. we write $U \prec_d V$ if for any compact set $F \subset U$ there are disjoint non-empty open sets $O_1, O_2 \subset V$ such that $F \prec O_1$ and $F \prec O_2$.

Definition (M.)

Let $\alpha : G \curvearrowright X$. We say the action α

- is purely infinite if $U \prec_d V$ whenever $U \subset G \cdot V$ for any open sets U, V in X.
- a has paradoxical comparison if U ≺_d U for any open set U in X.
- **③** is weakly purely infinite if $U \prec V$ whenever $U \subset G \cdot V$ for any open sets U, V in X

1 In general one easily has $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$.

- If the action α is minimal then all of these three notions are equivalent to dynamical comparison in the case M_G(X) = Ø, i.e., U ≺ V for any open sets U, V in X.
- If α is not minimal then one actually could establish (1)⇔(2). However, (3) is strictly weaker than (1) and (2) because the trivial action of the group G on X is weakly purely infinite but is not purely infinite.
- Nevertheless, if the space X is zero-dimensional and the action has no global fixed points (i.e. G · {x} = {x}), then one can show (3) is equivalent to (1) and thus also (2).

- 1 In general one easily has $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$.
- If the action α is minimal then all of these three notions are equivalent to dynamical comparison in the case M_G(X) = Ø, i.e., U ≺ V for any open sets U, V in X.
- If α is not minimal then one actually could establish (1)⇔(2). However, (3) is strictly weaker than (1) and (2) because the trivial action of the group G on X is weakly purely infinite but is not purely infinite.
- Nevertheless, if the space X is zero-dimensional and the action has no global fixed points (i.e. G · {x} = {x}), then one can show (3) is equivalent to (1) and thus also (2).

- 1 In general one easily has $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$.
- If the action α is minimal then all of these three notions are equivalent to dynamical comparison in the case M_G(X) = Ø, i.e., U ≺ V for any open sets U, V in X.
- If α is not minimal then one actually could establish (1)⇔(2). However, (3) is strictly weaker than (1) and (2) because the trivial action of the group G on X is weakly purely infinite but is not purely infinite.
- Nevertheless, if the space X is zero-dimensional and the action has no global fixed points (i.e. G · {x} = {x}), then one can show (3) is equivalent to (1) and thus also (2).

- 1 In general one easily has $(1) \Rightarrow (2)$ and $(1) \Rightarrow (3)$.
- If the action α is minimal then all of these three notions are equivalent to dynamical comparison in the case M_G(X) = Ø, i.e., U ≺ V for any open sets U, V in X.
- If α is not minimal then one actually could establish (1)⇔(2). However, (3) is strictly weaker than (1) and (2) because the trivial action of the group G on X is weakly purely infinite but is not purely infinite.
- Nevertheless, if the space X is zero-dimensional and the action has no global fixed points (i.e. G · {x} = {x}), then one can show (3) is equivalent to (1) and thus also (2).

Known examples

- Strong boundary actions (on a Compact space X) defined by Laca-Spielberg is an example. E.g. \mathbb{F}_2 acting on its boundary. Here strong boundary action means for any two non-empty open sets U_1, U_2 there are group elements $g_1, g_2 \in G$ such that $g_1U_1 \cup g_2U_2 = X$.
- A generalization, called the n-filling actions, by Jolissaint-Robertson are also examples of purely infinite actions, in which n-filling means for any n non-empty open sets U₁,..., U_n there are group elements g₁,..., g_n ∈ G such that ⋃_{i=1}ⁿ g_iU_i = X.
- Suppose α is minimal and there is a group element $g \in G$ having a fixed point x_0 which is an attractor in the sense that there is an open neighborhood W of x_0 such that $\{g^n(W) : n \in \mathbb{N}\}$ form a neighborhood basis at x_0 . Then α is purely infinite. This covers some examples of local boundary actions defined by Laca-Spielbeg

Known examples

- Strong boundary actions (on a Compact space X) defined by Laca-Spielberg is an example. E.g. \mathbb{F}_2 acting on its boundary. Here strong boundary action means for any two non-empty open sets U_1, U_2 there are group elements $g_1, g_2 \in G$ such that $g_1U_1 \cup g_2U_2 = X$.
- A generalization, called the *n*-filling actions, by Jolissaint-Robertson are also examples of purely infinite actions, in which *n*-filling means for any *n* non-empty open sets U₁,..., U_n there are group elements g₁,..., g_n ∈ G such that ⋃_{i=1}ⁿ g_iU_i = X.
- Suppose α is minimal and there is a group element $g \in G$ having a fixed point x_0 which is an attractor in the sense that there is an open neighborhood W of x_0 such that $\{g^n(W) : n \in \mathbb{N}\}$ form a neighborhood basis at x_0 . Then α is purely infinite. This covers some examples of local boundary actions defined by Laca-Spielbeg

Known examples

- Strong boundary actions (on a Compact space X) defined by Laca-Spielberg is an example. E.g. \mathbb{F}_2 acting on its boundary. Here strong boundary action means for any two non-empty open sets U_1, U_2 there are group elements $g_1, g_2 \in G$ such that $g_1U_1 \cup g_2U_2 = X$.
- A generalization, called the *n*-filling actions, by Jolissaint-Robertson are also examples of purely infinite actions, in which *n*-filling means for any *n* non-empty open sets U₁,..., U_n there are group elements g₁,..., g_n ∈ G such that ⋃_{i=1}ⁿ g_iU_i = X.
- Suppose α is minimal and there is a group element $g \in G$ having a fixed point x_0 which is an attractor in the sense that there is an open neighborhood W of x_0 such that $\{g^n(W) : n \in \mathbb{N}\}$ form a neighborhood basis at x_0 . Then α is purely infinite. This covers some examples of local boundary actions defined by Laca-Spielbeg

- Pure infiniteness of actions is not preserved by extensions. Here is an example due to Hanfeng Li. Start with a Cantor pure infinite system α : G ∩ X. Let G* denote the one-point compactification G ∪ {∞} for G. Note β : G ∩ G* is the natural action given by g · h = gh for h ∈ G and g · ∞ = ∞. Define γ : G ∩ X × G* by γ_g(x, p) = (α_g(x), β_g(p)). Then γ is an extension of α. Consider the open set X × {h} for h ∈ G. It is not hard to see it is impossible to find two disjoint non-empty open subsets V₁ × {h} and V₂ × {h} of X × {h}. such that X × {h} ≺ V_i × {h} for i = 1, 2.
- Since α has no G-invariant probability measure on X, neither does γ because γ is an extension. Nevertheless, one can show for any open set of the form O × {h} in X × G there is a infinite Borel regular G-invariant measure μ such that μ(O × {h}) = 1. Therefore Hanfeng's example in fact has a flavor of finiteness.

- Pure infiniteness of actions is not preserved by extensions. Here is an example due to Hanfeng Li. Start with a Cantor pure infinite system α : G ∩ X. Let G* denote the one-point compactification G ∪ {∞} for G. Note β : G ∩ G* is the natural action given by g · h = gh for h ∈ G and g · ∞ = ∞. Define γ : G ∩ X × G* by γ_g(x, p) = (α_g(x), β_g(p)). Then γ is an extension of α. Consider the open set X × {h} for h ∈ G. It is not hard to see it is impossible to find two disjoint non-empty open subsets V₁ × {h} and V₂ × {h} of X × {h}. such that X × {h} ≺ V_i × {h} for i = 1, 2.
- Since α has no G-invariant probability measure on X, neither does γ because γ is an extension. Nevertheless, one can show for any open set of the form O × {h} in X × G there is a infinite Borel regular G-invariant measure μ such that μ(O × {h}) = 1. Therefore Hanfeng' s example in fact has a flavor of finiteness.

- Natural question: Is there a Cantor dynamical system having no non-trivial Borel invariant measure and also not purely infinite.
- Pure infiniteness of actions is preserved by inverse limits of dynamical systems.
- Suzuki constructed a class of group actions by inverse limits of \mathbb{F}_n acting on its boundary when he studied the K-theory of Kirchberg algebras. Therefore his examples of dynamical systems are in fact purely infinite.
- It is not known whether pure infiniteness is preserved by factors.

- Natural question: Is there a Cantor dynamical system having no non-trivial Borel invariant measure and also not purely infinite.
- Pure infiniteness of actions is preserved by inverse limits of dynamical systems.
- Suzuki constructed a class of group actions by inverse limits of \mathbb{F}_n acting on its boundary when he studied the K-theory of Kirchberg algebras. Therefore his examples of dynamical systems are in fact purely infinite.
- It is not known whether pure infiniteness is preserved by factors.

- Natural question: Is there a Cantor dynamical system having no non-trivial Borel invariant measure and also not purely infinite.
- Pure infiniteness of actions is preserved by inverse limits of dynamical systems.
- Suzuki constructed a class of group actions by inverse limits of \mathbb{F}_n acting on its boundary when he studied the K-theory of Kirchberg algebras. Therefore his examples of dynamical systems are in fact purely infinite.
- It is not known whether pure infiniteness is preserved by factors.

- Natural question: Is there a Cantor dynamical system having no non-trivial Borel invariant measure and also not purely infinite.
- Pure infiniteness of actions is preserved by inverse limits of dynamical systems.
- Suzuki constructed a class of group actions by inverse limits of F_n acting on its boundary when he studied the K-theory of Kirchberg algebras. Therefore his examples of dynamical systems are in fact purely infinite.
- It is not known whether pure infiniteness is preserved by factors.

Kumjian and Archbold independently observe that the Cuntz algebra \mathcal{O}_2 has a dynamical model in the sense that there is an action α_0 of $\mathbb{Z}_2 * \mathbb{Z}_3$ on the Cantor set X such that $\mathcal{O}_2 \simeq C(X) \rtimes_r (\mathbb{Z}_2 * \mathbb{Z}_3)$ where α_0 is defined as follows. Identify X by $\{0,1\}^{\mathbb{N}}$ and let φ and ψ be two homeomorphism on X given by

$$(0, x_2, x_3, \dots) \xrightarrow{\varphi} (1, x_2, x_3, \dots) \xrightarrow{\varphi} (0, x_2, x_3, \dots)$$

and

$$(0, x_2, x_3, \dots) \xrightarrow{\psi} (1, 1, x_2, x_3, \dots) \xrightarrow{\psi} (1, 0, x_2, x_3, \dots) \xrightarrow{\psi} (0, x_2, x_3, \dots)$$

Then $\varphi^2 = \psi^3 = id_X$. It can be verified that φ and ψ induces a purely infinite action α_0 on X. We sketch below

Kumjian and Archbold independently observe that the Cuntz algebra \mathcal{O}_2 has a dynamical model in the sense that there is an action α_0 of $\mathbb{Z}_2 * \mathbb{Z}_3$ on the Cantor set X such that $\mathcal{O}_2 \simeq C(X) \rtimes_r (\mathbb{Z}_2 * \mathbb{Z}_3)$ where α_0 is defined as follows. Identify X by $\{0,1\}^{\mathbb{N}}$ and let φ and ψ be two homeomorphism on X given by

$$(0, x_2, x_3, \dots) \xrightarrow{\varphi} (1, x_2, x_3, \dots) \xrightarrow{\varphi} (0, x_2, x_3, \dots)$$

and

$$(0, x_2, x_3, \dots) \xrightarrow{\psi} (1, 1, x_2, x_3, \dots) \xrightarrow{\psi} (1, 0, x_2, x_3, \dots) \xrightarrow{\psi} (0, x_2, x_3, \dots)$$

Then $\varphi^2 = \psi^3 = id_X$. It can be verified that φ and ψ induces a purely infinite action α_0 on X. We sketch below

Note that the collection of all

 $N_{z_1z_2,...,z_n} = \{x \in X : x_i = z_i \text{ for any } i \leq n\}$ where $z_1z_2,...,z_n \in \{0,1\}^n$ and $n \in \mathbb{N}$ form a standard base of the topology on X.

- Now $X = N_0 \sqcup N_1$. In addition, choose two disjoint open sets $N_{z_1z_2,...,z_n}$ and $N_{y_1y_2,...,y_m} \subset O$. Without loss of generality, one can assume $n, m \ge 2$. Now, it suffices to show that there are $g_1, g_2 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1N_0 = N_{z_1z_2,...,z_n}$ and $g_2N_1 = N_{y_1y_2,...,y_m}$.
- For $N_{z_1z_2,...,z_n}$, where $n \ge 2$, one has 1 if $z_1 = z_2 = 1$ then $\psi^{-1}(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$. 2 if $z_1 = 1$ and $z_2 = 0$ then $\psi(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$. 3 if $z_1 = 0$ then $\varphi(N_{z_1z_2,...,z_n}) = N_{1z_2,...,z_n}$.

Note that the collection of all

 $N_{z_1z_2,...,z_n} = \{x \in X : x_i = z_i \text{ for any } i \leq n\}$ where $z_1z_2,...,z_n \in \{0,1\}^n$ and $n \in \mathbb{N}$ form a standard base of the topology on X.

- Now $X = N_0 \sqcup N_1$. In addition, choose two disjoint open sets $N_{z_1 z_2,...,z_n}$ and $N_{y_1 y_2,...,y_m} \subset O$. Without loss of generality, one can assume $n, m \geq 2$. Now, it suffices to show that there are $g_1, g_2 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$ and $g_2 N_1 = N_{y_1 y_2,...,y_m}$.
- For $N_{z_1z_2,...,z_n}$, where $n \ge 2$, one has • if $z_1 = z_2 = 1$ then $\psi^{-1}(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$. • if $z_1 = 1$ and $z_2 = 0$ then $\psi(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$. • if $z_1 = 0$ then $\varphi(N_{z_1z_2,...,z_n}) = N_{1z_2,...,z_n}$

Note that the collection of all

 $N_{z_1z_2,...,z_n} = \{x \in X : x_i = z_i \text{ for any } i \leq n\}$ where $z_1z_2,...,z_n \in \{0,1\}^n$ and $n \in \mathbb{N}$ form a standard base of the topology on X.

• Now $X = N_0 \sqcup N_1$. In addition, choose two disjoint open sets $N_{z_1 z_2,...,z_n}$ and $N_{y_1 y_2,...,y_m} \subset O$. Without loss of generality, one can assume $n, m \geq 2$. Now, it suffices to show that there are $g_1, g_2 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$ and $g_2 N_1 = N_{y_1 y_2,...,y_m}$.

• For
$$N_{z_1z_2,...,z_n}$$
, where $n \ge 2$, one has
• if $z_1 = z_2 = 1$ then $\psi^{-1}(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$.
• if $z_1 = 1$ and $z_2 = 0$ then $\psi(N_{z_1z_2,...,z_n}) = N_{0z_3,...,z_n}$.
• if $z_1 = 0$ then $\varphi(N_{z_1z_2,...,z_n}) = N_{1z_2,...,z_n}$.

- This implies that there is a $g \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $gN_{z_1z_2,...,z_n} = N_{z_2,...,z_n}$. Indeed,
 - If $z_1 = z_2 = 1$ define $g = \varphi \circ \psi^{-1}$.
 - 2 If $z_1 = 1$ and $z_2 = 0$ then define $g = \psi$.
 - If z₁ = 0, by third condition above, one can always reduce the problem to the case z₁ = 1 above.
- By induction there is an $h \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $hN_{z_1z_2,...,z_n} = N_{z_n}$. If $z_n = 0$ we are done and if $z_n = 1$ then $\varphi(hN_{z_1z_2,...,z_n}) = N_0$.
- Thus there is a $g_1 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$. The same method shows that there is an h_2 such that $h_2 N_0 = N_{y_1 y_2,...,y_m}$. Then define $g_2 = h_2 \circ \varphi$. Then $g_2 N_1 = N_{y_1 y_2,...,y_m}$.
- In fact, this action is a strong boundary action.

- This implies that there is a $g \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $gN_{z_1z_2,...,z_n} = N_{z_2,...,z_n}$. Indeed,
 - 1 If $z_1 = z_2 = 1$ define $g = \varphi \circ \psi^{-1}$.
 - 2 If $z_1 = 1$ and $z_2 = 0$ then define $g = \psi$.
 - If z₁ = 0, by third condition above, one can always reduce the problem to the case z₁ = 1 above.
- By induction there is an $h \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $hN_{z_1z_2,...,z_n} = N_{z_n}$. If $z_n = 0$ we are done and if $z_n = 1$ then $\varphi(hN_{z_1z_2,...,z_n}) = N_0$.
- Thus there is a $g_1 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$. The same method shows that there is an h_2 such that $h_2 N_0 = N_{y_1 y_2,...,y_m}$. Then define $g_2 = h_2 \circ \varphi$. Then $g_2 N_1 = N_{y_1 y_2,...,y_m}$.
- In fact, this action is a strong boundary action.

- This implies that there is a $g \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $gN_{z_1z_2,...,z_n} = N_{z_2,...,z_n}$. Indeed,
 - If $z_1 = z_2 = 1$ define $g = \varphi \circ \psi^{-1}$.
 - 2 If $z_1 = 1$ and $z_2 = 0$ then define $g = \psi$.
 - If z₁ = 0, by third condition above, one can always reduce the problem to the case z₁ = 1 above.
- By induction there is an $h \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $hN_{z_1z_2,...,z_n} = N_{z_n}$. If $z_n = 0$ we are done and if $z_n = 1$ then $\varphi(hN_{z_1z_2,...,z_n}) = N_0$.
- Thus there is a $g_1 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$. The same method shows that there is an h_2 such that $h_2 N_0 = N_{y_1 y_2,...,y_m}$. Then define $g_2 = h_2 \circ \varphi$. Then $g_2 N_1 = N_{y_1 y_2,...,y_m}$.
- In fact, this action is a strong boundary action.

- This implies that there is a $g \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $gN_{z_1z_2,...,z_n} = N_{z_2,...,z_n}$. Indeed,
 - 1 If $z_1 = z_2 = 1$ define $g = \varphi \circ \psi^{-1}$.
 - 2 If $z_1 = 1$ and $z_2 = 0$ then define $g = \psi$.
 - If z₁ = 0, by third condition above, one can always reduce the problem to the case z₁ = 1 above.
- By induction there is an $h \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $hN_{z_1z_2,...,z_n} = N_{z_n}$. If $z_n = 0$ we are done and if $z_n = 1$ then $\varphi(hN_{z_1z_2,...,z_n}) = N_0$.
- Thus there is a $g_1 \in \mathbb{Z}_2 * \mathbb{Z}_3$ such that $g_1 N_0 = N_{z_1 z_2,...,z_n}$. The same method shows that there is an h_2 such that $h_2 N_0 = N_{y_1 y_2,...,y_m}$. Then define $g_2 = h_2 \circ \varphi$. Then $g_2 N_1 = N_{y_1 y_2,...,y_m}$.
- In fact, this action is a strong boundary action.

- We say C₀(X) separates ideals of C₀(X) ⋊_r G if the (surjective) map I → I ∩ C₀(X) from ideals in C₀(X) ⋊_r G to ideals in C₀(X) generating by G-invariant closed sets is injective.
- 2 In the case α is amenable, Sierakowski showed that $C_0(X)$ separates ideals of $C_0(X) \rtimes_r G$ if and only if α is essentially free.

Theorem (M.)

Let $\alpha : G \cap X$. Suppose $C_0(X)$ separates ideals of $C_0(X) \rtimes_r G$ and there are only finitely many *G*-invariant closed sets in *X*. If α is purely infinite then $C_0(X) \rtimes_r G$ is strongly purely infinite.

- We say C₀(X) separates ideals of C₀(X) ⋊_r G if the (surjective) map I → I ∩ C₀(X) from ideals in C₀(X) ⋊_r G to ideals in C₀(X) generating by G-invariant closed sets is injective.

Theorem (M.)

Let $\alpha : G \cap X$. Suppose $C_0(X)$ separates ideals of $C_0(X) \rtimes_r G$ and there are only finitely many *G*-invariant closed sets in *X*. If α is purely infinite then $C_0(X) \rtimes_r G$ is strongly purely infinite.

- We say C₀(X) separates ideals of C₀(X) ⋊_r G if the (surjective) map I → I ∩ C₀(X) from ideals in C₀(X) ⋊_r G to ideals in C₀(X) generating by G-invariant closed sets is injective.
- ② In the case α is amenable, Sierakowski showed that $C_0(X)$ separates ideals of $C_0(X) \rtimes_r G$ if and only if α is essentially free.

Theorem (M.)

Let $\alpha : G \cap X$. Suppose $C_0(X)$ separates ideals of $C_0(X) \rtimes_r G$ and there are only finitely many *G*-invariant closed sets in *X*. If α is purely infinite then $C_0(X) \rtimes_r G$ is strongly purely infinite.

Corollary

Let $\alpha : G \curvearrowright X$ be a minimal topologically free action. Suppose that the action α is purely infinite Then the reduced crossed product $C_0(X) \rtimes_r G$ is strongly purely infinite. If α is also amenable then $C_0(X) \rtimes_r G$ is a Kirchberg algebra.

Corollary

Let $\alpha : G \curvearrowright X$ be a minimal topologically free continuous action of G on X. Suppose that the action α has dynamical comparison. Then the reduced crossed product $C_0(X) \rtimes_r G$ is simple and is either stably finite or strongly purely infinite.

Corollary

Let $\alpha : G \curvearrowright X$ be a minimal topologically free action. Suppose that the action α is purely infinite Then the reduced crossed product $C_0(X) \rtimes_r G$ is strongly purely infinite. If α is also amenable then $C_0(X) \rtimes_r G$ is a Kirchberg algebra.

Corollary

Let $\alpha : G \curvearrowright X$ be a minimal topologically free continuous action of G on X. Suppose that the action α has dynamical comparison. Then the reduced crossed product $C_0(X) \rtimes_r G$ is simple and is either stably finite or strongly purely infinite.

Proposition (M.)

Let $\alpha : G \curvearrowright X$ be a minimal action. Let Y be a locally compact Hausdorff space and $\beta : G \curvearrowright X \times Y$ by $\beta_g(x, y) = (\alpha_g(x), y)$. Suppose α is purely infinite then so is β .

Theorem (M.)

There exists a non-simple strongly purely infinite C^* -algebra A, for example, $\mathcal{O}_2 \otimes C_0(\mathbb{R})$, which has a purely infinite dynamical model. However, it has no dynamical model implemented by an n-filling or locally boundary action.

Proposition (M.)

Let $\alpha : G \curvearrowright X$ be a minimal action. Let Y be a locally compact Hausdorff space and $\beta : G \curvearrowright X \times Y$ by $\beta_g(x, y) = (\alpha_g(x), y)$. Suppose α is purely infinite then so is β .

Theorem (M.)

There exists a non-simple strongly purely infinite C^* -algebra A, for example, $\mathcal{O}_2 \otimes C_0(\mathbb{R})$, which has a purely infinite dynamical model. However, it has no dynamical model implemented by an n-filling or locally boundary action.

Thank you!

