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Outline

We recall the definition of the Cuntz-Pimsner algebra OE of a
Hermitian vector bundle E → X and discuss some examples using
results from K-theory.
We review the structure of G-vector bundles for G a compact group.
If G acts on E → X, then it acts on the C∗-correspondence Γ(E) over
C(X) and on the C∗-algebra OE, so we can study OE o G.
If the action is free and rank E = n, then OE o G is Morita equivalent
to a field of Cuntz algebras On over the orbit space X/G.
If the action is fiberwise, then OE o G becomes a continuous field of
crossed products On o G.
For transitive actions, we show that OE o G is Morita equivalent to a
graph C∗-algebra.
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Cuntz-Pimsner algebras of vector bundles

Let E → X be a complex vector bundle with a Hermitian metric, where
X is compact, metrizable and path connected.
The set Γ(E) of continuous sections ξ : X → E becomes a
C∗-correspondence over C(X), with left and right multiplications

(f ξ)(x) = (ξf )(x) = f (x)ξ(x)

and inner product
〈ξ, η〉(x) = 〈ξ(x), η(x)〉Ex .

We denote by OE the Cuntz-Pimsner algebra OA(H) of the
C∗-correspondenceH = Γ(E) over A = C(X).
In general, OA(H) is universal for covariant representations
π : A→ C, τ : H → C in a C∗-algebra C, where

τ(aξ) = π(a)τ(ξ), π(〈ξ, η〉) = τ(ξ)∗τ(η)

π(a) = ψ(φ(a)) for a ∈ JH = φ−1(KA(H)) ∩ (kerφ)⊥.

Here ψ : KA(H)→ C, ψ(θξ,η) = τ(ξ)τ(η)∗ and φ : A→ L(H).
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Cuntz-Pimsner algebras of vector bundles

Theorem (Vasselli). If rank E = n ≥ 2, then OE is a locally trivial
continuous field of Cuntz algebras On.
OE is generated by C(X) and S1, ..., SN such that

f Sj = Sj f , S∗j Sk = Pjk,

N∑
j=1

SjS∗j = 1

where f ∈ C(X) and P ∈ MN ⊗ C(X) gives E by the Serre-Swan
Theorem.
If E is a line bundle, then OE is commutative with spectrum
homeomorphic to the circle bundle of E.
If E,F are line bundles over X, then OE ∼= OF as C(X)-algebras if and
only if E ∼= F or E ∼= F̄
Theorem (Dadarlat). The principal ideal (1− [E])K0(X) determinesOE

up to isomorphism and an inclusion (1− [E])K0(X) ⊆ (1− [F])K0(X)
corresponds to an unital embedding OE ⊆ OF .
If E has rank n ≥ 2, then OE ∼= C(X)⊗On if and only if [E]− 1 is
divisible by n− 1 in K0(X).
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Examples

Let X = S2 and let E = TS2 ⊗ C, which is not trivial. Nevertheless,
OE ∼= C(S2)⊗O2.
For X = S2k and [E] = n + mt ∈ K0(S2k) ∼= Z[t]/(t2) with n ≥ 3 and
gcd(n− 1,m) = 1 we have

K0(OE) ∼= Z/(n− 1)2Z 6= K0(C(S2k)⊗On).

For X = S2k+1 and [E] = n ∈ K0(S2k+1) ∼= Z we have

OE ⊗K ∼= C(S2k+1)⊗On ⊗K

as graded algebras.

Valentin Deaconu Group actions on C*-algebras of a vector bundle



G-vector bundles

Let G be a topological group. A G-vector bundle is p : E → X with a
continuous G action on X and E such that p is equivariant and the maps
Ex → Eg·x are linear.
G acts on C(X) by g · f (x) = f (g−1x) and on Γ(E) by
g · ξ(x) = gξ(g−1x).
Example. If X is a manifold and G acts smoothly on X, then
E = TX ⊗ C becomes a G-vector bundle.
If E is a vector bundle on X, then E⊗k becomes an Sk-vector bundle on
X, where Sk permutes the factors, and X has a trivial action.
If X is a point, then a G-vector bundle is just a finite dimensional
representation of G.
If X is a trivial G-space, then a G-vector bundle is a continuous family
of representations Ex of G.
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G-vector bundles results

G-vector bundles E over a free G-space X correspond bijectively to
vector bundles over X/G with trivial action.
For G compact, let {Vi}i≥1 be the set of irreducible representations.
If X is a trivial G-space, then every G-bundle E over X is isomorphic to
a direct sum

⊕
i Wi ⊗ Ei, where Wi = X × Vi has the action

g · (x, v) = (x, g · v), and Ei = HomG(Wi,E) ∼= Hom(Wi,E)G are vector
bundles with trivial action.
Any G-vector bundle E over the homogeneous space G/H is of the
form G×H W for some H-module W.
Here G×H W is the quotient of G×W under the action
h · (g,w) = (gh−1, h · w) and G acts by g · (g′,w) = (gg′,w).
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Crossed products of C∗-correspondences

A group G acts on a C∗-correspondence (A,H) by (α, β) if

〈βg(ξ), βg(η)〉 = αg(〈ξ, η〉), βg(ξa) = βg(ξ)αg(a), βg(aξ) = αg(a)βg(ξ).

For a ∈ Cc(G,A), ξ ∈ Cc(G,H) define

(aξ)(s) =

∫
G

a(t)βt(ξ(t−1s))dt, (ξa)(s) =

∫
G
ξ(t)αt(a(t−1s))dt,

〈ξ, η〉(s) =

∫
G
αt−1(〈ξ(t), η(ts)〉)dt.

The completion gives a crossed product C∗-correspondence
(A oα G,Hoβ G).
For G a compact group, A oα G can be identified with a subalgebra of
A⊗K(L2(G)) andHoβ G with a subspace ofH⊗K(L2(G)).

Valentin Deaconu Group actions on C*-algebras of a vector bundle



Morita equivalence

Given C∗-correspondencesH over A andM over B, we say thatH and
M are Morita equivalent in case A and B are Morita equivalent via an
imprimitivity bimodule Z such that Z ⊗BM andH⊗A Z are
isomorphic as C∗-correspondences from A to B.
Using linking algebras, Muhly and Solel proved that for faithful and
essential Morita equivalent C∗-correspondencesH andM, the
Cuntz-Pimsner algebras OA(H) and OB(M) are Morita equivalent.
Theorem. Suppose that a localy compact amenable group G acts on
faithful and essential Morita equivalent C∗-correspondecesH andM
over A and B respectively, via an imprimitivity bimodule Z .
Then Z o G becomes an imprimitivity bimodule between A o G and
B o G. Moreover, OA(H) o G is Morita equivalent to OB(M) o G.
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Results

Theorem (Hao-Ng). Let G act on (A,H). By the universal property of
OA(H) we get γ : G→Aut OA(H).
If G is amenable, then

OA(H) oγ G ∼= OAoαG(Hoβ G).

Corollary. If G compact acts on a Hermitian vector bundle E → X by
isometries, then G acts on (C(X),Γ(E)) and

OE o G ∼= OC(X)oG(Γ(E) o G).

It is useful to understand the finitely generated projective module
Γ(E) o G as a kind of noncommutative bundle over C(X) o G, which
in some cases is Morita equivalent to an abelian C∗-algebra.
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Results

Theorem 1 (Free action). If G compact acts freely on the Hermitian
vector bundle E → X, then OE o G is Morita equivalent with a
continuous field of Cuntz algebras over X/G.
Example. The group Z2 = {e, g} acts on S2 by g · x = −x and on
E = TS2 ⊗ C by its differential dg. Since the action is free, E/Z2 is a
vector bundle over S2/Z2 = RP2.
Moreover, C(S2) o Z2 is Morita equivalent with C(RP2) and it follows
that OE o Z2 is Morita equivalent with C(RP2)⊗O2.
Theorem 2 (Fiberwise action). If G compact acts on E → X of rank n
and the action on X is trivial, then OE o G is a continuous field with
fibers On o G.
For G = Sn we know that On o Sn is simple and purely infinite.
If X is finite dimensional, Dadarlat gives a complete list of the UCT
Kirchberg algebras D with finitely generated K-theory for which every
unital separable continuous field over X with fibers isomorphic to D is
automatically locally trivial or trivial.
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Results

Theorem 3 (Transitive action). Let G be a compact group and let H be
a closed subgroup. Given a Hermitian vector bundle E over X = G/H
we know that E ∼= G×H V for an H-module V .
Then OE o G is Morita equivalent to a graph C∗-algebra.
Indeed, C(G/H) o G is Morita equivalent with C∗(H) which is a direct
sum of matrix algebras.
This in turn is Morita equivalent to C0(Y) with Y at most countable.
Now it is known that a C∗-correspondence over C0(Y) gives rise to a
discrete graph.
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