Group actions on C*-algebras of a vector bundle

Valentin Deaconu

University of Nevada, Reno

AMS meeting-Denver-17 January 2020

(submitted)

Outline

- We recall the definition of the Cuntz-Pimsner algebra \mathcal{O}_E of a Hermitian vector bundle $E \to X$ and discuss some examples using results from *K*-theory.
- We review the structure of *G*-vector bundles for *G* a compact group.
- If *G* acts on $E \to X$, then it acts on the *C*^{*}-correspondence $\Gamma(E)$ over C(X) and on the *C*^{*}-algebra \mathcal{O}_E , so we can study $\mathcal{O}_E \rtimes G$.
- If the action is free and rank E = n, then $\mathcal{O}_E \rtimes G$ is Morita equivalent to a field of Cuntz algebras \mathcal{O}_n over the orbit space X/G.
- If the action is fiberwise, then O_E ⋊ G becomes a continuous field of crossed products O_n ⋊ G.
- For transitive actions, we show that $\mathcal{O}_E \rtimes G$ is Morita equivalent to a graph C^* -algebra.

Cuntz-Pimsner algebras of vector bundles

- Let $E \to X$ be a complex vector bundle with a Hermitian metric, where *X* is compact, metrizable and path connected.
- The set $\Gamma(E)$ of continuous sections $\xi : X \to E$ becomes a C^* -correspondence over C(X), with left and right multiplications

$$(f\xi)(x) = (\xi f)(x) = f(x)\xi(x)$$

and inner product

$$\langle \xi, \eta \rangle(x) = \langle \xi(x), \eta(x) \rangle_{E_x}.$$

- We denote by \mathcal{O}_E the Cuntz-Pimsner algebra $\mathcal{O}_A(\mathcal{H})$ of the C^* -correspondence $\mathcal{H} = \Gamma(E)$ over A = C(X).
- In general, $\mathcal{O}_A(\mathcal{H})$ is universal for covariant representations $\pi: A \to C, \tau: \mathcal{H} \to C$ in a C^* -algebra C, where

$$\tau(a\xi) = \pi(a)\tau(\xi), \ \pi(\langle \xi, \eta \rangle) = \tau(\xi)^*\tau(\eta)$$

$$\pi(a) = \psi(\phi(a)) \text{ for } a \in J_{\mathcal{H}} = \phi^{-1}(\mathcal{K}_A(\mathcal{H})) \cap (\ker \phi)^{\perp}.$$

• Here $\psi : \mathcal{K}_A(\mathcal{H}) \to C, \psi(\theta_{\xi,\eta}) = \tau(\xi)\tau(\eta)^*$ and $\phi : A \to \mathcal{L}(\mathcal{H}).$

Cuntz-Pimsner algebras of vector bundles

- **Theorem** (Vasselli). If rank $E = n \ge 2$, then \mathcal{O}_E is a locally trivial continuous field of Cuntz algebras \mathcal{O}_n .
- \mathcal{O}_E is generated by C(X) and $S_1, ..., S_N$ such that

$$f S_j = S_j f, \ S_j^* S_k = P_{jk}, \ \sum_{j=1}^N S_j S_j^* = 1$$

where $f \in C(X)$ and $P \in M_N \otimes C(X)$ gives *E* by the Serre-Swan Theorem.

- If *E* is a line bundle, then \mathcal{O}_E is commutative with spectrum homeomorphic to the circle bundle of *E*.
- If E, F are line bundles over X, then O_E ≅ O_F as C(X)-algebras if and only if E ≅ F or E ≅ F
- **Theorem** (Dadarlat). The principal ideal $(1 [E])K^0(X)$ determines \mathcal{O}_E up to isomorphism and an inclusion $(1 [E])K^0(X) \subseteq (1 [F])K^0(X)$ corresponds to an unital embedding $\mathcal{O}_E \subseteq \mathcal{O}_F$.
- If *E* has rank n ≥ 2, then O_E ≃ C(X) ⊗ O_n if and only if [E] − 1 is divisible by n − 1 in K⁰(X).

Examples

- Let $X = S^2$ and let $E = TS^2 \otimes \mathbb{C}$, which is not trivial. Nevertheless, $\mathcal{O}_E \cong C(S^2) \otimes \mathcal{O}_2$.
- For $X = S^{2k}$ and $[E] = n + mt \in K^0(S^{2k}) \cong \mathbb{Z}[t]/(t^2)$ with $n \ge 3$ and gcd(n-1,m) = 1 we have

$$K_0(\mathcal{O}_E) \cong \mathbb{Z}/(n-1)^2\mathbb{Z} \neq K_0(C(S^{2k}) \otimes \mathcal{O}_n).$$

• For
$$X = S^{2k+1}$$
 and $[E] = n \in K^0(S^{2k+1}) \cong \mathbb{Z}$ we have

$$\mathcal{O}_E \otimes \mathcal{K} \cong C(S^{2k+1}) \otimes \mathcal{O}_n \otimes \mathcal{K}$$

as graded algebras.

G-vector bundles

- Let *G* be a topological group. A *G*-vector bundle is $p : E \to X$ with a continuous *G* action on *X* and *E* such that *p* is equivariant and the maps $E_x \to E_{g \cdot x}$ are linear.
- G acts on C(X) by $g \cdot f(x) = f(g^{-1}x)$ and on $\Gamma(E)$ by $g \cdot \xi(x) = g\xi(g^{-1}x)$.
- Example. If X is a manifold and G acts smoothly on X, then $E = TX \otimes \mathbb{C}$ becomes a G-vector bundle.
- If *E* is a vector bundle on *X*, then $E^{\otimes k}$ becomes an S_k -vector bundle on *X*, where S_k permutes the factors, and *X* has a trivial action.
- If *X* is a point, then a *G*-vector bundle is just a finite dimensional representation of *G*.
- If X is a trivial G-space, then a G-vector bundle is a continuous family of representations E_x of G.

G-vector bundles results

- *G*-vector bundles *E* over a free *G*-space *X* correspond bijectively to vector bundles over *X*/*G* with trivial action.
- For G compact, let $\{V_i\}_{i>1}$ be the set of irreducible representations.
- If X is a trivial G-space, then every G-bundle E over X is isomorphic to a direct sum $\bigoplus_i W_i \otimes E_i$, where $W_i = X \times V_i$ has the action $g \cdot (x, v) = (x, g \cdot v)$, and $E_i = Hom_G(W_i, E) \cong Hom(W_i, E)^G$ are vector bundles with trivial action.
- Any *G*-vector bundle *E* over the homogeneous space G/H is of the form $G \times_H W$ for some *H*-module *W*.
- Here $G \times_H W$ is the quotient of $G \times W$ under the action $h \cdot (g, w) = (gh^{-1}, h \cdot w)$ and G acts by $g \cdot (g', w) = (gg', w)$.

Crossed products of C^* -correspondences

• A group G acts on a C*-correspondence (A, \mathcal{H}) by (α, β) if

 $\langle \beta_g(\xi), \beta_g(\eta) \rangle = \alpha_g(\langle \xi, \eta \rangle), \ \beta_g(\xi a) = \beta_g(\xi) \alpha_g(a), \ \beta_g(a\xi) = \alpha_g(a) \beta_g(\xi).$

• For $a \in C_c(G, A), \xi \in C_c(G, \mathcal{H})$ define

$$(a\xi)(s) = \int_{G} a(t)\beta_{t}(\xi(t^{-1}s))dt, \ (\xi a)(s) = \int_{G} \xi(t)\alpha_{t}(a(t^{-1}s))dt,$$
$$\langle \xi, \eta \rangle(s) = \int_{G} \alpha_{t^{-1}}(\langle \xi(t), \eta(ts) \rangle)dt.$$

- The completion gives a crossed product C^{*}-correspondence (A ⋊_α G, H ⋊_β G).
- For *G* a compact group, $A \rtimes_{\alpha} G$ can be identified with a subalgebra of $A \otimes \mathcal{K}(L^2(G))$ and $\mathcal{H} \rtimes_{\beta} G$ with a subspace of $\mathcal{H} \otimes \mathcal{K}(L^2(G))$.

- Given C*-correspondences H over A and M over B, we say that H and M are Morita equivalent in case A and B are Morita equivalent via an imprimitivity bimodule Z such that Z ⊗_B M and H ⊗_A Z are isomorphic as C*-correspondences from A to B.
- Using linking algebras, Muhly and Solel proved that for faithful and essential Morita equivalent C^* -correspondences \mathcal{H} and \mathcal{M} , the Cuntz-Pimsner algebras $\mathcal{O}_A(\mathcal{H})$ and $\mathcal{O}_B(\mathcal{M})$ are Morita equivalent.
- **Theorem**. Suppose that a localy compact amenable group *G* acts on faithful and essential Morita equivalent C^* -correspondeces \mathcal{H} and \mathcal{M} over *A* and *B* respectively, via an imprimitivity bimodule \mathcal{Z} .
- Then $\mathcal{Z} \rtimes G$ becomes an imprimitivity bimodule between $A \rtimes G$ and $B \rtimes G$. Moreover, $\mathcal{O}_A(\mathcal{H}) \rtimes G$ is Morita equivalent to $\mathcal{O}_B(\mathcal{M}) \rtimes G$.

Results

- **Theorem** (Hao-Ng). Let *G* act on (A, \mathcal{H}) . By the universal property of $\mathcal{O}_A(\mathcal{H})$ we get $\gamma : G \to \operatorname{Aut} \mathcal{O}_A(\mathcal{H})$.
- If G is amenable, then

$$\mathcal{O}_A(\mathcal{H}) \rtimes_{\gamma} G \cong \mathcal{O}_{A \rtimes_{\alpha} G}(\mathcal{H} \rtimes_{\beta} G).$$

• **Corollary**. If *G* compact acts on a Hermitian vector bundle $E \to X$ by isometries, then *G* acts on $(C(X), \Gamma(E))$ and

$$\mathcal{O}_E \rtimes G \cong \mathcal{O}_{C(X) \rtimes G}(\Gamma(E) \rtimes G).$$

• It is useful to understand the finitely generated projective module $\Gamma(E) \rtimes G$ as a kind of noncommutative bundle over $C(X) \rtimes G$, which in some cases is Morita equivalent to an abelian C^* -algebra.

Results

- **Theorem 1** (Free action). If *G* compact acts freely on the Hermitian vector bundle $E \to X$, then $\mathcal{O}_E \rtimes G$ is Morita equivalent with a continuous field of Cuntz algebras over X/G.
- **Example**. The group $\mathbb{Z}_2 = \{e, g\}$ acts on S^2 by $g \cdot x = -x$ and on $E = TS^2 \otimes \mathbb{C}$ by its differential *dg*. Since the action is free, E/\mathbb{Z}_2 is a vector bundle over $S^2/\mathbb{Z}_2 = \mathbb{R}P^2$.
- Moreover, $C(S^2) \rtimes \mathbb{Z}_2$ is Morita equivalent with $C(\mathbb{R}P^2)$ and it follows that $\mathcal{O}_E \rtimes \mathbb{Z}_2$ is Morita equivalent with $C(\mathbb{R}P^2) \otimes \mathcal{O}_2$.
- **Theorem 2** (Fiberwise action). If *G* compact acts on $E \to X$ of rank *n* and the action on *X* is trivial, then $\mathcal{O}_E \rtimes G$ is a continuous field with fibers $\mathcal{O}_n \rtimes G$.
- For $G = S_n$ we know that $\mathcal{O}_n \rtimes S_n$ is simple and purely infinite.
- If *X* is finite dimensional, Dadarlat gives a complete list of the UCT Kirchberg algebras *D* with finitely generated *K*-theory for which every unital separable continuous field over *X* with fibers isomorphic to *D* is automatically locally trivial or trivial.

- **Theorem 3** (Transitive action). Let *G* be a compact group and let *H* be a closed subgroup. Given a Hermitian vector bundle *E* over X = G/H we know that $E \cong G \times_H V$ for an *H*-module *V*.
- Then $\mathcal{O}_E \rtimes G$ is Morita equivalent to a graph C^* -algebra.
- Indeed, $C(G/H) \rtimes G$ is Morita equivalent with $C^*(H)$ which is a direct sum of matrix algebras.
- This in turn is Morita equivalent to $C_0(Y)$ with Y at most countable.
- Now it is known that a *C**-correspondence over *C*₀(*Y*) gives rise to a discrete graph.

Selected references

- F. Combes, *Crossed products and Morita equivalence*, Proc. London Math. Soc. (3) 49 (1984) 289– 306.
- M. Dadarlat, *Continuous fields of C*-algebras over finite dimensional spaces*, Adv. in Math 222 (2009) 1850–1881.
- M. Dadarlat, *The C*-algebra of a vector bundle*, J. Reine Angew. Math. 670 (2012), 121–143.
- V. Deaconu, *Group actions on graphs and C**-*correspondences*, Houston J. Math. 44 (2018) no. 1, 147–168.
- G. Hao, C.-K. Ng, Crossed products of C*-correspondences by amenable group actions, J. Math. Anal. Appl. 345 (2008), no. 2, 702–707.
- D. Husemoller, Fibre Bundles, third edition, GTM 20, Springer 1994.
- P. Muhly, B. Solel, On the Morita equivalence of tensor algebras, Proc. London Math. Soc. (3) 81 (2000), no. 1, 113–168.
- G. Segal, *Equivariant K-theory*, Inst. Hautes Études Sci. Publ. Math. No. 34 1968, 129–151.
- E. Vasselli, *The C*-algebra of a vector bundle and fields of Cuntz algebras*, J. Funct. Anal. 222 (2005), no. 2, 491–502.