
Purely infinite dynamical systems and their
C∗-algebras

AMS Special Session on C∗-algebras, Dynamical systems and
Applications

Xin Ma

SUNY at Buffalo

Jan 2020



Pure infiniteness of C∗-algebras

Let A be a C∗-algebra.

1 We write M∞(A)+ =
⋃∞
n=1Mn(A)+. Let a, b be two positive

elements in Mn(A)+ and Mm(A)+, respectively. Write a - b
if there exists a sequence (rn) in Mm,n(A) with r∗nbrn → a.

2 A non-zero positive element a in A is said to be properly
infinite if a⊕ a - a. Then A is said to be purely infinite if
there are no characters on A and if, for every pair of positive
elements a, b ∈ A such that b belongs to the closed ideal in A
generated by a, one has b - a.

3 Kirchberg and Rørdam showed that A is purely infinite if and
only if every non-zero positive element a in A is properly
infinite.
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Finiteness against strongly purely infiniteness of
C∗-algebras

1 Kirchberg and Rørdam also introduced a stronger notion
called strongly pure infiniteness. If A is nuclear and separable
then A is strongly purely infinite if and only if A⊗O∞ ' A.

2 Rørdam and Pasnicu then showed that pure infiniteness is
equivalent to strongly pure infiniteness if A has the ideal
property (IP).

3 we say A is finite if 1Ã is a finite projection in Ã. If Mn(A)
are finite for all n ∈ N then we say A is stably finite.
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Dynamical systems

Throughout G denotes a countable infinite discrete group, X
a locally compact metrizable topological space and
α : Gy X a continuous action of G on X.

α : Gy X is amenable iff C0(X)or G is nuclear iff the
transformation groupoid X oG is amenable. In this case,
C0(X)or G satisfies the UCT by a theorem of Tu.

It is well-known that if the action α is minimal and
(topologically) free then the reduced crossed product of it is
simple.
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Comparison of open sets in Dynamical systems

Definition (Kerr, 2017)

Let F be a compact set in X and O an open set in X. We write
F ≺ O if there exists a finite collection U = {U1, . . . , Un} of open
sets in X and group elements {s1, . . . , sn} such that F ⊂

⋃n
i=1 Ui

and
⊔n
i=1 siUi ⊂ O. In addition, for open sets U, V , we write

U ≺ V if F ≺ V holds whenever F is a compact subset of U .

Definition (Kerr, 2017)

The action α : Gy X is said to have dynamical comparison if
U ≺ V for every non-empty open sets U, V ⊂ X satisfying
µ(U) < µ(V ) for all µ ∈MG(X), where MG(X) is the set
consisting of all G-invariant probability Borel measure.
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Purely infinite dynamical systems

Definition (X. Ma)

Let α : Gy X. we write U ≺d V if for any compact set F ⊂ U
there are disjoint non-empty open sets O1, O2 ⊂ V such that
F ≺ O1 and F ≺ O2.

Definition (M.)

Let α : Gy X. We say the action α

1 is purely infinite if U ≺d V whenever U ⊂ G · V for any open
sets U, V in X.

2 has paradoxical comparison if U ≺d U for any open set U in
X.

3 is weakly purely infinite if U ≺ V whenever U ⊂ G · V for any
open sets U, V in X
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Relations among these three notions

1 In general one easily has (1)⇒(2) and (1) ⇒(3).

2 If the action α is minimal then all of these three notions are
equivalent to dynamical comparison in the case MG(X) = ∅,
i.e., U ≺ V for any open sets U, V in X.

3 If α is not minimal then one actually could establish (1)⇔(2).
However, (3) is strictly weaker than (1) and (2) because the
trivial action of the group G on X is weakly purely infinite but
is not purely infinite.

4 Nevertheless, if the space X is zero-dimensional and the
action has no global fixed points (i.e. G · {x} = {x}), then
one can show (3) is equivalent to (1) and thus also (2).
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Known examples

Strong boundary actions (on a Compact space X) defined by
Laca-Spielberg is an example. E.g. F2 acting on its boundary.
Here strong boundary action means for any two non-empty
open sets U1, U2 there are group elements g1, g2 ∈ G such
that g1U1 ∪ g2U2 = X.

A generalization, called the n-filling actions, by
Jolissaint-Robertson are also examples of purely infinite
actions, in which n-filling means for any n non-empty open
sets U1, . . . , Un there are group elements g1, . . . , gn ∈ G such
that

⋃n
i=1 giUi = X.

Suppose α is minimal and there is a group element g ∈ G
having a fixed point x0 which is an attractor in the sense that
there is an open neighborhood W of x0 such that
{gn(W ) : n ∈ N} form a neighborhood basis at x0. Then α is
purely infinite. This covers some examples of local boundary
actions defined by Laca-Spielbeg
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Permanence properties I

Pure infiniteness of actions is not preserved by extensions.
Here is an example due to Hanfeng Li. Start with a Cantor
pure infinite system α : Gy X. Let G∗ denote the one-point
compactification G ∪ {∞} for G. Note β : Gy G∗ is the
natural action given by g · h = gh for h ∈ G and g · ∞ =∞.
Define γ : Gy X ×G∗ by γg(x, p) = (αg(x), βg(p)). Then γ
is an extension of α. Consider the open set X × {h} for
h ∈ G. It is not hard to see it is impossible to find two
disjoint non-empty open subsets V1 × {h} and V2 × {h} of
X × {h}. such that X × {h} ≺ Vi × {h} for i = 1, 2.

Since α has no G-invariant probability measure on X, neither
does γ because γ is an extension. Nevertheless, one can show
for any open set of the form O × {h} in X ×G there is a
infinite Borel regular G-invariant measure µ such that
µ(O × {h}) = 1. Therefore Hanfeng’ s example in fact has a
flavor of finiteness.
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Permanence properties II

Natural question: Is there a Cantor dynamical system having
no non-trivial Borel invariant measure and also not purely
infinite.

Pure infiniteness of actions is preserved by inverse limits of
dynamical systems.

Suzuki constructed a class of group actions by inverse limits
of Fn acting on its boundary when he studied the K-theory of
Kirchberg algebras. Therefore his examples of dynamical
systems are in fact purely infinite.

It is not known whether pure infiniteness is preserved by
factors.
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A dynamical model for O2 I

Kumjian and Archbold independently observe that the Cuntz
algebra O2 has a dynamical model in the sense that there is an
action α0 of Z2 ∗ Z3 on the Cantor set X such that
O2 ' C(X)or (Z2 ∗Z3) where α0 is defined as follows. Identify X
by {0, 1}N and let ϕ and ψ be two homeomorphism on X given by

(0, x2, x3, . . . )
ϕ // (1, x2, x3, . . . )

ϕ // (0, x2, x3, . . . )

and

(0, x2, x3, . . . )
ψ // (1, 1, x2, x3, . . . )

ψ // (1, 0, x2, x3, . . . )
ψ // (0, x2, x3, . . . ) .

Then ϕ2 = ψ3 = idX . It can be verified that ϕ and ψ induces a
purely infinite action α0 on X. We sketch below
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A dynamical model for O2 II

Note that the collection of all
Nz1z2,...,zn = {x ∈ X : xi = zi for any i ≤ n} where
z1z2, . . . , zn ∈ {0, 1}n and n ∈ N form a standard base of the
topology on X.

Now X = N0 tN1. In addition, choose two disjoint open sets
Nz1z2,...,zn and Ny1y2,...,ym ⊂ O. Without loss of generality,
one can assume n,m ≥ 2. Now, it suffices to show that there
are g1, g2 ∈ Z2 ∗ Z3 such that g1N0 = Nz1z2,...,zn and
g2N1 = Ny1y2,...,ym .

For Nz1z2,...,zn , where n ≥ 2, one has
1 if z1 = z2 = 1 then ψ−1(Nz1z2,...,zn) = N0z3,...,zn .
2 if z1 = 1 and z2 = 0 then ψ(Nz1z2,...,zn) = N0z3,...,zn .
3 if z1 = 0 then ϕ(Nz1z2,...,zn) = N1z2,...,zn
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A dynamical model for O2 III

This implies that there is a g ∈ Z2 ∗ Z3 such that
gNz1z2,...,zn = Nz2,...,zn . Indeed,

1 If z1 = z2 = 1 define g = ϕ ◦ ψ−1.
2 If z1 = 1 and z2 = 0 then define g = ψ.
3 If z1 = 0, by third condition above, one can always reduce the

problem to the case z1 = 1 above.

By induction there is an h ∈ Z2 ∗ Z3 such that
hNz1z2,...,zn = Nzn . If zn = 0 we are done and if zn = 1 then
ϕ(hNz1z2,...,zn) = N0.

Thus there is a g1 ∈ Z2 ∗ Z3 such that g1N0 = Nz1z2,...,zn .
The same method shows that there is an h2 such that
h2N0 = Ny1y2,...,ym . Then define g2 = h2 ◦ ϕ. Then
g2N1 = Ny1y2,...,ym .

In fact, this action is a strong boundary action.
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C∗-algebras arising from purely infinite dynamical systems

1 We say C0(X) separates ideals of C0(X)or G if the
(surjective) map I 7→ I ∩ C0(X) from ideals in C0(X)or G
to ideals in C0(X) generating by G-invariant closed sets is
injective.

2 In the case α is amenable, Sierakowski showed that C0(X)
separates ideals of C0(X)or G if and only if α is essentially
free.

Theorem (M.)

Let α : Gy X. Suppose C0(X) separates ideals of C0(X)or G
and there are only finitely many G-invariant closed sets in X. If α
is purely infinite then C0(X)or G is strongly purely infinite.
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is purely infinite then C0(X)or G is strongly purely infinite.
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C∗-algebras arising from purely infinite dynamical systems

Corollary

Let α : Gy X be a minimal topologically free action. Suppose
that the action α is purely infinite Then the reduced crossed
product C0(X)or G is strongly purely infinite. If α is also
amenable then C0(X)or G is a Kirchberg algebra.

Corollary

Let α : Gy X be a minimal topologically free continuous action
of G on X. Suppose that the action α has dynamical comparison.
Then the reduced crossed product C0(X)or G is simple and is
either stably finite or strongly purely infinite.
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Dynamical models of non-simple purely infinite C∗-algebras

Proposition (M.)

Let α : Gy X be a minimal action. Let Y be a locally compact
Hausdorff space and β : Gy X × Y by βg(x, y) = (αg(x), y).
Suppose α is purely infinite then so is β.

Theorem (M.)

There exists a non-simple strongly purely infinite C∗-algebra A, for
example, O2 ⊗ C0(R), which has a purely infinite dynamical
model. However, it has no dynamical model implemented by an
n-filling or locally boundary action.
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The end

Thank you!


